管道应力设计基础
管道应力设计规定
管道应力设计规定1 范围1.1 本标准对管道应力分析设计条件、评定标准以及分析方法进行了规定。
1.2 适用于设计压力不大于42 MPa,设计温度不超过材料允许使用温度,非直接埋地且无衬里的低碳素钢、合金钢或不锈钢管道。
2 引用标准使用本标准时,应使用下列标准的最新版本。
GB 50316 《工业金属管道设计规范》GB 50009 《建筑结构荷载规范》SH 3039 《石油化工企业非埋地管道抗震设计通则》API 610 《石油、化工和气体工业用离心泵》API 617 《石油、化工和气体工业用离心式压缩机》NEMA SM23 《机械驱动用汽轮机》3 设计规定3.1 一般要求3.1.1 应兼顾管道热补偿及防振要求。
3.1.2 应兼顾管道及设备安全,应避免管道对相关设备造成危害。
3.1.3 应优先采取自然补偿方法解决管道柔性问题,安装空间狭小而不具备自然补偿条件时方考虑采用金属膨胀节。
采用膨胀节应考虑满足工艺条件及防腐要求,不得采用填函式伸缩节和球形补偿器。
3.1.4 可采取冷紧措施减小管道对设备、法兰以及固定架的作用力,但不可以应用在敏感转动设备的管道上。
3.1.5 存在明显振源的管道应优先考虑防止其振动。
3.1.6 往复式压缩机管道应按照与制造商签定的合同要求进行防振计算。
3.2 设计条件3.2.1 计算基础数据应由相关各专业提供。
3.2.2 计算工况应涵盖最不利工况,如烘炉、催化剂再生、烧焦、吹扫等特殊工况。
3.2.3 另有规定除外,热态计算温度按最高操作温度状态确定。
对于有外隔热层管道,计算温度取介质温度;对于无外隔热层管道,计算温度可取95 %介质温度;对于有内隔热层管道,计算温度应根据热传导计算确定。
3.2.4 另有规定除外,安装温度取20 ℃。
3.2.5 另有规定除外,冷态计算温度取安装温度。
3.2.6 另有规定除外,计算压力取最高操作压力。
3.2.7 金属管道的许用应力按GB 50316附录A取值。
【管道应力分析】管道设计-3
第四强度理论: e
1 2
[(
z )2
( z
r )2
( r
)2 ]25 [ ]
强度理论
第一强度理论(最大拉应力理论): 认为最大拉应力是引起破裂的主要原因
σ1 [σ]
第二强度理论(最大伸长线应变理论):
认为最大伸长线应变是引起破裂的主要原因
σ1 (σ2 σ3) [σ]
第三强度理论(最大剪应力理论): 认为最大剪应力是引起屈服的主要原因
4
确定管径方法:
(1)首先设定平均流速,按下式初算内径:
式中 Di——D管子i 内=径0(.m0)1;88 W0/vρ
W0——质量流量(kg/h); ν——平均流速(m/s); ρ——流体密度(kg/m3)。
(2)根据工程设计规定的管子系列调整为实际内径。 (3)复核实际平均流速。 (4)以实际的管子内径Di与平均流速v核算管道压力损失,
一次应力安全性判据是: [ ]L [ ]t
极限载荷法认为:在某结构截面上一旦发生屈服,该结 构便达到极限状态,不能再承受任何附加载荷,结构在极 限状态下承受的外载荷称之为极限载荷。这是一个防止结 构过度变形的准则。
一次弯曲应力和一次局部薄膜应力可以比一次总体薄膜 应力有较高的许用应力值。
设计温度下基本许用应力
σ1 σ3 [σ]
第四强度理论(形状改变比能理论): 认为形状改变比能是引起屈服的主要原因
R
σ3
1 2
[(σx
σy
)2
τ
2 xy
xC
1 2
(σ
x
σy )
R σ1
(xC , yC )
σ
1 2
[(σ1
σ2 )2
管道应力计算指导
[转贴]压力管道应力分析部分第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。
管道应力计算报告
管道应力计算报告
管道应力计算是确定管道设计安全性的重要一步,以下是管道应力计算报告的基本内容:
1. 选用的计算方法和标准:应明确使用的计算方法和标准,如ASME B31.1、B31.3等。
2. 管道系统的设计参数:报告需提供管道系统的设计参数,包括管道直径、壁厚、材质、工作温度和压力等。
3. 应力计算基础:应力计算基础是管道应力计算的前提,需要通过管道系统的设计参数计算出管道应力计算的基础数据。
4. 管道应力计算:根据应力计算基础及计算方法,计算出管道系统中各点的应力及相应的位移,其中包括弯曲应力、轴向应力、环向应力、剪切应力等。
5. 应力判断:基于计算出的管道应力,判断管道系统在工作情况下是否满足设计要求,主要是确保管道系统的强度和刚度满足设计要求,避免管道系统出现破裂、脆化、变形等现象。
6. 结论:报告中应根据管道应力计算的结果,给出相应的结论,包括管道系统的安全性评估、是否需要调整设计参数等。
7. 建议改进:如果管道应力计算存在问题或者不满足设计要求,应给出相应的建议改进措施,以确保管道系统的安全性和稳定性。
应力分析基础理论讲义
CAESARII-管道应力分析软件(系列培训教材)管道应力分析基础理论讲义管道应力分析基础理论管道应力分析主要包括三方面内容:正确建立模型、真实地描述边界条件、正确地分析计算结果。
所谓建立模型就是将所分析管系的力学模型按一定形式离散化,简化为程序所要求的数学模型,模型的真实与否是做好应力分析的前提条件。
应力分析的根本问题就是边界条件问题,而体现在工程问题上就是约束(支架)、管口等具体问题的模拟,真实地描述这些边界条件,才能得到正确的计算结果。
要想能够熟练而正确地分析结果,首先会正确设计支吊架,有一定的相关理论知识如工程力学,流体力学,化工设备及机械等,另外需在一定时间内不断摸索,总结出规律性的问题。
第一章管道应力分析有关内容·§1.1 管道应力分析的目的进行管道应力分析的问题很多CAESARII解决的问题主要有:1、使管道各处的应力水平在规范允许的范围内。
2、使与设备相连的管口载荷符合制造商或公认的标准(如NEMASM23,API610 API617等标准)规定的受力条件。
3、使与管道相连的容器处局部应力保持在ASME第八部分许用应力范围内。
4、计算出各约束处所受的载荷。
5、确定各种工况下管道的位移。
6、解决管道动力学问题,如机械振动、水锤、地震、减压阀泄放等。
7、帮助配管设计人员对管系进行优化设计。
§1.2 管道所受应力分类1.2.1 基本应力定义轴向应力(Axial stress):轴向应力是由作用于管道轴向力引起的平行管子轴线的正应力,:S L=F AX/A m其中S L=轴向应力MPaF AX=横截面上的内力NA m=管壁横截面积mm2=π(do2-di2)/4管道设计压力引起的轴向应力为S L=Pdo/4t轴向力和设计压力在截面引起的应力是均布的,故此应力限制在许用应力[σ]t范围内。
弯曲应力(bending stress):由法向量垂直于管道轴线的力矩产生的轴向正应力。
压力管道应力动态分析理论
02 压力管道应力动态分析理 论基础
材料力学基础
材料力学是研究材料在各种力和力矩 作用下的应力和应变行为的科学。它 为压力管道应力动态分析提供了基本 原理和计算方法,包括材料的弹性模 量、泊松比、剪切模量等参数的确定。
VS
材料力学还涉及到材料的强度理论, 例如最大剪应力理论、最大伸长线应 变理论和能量理论等,这些理论为压 力管道的强度设计和校核提供了依据。
意义
通过应力分析,可以优化管道设计,降低制造成本,提高设备运行效率,保障人员和财产安全。
应力分析的方法和步骤
方法
常用的应力分析方法包括有限元法、有限差分法和边界元法等数值分析方法,以及基于力学理论的解 析法。
步骤
应力分析通常包括前处理、求解和后处理三个步骤。前处理阶段涉及建立模型、设定边界条件和载荷 等;求解阶段通过数值方法计算管道应力;后处理阶段则是对计算结果进行评估和优化。
04 压力管道应力动态分析理 论与其他理论的关联
与流体力学理论的关联
流体力学理论在压力管道应力动态分析中起 着重要作用,特别是在流体流动和压力分布 的计算方面。流体的动力学和热力学性质对 管道中的应力分布和疲劳寿命有显著影响。
压力管道中的流体流动可能导致管道产生振 动和应力集中,这些因素进一步影响管道的 稳定性和安全性。流体力学理论提供了流体 动力学和热力学的基本原理,有助于预测和
压力管道应力分析的未来发展方向
方向1
随着数值计算技术和计算机技术的不断发展,未来应力分析将更加精确和高效,能够更 好地模拟管道的实际运行工况。
方向2
随着新材料和新工艺的不断涌现,未来管道材料的性能将更加优异,能够满足更高压力 和温度的要求。
方向3
随着智能化和远程监控技术的发展,未来管道应力分析将更加智能化和远程化,能够实 现实时监测和预警,提高管道运行的安全性和可靠性。
管道设计之管道应力分析
管道设计之管道应力分析开篇Email: 156578102@对管道支撑件(如固定支架、止推支架、导向支架、滑动支架、滚动支架、吊架、弹簧支架等)、阻尼件(如阻尼器)、柔性件(如膨胀节)的选型与设置;对与管道相连的设备的定位、操作的理解;对管道走向的调整与斟酌;对管道元件的局部分析与处理(如法兰、支架生根、SIF);对管道开停车工况及其介质特性的理解;对管道可能遭受的偶然载荷(如气液两相流、水锤、气锤、安全阀反力、风载荷、地震载荷)的理解程度,一定程度上体现了一个设计院管道设计的水平。
虽然柔性分析仍然是管道应力分析的主要内容,但与振动有关的破坏也越来越受到重视,所以管道设计需要刚柔并济。
话虽这么说,但有时候确实很难,这个时候应该查找相关资料来佐证自己的想法,做到有分寸的考虑相关问题,不能一味按某个不切实际方向去做。
1.管道应力专业工作1.1编写本装置的应力分析统一规定,明确本装置执行的规范及版本,软件及版本;1.2根据统一规定,编写本装置的应力分析关键管线表;1.3参与关键管线及其设备的布置研究;1.4参与关键设备的技术谈判;1.5的委托条件进行详细应力分析(这部分内容很多,等以后大家都了解后可以针对不同管系展开说明),提出应力计算报告及修改意见;1.6受报告并解读报告,按要求修改管道走向及选取支架,向土建、设备专业返回受力及扰度要求;1.7置的三查四定及开车。
2.配管委托条件应包括哪些内容2.1单线图:2.2设备总装图:设备外形图、材质、温度等;2.3调节阀、安全阀数据表:重量、反作用力、压力等级、材质等;2.4其他应力分析过程中需要的资料:如PID流程图、管道表、材料等级表、当地风、地震等数据等等。
3.如何理解应力分析报告3.1节点号:在单线图上感兴趣的点称为节点,通常会在管道端点、支吊点、三通、弯头、大小头、管道属性改变处(如管径、壁厚、保温、温度、压力等)、阀门端面、法兰端面、膨胀节及一些特殊需要而增设等处设置节点号。
管道应力专业提出的应力分析条件内容
管道应力专业提出的应力分析条件内容管道应力专业是工程学科中的重要分支之一,主要研究管道系统中的应力分析问题。
管道系统的应力分析是工程设计与成品制造过程中不可或缺的环节,能够为工程师提供关键的设计以及材料选用依据。
在进行管道系统的应力分析时,需要掌握一定的应力分析条件,本文将对管道应力专业提出的应力分析条件进行详细介绍。
一、管道设计与材料选用管道设计是应力分析的基础,必须考虑到各种因素,包括管道直径、壁厚、材料、工作压力、温度和环境等。
为了保证管道在使用过程中的安全性,应根据设计要求、材料强度、使用场合等因素,选用适宜的材料并按照规定的方式加工制造管道。
二、管道支承方式管道在整个系统中当然是一个重要的组成部分,必须支持在恰当位置以保证稳定性,并能承受来自其他组成部分的重量。
管道支承方式的设计必须符合管道布置设计和管道材料特性等因素,应选用适当的支承方式,包括管架、吊杆、吊环、卡箍等,以保证管道的稳定性。
三、管道安装方式管道安装方式对于管道本身的应力分析结果也有不可忽视的影响。
管道的安装方式应符合管道材料以及应用环境的特性,如需采用挖坑安装方式则需要考虑地下水位等因素,任何因素变化都会影响到管道的应力分析结果,因此需要在管道设计和安装方案确定前仔细评估,并不断进行跟踪和调整。
四、管道布置方式管道布置方式的合理性会影响应力分析结果的校准,因此管道应力专业在进行应力分析时需要考虑管道的布置,包括管道直线段与弯管的比例、弯管角度与半径、排水情况等多种因素。
在对管道进行应力分析时需要考虑这些因素,并据此对应力结果进行修正和校准。
五、管道载荷分析在管道系统中,管道本身可以受到多种载荷,如来自其他组成部分的载荷、管道内流体的载荷等。
管道载荷分析对于应力分析来说是必需的,载荷分析的结果将被用于计算管道的应力状况,包括弯曲、扭转和拉伸等。
在进行应力分析时,需要分别考虑定常载荷和突发载荷。
六、管道温度分析管道系统在使用过程中的温度变化会对管道本身的应力造成影响,而且不同的管道材料对温度的敏感度也可能不同。
管道应力分析及设计
管道应力分析及设计摘要:随着现代工业的发展,大量高温高压管道的应用,使管道的应力分析显得尤为重要。
文中阐述了电站主蒸汽管道应力分析的方法,并举例说明,为管道应力分析计算提供了可靠的模型。
关键词:管道应力;支吊架;管道设计;主蒸汽Abstract: With the development of modern industry, the stess analysis of pipeline is particularly important for the large application of high pressure pipeline. The paper explains the methods ofthe power plant main steam pipe stress analysis, and gives illustration, providing a reliable model for pipe stress analysis.Keywords: pipe stress; supports and hangers; pipeline design; main steam目前随着工程建设的日益大型化,所用管道的管径逐渐增大,所以管道应力分析越来越受到设计单位和投资单位的重视,也对从事管道设计的人员提出了更高的要求。
要求设计人员必须具备有一定的应力分析能力,才能设计出既满足工艺流程,又保证安全、经济合理、美观的管道设计。
1 管道应力分析的概念管道的应力,主要是由于管道承受内压力、外部荷载以及热膨胀或冷紧等多种因数引起的。
其中热膨胀问题是管道应力分析所要解决的最常见和最主要的问题。
对于管道上的应力,一般分为一次应力和二次应力。
一次应力是指由管道所受荷载,如所受内压力和持续外载荷等引起应力。
它是非自限性的,超过某一限度,将使管道整体变形直至破坏。
二次应力是指由热胀冷缩、端点位移以及支吊架设置等位移载荷所产生的应力,它是为满足位移约束条件或管道自身变形要求所必需的应力。
管道设计基础理论
补偿器
中冶华天
1. 管道模型
温度与压力 (1)温度: 安装温度、设计温度、工作温度等; (2)设计温度的确定: 可以采用加权平均温度或最高温度。
中冶华天
1. 管道模型
(3)安装温度的确定: 1)地下管道在以下情况下必须进行焊接预热,预热温度为安装温度,包括: a.外部温度为-20℃:碳含量不超过0.24%的碳钢管壁、壁厚为10 mm的低合金钢管; b.外部温度为-10℃:碳含量超过0.24%的碳钢管、壁厚为10 mm以上的低合金钢管。 2)架空管线。一般此类安装工程都在夏季完成,安装温度可以取温暖季节最低温度。 3)直埋管道。 要求寒冷季节减20℃或最冷的五天的温度。 (4)试验温度:+20℃。一般可以不考虑。
中冶华天
1. 管道模型
管嘴
如果没有通过建立设备模型则需 要填写这些参数,主要提供设备 变形参数。
要明确管嘴的材质,往往容器的 材质与管道不一样。
中冶华天
3.补偿器模型
补偿器类型 补偿器的布置方法
中冶华天
3.补偿器模型
波纹管一般包含4~11个薄波纹(0.7~1.5mm)。 波数或波纹管长度取决于管道的直径和内部压力, 一般需要根据实验确定。波纹管可分为单层和多 层两类。
中冶华天
3.补偿器模型
平面角向补偿器和空间角向补偿器; 横向管道补偿器,在两个相互垂直 的平面可以形成一个横向偏移。紧 固连接件约束了其在空间内的弯曲, 同时可以消除管道内压影响,承载 盲板力。
中冶华天
3.补偿器模型
轴向补偿器必须与导向支架配合安装。 第一个导向支架位置与点A的间距l1 = 2~4DN,且应在点A两侧布置; 第二个导 向支架位置与点A的间距l2 = 14~16DN,且应在点A两侧布置。可以保证管道在安 装或工作状态下,受热形变后,管道会沿轴向方向位移。
应力分析基础知识及建模2020.07.22
应⼒分析基础知识及建模2020.07.22第⼀部分应⼒分析简介 (1)1.0 应⼒分析任务 (1)1.1管道静⼒分析的任务 (1)1.2管道动⼒分析的任务 (1)1.3应⼒分析的⽬的 (2)2.0 管系应⼒分析 (3)2.1管道系统中的应⼒ (3)2.2管道系统应⼒ (5)2.3影响管道系统分析的参数 (6)2.4冷紧 (6)2.5应⼒分析应⽤经验 (6)3.0 需要应⼒分析管道的确定 (7)3.1 GB 50316的规定 (7)3.2 GB/T 20801的规定 (8)3.3 ASME B31.3 的规定 (8)3.4主要的标准规范 (8)3.5碳钢管道的许⽤应⼒ (8)4.0 编辑计算书 (9)5.0 应⼒分析结果校审注意事项 (10)6.0 ⽔压试验和⽓压试验 (12)6.1试验⽅法的选择基础 (12)6.2保压时间 (12)第⼆部分软件介绍 (13)1.0 初始界⾯ (13)2.0 管系输⼊界⾯ (15)3.0 管系输⼊基本内容 (17)4.0 材料 (19)5.0 保温、内衬 (21)6.0 温度压⼒设置 (21)7.0 增加材料库 (22)第三部分⽀架形式模拟 (23)1.0 普通⽀架的模拟 (23)1.1 U型⽀架 (23)1.2 承重⽀架 (23)1.3 导向⽀架 (24)1.4 限位⽀架 (26)1.5 固定⽀架 (26)1.6 吊架 (27)1.7 ⽔平拉杆 (27)1.8 弹簧⽀架模拟 (28)1.9 弹簧安装荷载 (31)2.0 附塔管道⽀架的模拟 (32)3.0 弯头上⽀架 (34)4.0 液压阻尼器 (36)5.0 CAESARII可模拟虾⽶弯,但变径虾⽶弯不能模拟 (37)6.0 承重⽀架沉降模拟 (37)第四部分管道应⼒分析中弯头和三通的特殊性 (38)1.0 弯头的K和SIF值 (38)1.1弯头的SIF (38)1.2弯头的柔性系数K (38)1.3影响弯头SIF和柔性系数K的因素 (38)2.0 带法兰弯头的模拟 (39)3.0 假管⽀架分析 (39)3.1 Caesar中带假管的弯头分析 (39)3.2 弯头假管⽀架的应⼒分析和特殊形式假管⽀架的SIF和柔性计算 (40)4.0 CAESAR中三通模拟 (40)4.1 ⾮标三通 (40)4.2 三通柔性对管道应⼒分析的影响 (40)4.3 三通的详细分析 (41)第五部分管道⽀架的设计与选型 (42)1.0 管道⽀架的作⽤ (42)1.1 操作⼯况和试验⼯况⽀撑管道的重量 (42)1.2 热胀荷载 (42)1.3 承受偶然的地震荷载 (42)1.5 抑制管道振动 (42)1.6 承受偶然的风荷载 (42)1.7 在系统进⾏备⽤设备切换过程中⽀撑 (43)1.8 控制噪⾳ (43)1.9 维修⼯况下⽀撑管道 (43)1.10 关闭情况下提供的⽀撑 (43)1.11 安装状态下提供的⽀撑 (43)2.0 管道⽀架设计导则 (44)2.1 管道跨距 (44)2.2 ⾮保温⽀撑 (44)3.0 ⽀架摩擦⼒在应⼒分析中的应⽤ (45)4.0 弹簧选型 (46)4.1 可变弹簧选型步骤 (46)4.2 恒⼒弹簧选型步骤 (47)4.3 弹簧选型注意步骤 (47)5.0 热态持续应⼒校核 (48)6.0 减振和防冲击⽀架 (49)6.1 减振⽀架 (49)6.2 刚性限位拉杆 (51)6.3 阻尼器 (52)7.0 如何模拟阻尼器 (54)第六部分管件的模拟 (55)1.0 法兰和阀门的模拟 (55)2.0 ⼤⼩头模拟 (56)3.0 安全阀的模拟 (57)4.0 弯头的模拟 (58)5.0 ⽀管连接形式 (59)6.0 膨胀节的模拟 (60)6.1 ⼤拉杆横向型膨胀节 (60)6.2 铰链型膨胀节 (72)7.0 ⼤⼝径管道的模拟 (78)7.1 管道壁厚计算 (78)7.3 管道柔性 (79)7.4 局部应⼒ (79)7.5 ⼤⼝径管道建模 (79)第七部分⾼温⾼压管道分析 (81)1.0 典型特点 (81)2.0 典型管道 (82)3.0 材料选择 (82)4.0 ⾼温蠕变 (82)第⼋部分埋地管道应⼒分析 (88)1.0 长输管道应⼒分析 (88)1.1 地下长直部分 (88)1.2 出⼊⼟站场部分 (89)1.3 压缩机和泵站部分 (89)2.0 埋地管道应⼒分析过程 (90)2.1 系统建模 (90)第九部分夹套管道应⼒分析 (94)1.0 夹套管基本知识 (94)1.1 什么情况使⽤夹套管 (94)1.2 Caesar中输⼊的密度 (94)1.3 夹套管应⼒校核 (94)1.4 焊缝校核的许⽤值 (96)1.5 模型的建⽴ (96)2.0 夹套管基本知识 (97)第⼗部分设备模拟 (101)1.0 塔 (101)1.1 板式塔的模拟 (101)1.2 填料塔的模拟 (102)1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (105)2.0 ⾼塔管道的应⼒分析 (106)2.1 分析输⼊ (107)2.2 ⾼塔温度纵断图 (107)2.4 和塔连接管道的⽀撑 (109)2.5 管⼝载荷校验 (110)3.0 ⾼塔⽴式再沸器管道的应⼒分析 (111)3.1 应⽤规范和标准 (111)3.2 输⼊要求 (111)3.3 模型温度基准 (112)3.4 再沸器往往通过管道迸⾏模拟 (112)3.5 ⽀撑式布置 (113)4.0 管壳式换热器管道布置及应⼒分析 (116)4.1管程&壳程流体选择的⼀般原则 (116)4.2管壳式换热器的管道布置和⽀撑 (117)4.3管道应⼒分析注意事项 (118)5.0 换热器,再沸器 (119)5.1 换热器模拟也分两种情况 (119)5.2 ⾼塔⽴式再沸器管道应⼒分析 (120)6.0 板式换热器 (126)7.0 空冷器 (127)7.1 空冷器的制造 (128)7.2 空冷器的单元布置 (128)7.3 空冷器使⽤标准 (128)7.4 空冷器管束 (129)7.5 不同类型翅⽚管 (129)7.6 翅⽚材料 (130)7.7 顶盖 (130)7.8 空冷器不同类型的控制 (131)7.9 空冷器的类型 (131)7.10 空冷器的布置 (131)7.11 空冷器管道布置 (132)7.12 空冷器接管的管道应⼒分析 (134)7.13 空冷器管⼝校核 (134)7.14 空冷器进⼝管道和出⼝管道不在同⼀侧 (135)7.15空冷器进⼝管道和出⼝管道在同⼀侧 (137)8.0 泵 (139)8.1 泵的模拟 (140)8.2 分析⼯况的准备 (140)8.3 计算结果的分析 (141)8.4 转动设备的特殊考虑 (141)9.0 压缩机,透平 (141)9.2压缩机管⼝载荷校核 (144)9.3离⼼压缩机分析需要注意的事项 (144)10.0 加热炉管道布置与应⼒分析 (145)10.1加热炉管道系统及其布置 (145)10.2加热炉⼯艺管道分析 (146)10.3管道应⼒分析模型建⽴ (147)第⼗⼀部分校核设备法兰冷对中 (150)第⼗⼆部分管⼝校核 (152)1.0 设备管⼝载荷校验 (152)1.1介绍 (152)1.2静设备的管⼝载荷 (152)1.3转动设备的管⼝载荷 (153)1.4转动设备的管⼝载荷 (154)1.5设备管⼝FEA检查⽅法 (154)2.0 WRC107 (156)3.0 Nema 23 (160)4.0 API617 (162)5.0 API610 (164)6.0 开⼝接管外荷载校核 (167)7.0 CAESARII软件中WRC107和WRC297校核步骤 (168) 7.1 WRC107的使⽤范围 (168)7.2 WRC297的使⽤范围 (168)7.3 WRC107和297的区别 (168)7.4 WRC限制 (169)7.5 使⽤WRC较核时需要的输⼊数据 (169)7.6 使⽤WRC较核时需要的输⼊数据 (169)7.7 FEA107和NozzlePRo软件介绍 (172)8.0 压⼒容器管⼝载荷表注意事项 (174)第⼗三部分法兰泄露分析 (176)1.0 法兰泄露分析的⽅法 (176)2.0 CAESARⅡ当量压⼒法校核法兰泄漏 (177)3.0 CAESAR II中NC3658.3法兰泄漏分析 (179)4.0 CAESAR II中 ASME VIII卷法兰泄漏分析 (182)5.0 垫⽚对法兰泄漏的控制 (185)5.1 垫⽚阻⽌泄漏的⼯作原理 (186)5.2 垫⽚类型 (186)5.3 常⽤垫⽚结构 (187)5.4 垫⽚规范 (188)5.5 垫⽚的选择 (188)5.6 影响响垫⽚性能的参数 (189)第⼗四部分⼯况组合 (191)1.0 地震 (192)2.0 风载 (194)3.0 偶然载荷编辑⼯况 (197)4.0 安全阀起跳⼯况 (197)5.0 沉降 (199)第⼗五部分特殊情况 (200)1.0 ⾮线性不收敛问题 (200)2.0 中间点受⼒ (203)3.0 介质密度 (204)第⼗六部分补偿器模拟 (205)1.0 旋转补偿器 (205)2.0 旋转补偿器建模 (211)第⼗七部分振动 (216)1.0 振动基本知识 (216)1.1系统内部的振动 (216)1.2系统外部的振动 (216)3.0 振动解决⽅案 (219)3.1风载荷引起的管道振动 (219)3.2地震载荷引起的管道振动 (220)3.3两相流管道振动 (220)3.4⽔锤引起的管道振动 (221)3.5喘振引起的管道振动 (221)3.6设备振动引起的管道振动 (222)3.7往复压缩机和往复泵管道的振动 (222)4.0 蒸汽振动解决⽅案 (222)第⼗⼋部分热拱 (225)1.0 热拱现象 (225)第⼗九部分结果分析 (228)1.0 弹簧 (228)2.0 单元应⼒ (229)3.0 约束反⼒ (230)4.0 节点位移 (230)5.0 符号代表 (230)6.0 局部坐标受⼒ (231)第⼆⼗部分转动设备的允许受⼒ (232)1.0 汽轮机和压缩机的受⼒限制 (232)2.0 离⼼泵的受⼒限制 (236)第⼆⼗⼀部分静设备的允许受⼒ (240)1.0 加热炉的允许受⼒ (240)3.0 法兰的允许受⼒ (242)第⼆⼗⼆部分转动设备的柔性设计 (243)1.0 离⼼泵管道的柔性设计 (243)2.0 汽轮机和离⼼压缩机管道的柔性设计 (244)第⼆⼗三部分冷紧和⾃冷紧 (246)1.0 冷紧 (246)2.0 ⾃冷紧 (247)第⼆⼗四部分动态分析 (248)1.0 ⾃振频率分析 (248)2.0 安全阀反⼒计算 (250)3.0谐波分析 (252)4.0响应谱分析 (254)5.0地震 (258)6.0模态分析详解 (259)第⼆⼗五部分应⼒分析基本知识汇总 (271)。
管道应力分析专业设计统一规定
中国五环
工程有限公司
内蒙古京能锡林煤化有限责任公司基础工程设计0B版
锡林郭勒盟东乌旗褐煤提质项目
11051-PE04-MC-04
第 1 页第16页
管道应力分析
专业设计统一规定
0B 根据审查意见修改费珂阳东升蔡晓峰2014.1
0A 基础工程设计费珂阳东升蔡晓峰2013.10
版次说明编制校核审核日期
4.2.3 弓形效应
对于管道截面上下有温差的管道,需要可虑弓形效应可能产生。
通常对于口径大300mm且容易产生汽化的低温管道必须考虑弓形效应。
4.2.3管道环境温度
管道应力分析的环境温度,应依据建设项目所在地的气象、地质环境及业主的特殊要求来确定。
本项目应力计算的环境温度,对于热管取年最冷月平均温度;对于冷管取年
应力分析
应力分析范围
原则上所有的管道均应考虑应力问题。
应力分析方法
可根据以下具体情况选择采用经验目测、简单公式判断、图表法或详细计算的方法。
介质的危险性(毒性,火灾危险性等);
管线操作工况(温度,压力,脉动,工作循环强度等)
目测方法。
CAESAR-II-应力分析理论基础解析
S 1 2
1 2 2 2 3 2 3 12
• 他认为引起材料屈服破坏的主要因素是材料内的变形能。
亦即不论材料处于何种应力状态,只要其内部积累的变形
能达到材料单向拉伸屈服时的变形能值,材料即发生屈服
破坏。
2023/12/8
2023/12/8
材料的机械性能
一、弹性阶段 二、屈服阶段 将下屈服极限称为屈服极限 三、强化阶段 经过屈服阶段后,材料恢复了抵抗变 形的能力,要使其继续变形必须增加 拉力,这种现象称为材料的强化。 四、局部变形阶段 在试件的某一局部范围内,横向尺寸 突然急剧缩小。
• 通俗来讲管道应力分析的任务,实际上是 指对管道进行包括应力计算在内的力学分 析,并使分析结果满足标准规范的要求, 从而保证管道自身和与其相连的机器、设 备以及土建结构的安全。
• 一般来讲,管道应力分析可以分为静力分 析和动力分析两部分。
2023/12/8
静态分析目的
• 静力分析是指在静力载荷的作用下对管道 进行力学分析
• 平面内垂直于半径。 • 剪切力
– 这个载荷在外表面最小,因此在管系应力计算中 省略了这一项。
– 在支撑处要求局部考虑。
• 扭矩
– 最大的应力发生在外表面。 – MT/2Z
2023/12/8
压力容器和管道中应力
• 剪应力 • 薄膜应力
2023/12/8
压力容器和管道弯曲应力
• 梁单元弯曲应力 • 壳单元弯曲应力
压力容器设计所采用的标准分为两类: 一类是按规则设计;另一类是按分析进行设计。常规设计一般以简化计算公 式为基础,再加上一些经验系数,不进行应力分析。
而分析设计中,首先将应力划分为一次应力和二次应力两大类,二者的 定义相似。 一次应力:为平衡压力与其它机械荷载所必须的法向应力或剪应力。其特点 是非自限性,即当结构内的塑性区扩展达到极限状态,使之变成几何可变的 机构时,即使荷载不再增加,仍将产生不可限制的塑性流动,直至破坏。
CAESARII基础知识要点
所有资料版权属艾思弗软件公司所有,未经许可,不得拷贝!!管道应力分析软件(系列培训教材)管道应力分析基础知识北京市艾2思弗计算机软件技术有限责任公司2003年1月15日管道应力分析基础知识1.管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支撑或端点附加位移造成应力问题。
2.管道应力分析的主要内容管道应力分析分为静力分析和动力分析。
静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据;5)管道上法兰的受力计算——防止法兰汇漏。
动力分析包括:l)管道自振频率分析——防止管道系统共振;2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。
3.管道上可能承受的荷载(1)重力荷载:包括管道自重、保温重、介质重和积雪重等;(2)压力荷载:压力载荷包括内压力和外压力;(3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支撑沉降等;(4)风荷载;(5)地震荷载;(6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击:(7)两相流脉动荷载;(8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动;(9)机械振动荷载:如回转设备的振动。
4.管道应力分析的目的(1)为了使管道和管件内的应力不超过许用应力值;(2)为了使与管系相连的设备的管道荷载在制造商或国际规范(如23、610、6 17等)规定的许用范围内;(3)为了使与管系相连的设备管口的局部应力在的允许范围内;(4)为了计算管系中支架和约束的设计荷载;(5)为了进行操作工况碰撞检查而确定管于的位移;(6)为了优化管系设计。
管道应力分析及计算
⑵ 壁厚计算 D0 A、当
t 6 t
且
P
t
0.385时
2 t 2YP
D0 或 P
PD 0
B、当
t 6
0.385时 t
t 的确定应根据断裂理论、疲劳、热应力及材
料特性等因素综合考虑确定。 C、外压直管的壁厚,应根据GB150规定的方法确定。 D、其它的管件(如Y型三通、孔板等)依据相应的规范 (GB50316-2000)公式进行计算。
2
限制性管架
(7)轴向限位架
(8)导向架
用于限制管道轴向线位移的场合;
用于允许有管道轴向位移,但不允 许有横向位移的场合 用于限制或缓和管道振动
3
减振支架 (9)减振器
10.2、管道跨距及导向间距
1)管道跨距 — 强度及刚度两项控制
a)力学模型
强度条件:连续敷设水平直管允许跨距强度条件是管 道中最大 纵向应力不得大于设计温度下的材 料的许用应力。
七、管道应力分析中的特殊问题 7.1、夹套管应力分析
7.2、埋地管应力分析
7.3、高压管道应力分析
八、有限元法在管道应力分析中的应用
九、管道应力分析程序
9.1、CAESAR II软件的应用
9.2、AUTOPIPE软件的应用
十、管道支架设计
10.1、管道支架的分类及定义
按支架的作用分为三大类:承重架、限制性支架和减振 架。 1)承重架 : 用来承受管道的重力及其它垂直向下载荷的 支架(含可调支架)。
五、管道机械专业(应力分析)常用的标准规范
1、GB50316-2000《工业金属管道设计规范》 2、HG/T20645-1998《化工装置管道机械设计规定》 3、SH/T3041-2002《石油化工企业管道柔性设计规范》
管道应力分析设计技术规定
管道应力分析设计技术规定1. 总则1.1 概述1.1.1 管道应力计算主要验算管道在内压、持续外载作用下的一次应力和由于热胀、冷缩及其它位移受约束产生的二次应力,以判明所计算的管道是否安全、经济、合理;计算管道由于热胀、冷缩及其它位移受约束和持续外载作用产生的对设备的推力和力矩,以判明是否在设备所能安全承受的范围之内。
1.2 范围1.2.1 下列范围的管道必须通过计算机计算:(1)管径大于等于DN150,且设计温度大于等于230℃或低于-20℃的所有管线。
(2)设计温度大于等于340℃的所有管线。
(3)管径大于等于DN100,且操作温度大于等于230℃或低于-20℃的所有泵的进出口管线。
(4)汽轮机进、进口连接的管道。
(5)离心压缩机进、出口连接的管道。
(6)往复压缩机进、出口连接的管道。
(7)有关规范中规定要进行应力计算的管道。
1.2.2 下列范围内(除1.2.1条规定之外)的管道一般应通过目测、手工简易计算进行应力分析,在判断困难时,仍应通过计算机计算:(1)管径大于、等于DN400的管道。
(2)连接到压力容器的重要管道。
(3)所有由工艺专业提出的重要管道和内部绝热管道。
(4)所有铝及铝合金的管道。
(5)管道支撑点或与管道相连的设备、建构筑物基础可能过度下沉的管道。
(6)夹套管。
(7)管道应力分析人员选定的管线。
(8)安全阀放散管。
1.2.3 下列管道可不再进行应力计算(1)与运行良好的管道柔性相同或基本相当的管道。
(2)和已分析的管道比较,确认有足够柔性的管道。
2. 设计条件和设计标准2.1 设计条件2.1.1 管道应力计算空视草图由配管人员绘制后提交给管道应力计算人员。
格式见附件5.1。
2.1.2 管道应力计算必须具备的基础数据(1)管道计算压力(a)一条管道的计算压力不应小于在操作中可能遇到内压或外压与温度相偶合时的最严格情况下的压力(即确定的设计压力)。
(b)如果管系与其压力泄放装置之间的通路可能被堵塞或隔离,则此管系应按不低于在上述情况下可能产生的最大压力计算。
管道应力基础知识
3 管 道 应 力3.1 石油化工管道应力分析常用规范、标准有哪些?答:石油化工管道应力分析常用规范、标准有:(1)《工业金属管道设计规范》(国标报批稿);(2)《石油化工企业管道柔性设计规范》(SHJ41-91);(3)《石油化工企业非埋地管道抗震设计通则》(SHJ39-91);(4)《石油化工企业管道设计器材选用通则》(SH3059-94);(5)《石油化工企业管道支吊架设计规范》(SH3073-95);(6) 化工管道设计规范(HGJ8-87);(7) 化工部设计标准《管架标准图》(HGJ524-91)。
3.2 管道应力分析主要包括哪些内容?各种分析的目的是什么?答:管道应力分析分为静力分析和动力分析。
静力分析包括:(1) 压力荷载和持续荷载作用下的一次应力计算—防止塑性变形破坏;(2) 管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算—防止疲劳破坏;(3) 管道对设备作用力的计算—防止作用力太大,保证设备正常运行;(4) 管道支吊架的受力计算—为支吊架设计提供依据;(5) 管道上法兰的受力计算—防止法兰泄漏。
动力分析包括:(1) 管道自振频率分析—防止管道系统共振;(2) 管道强迫振动响应分析—控制管道振动及应力;(3) 往复压缩机(泵)气(液)柱频率分析—防止气柱共振;(4) 往复压缩机(泵)压力脉动分析—控制压力脉动值。
3.3 管道上可能承受的荷载有哪些?答:管道上可能承受的荷载有:(1) 重力荷载,包括管道自重、保温重、介质重和积雪重等;(2) 压力荷载,压力荷载包括内压力和外压力;(3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等;(4) 风荷载;(5) 地震荷载;(6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;(7) 两相流脉动荷载;(8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;(9) 机械振动荷载,如回转设备的振动。
管道应力分析设计规定.
主编部室:管道室参编部室:参编人员:参校人员:说明:1.文件版号为A、B、C......。
2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。
本规定(HQB-B06-05.306PP-2003)自2003年月实施。
目录1. 总则 (1)2. 应力分析管线的分类及应力分析方法 (2)3. 管道应力分析设计输入和设计输出 (6)4. 管道应力分析条件的确定 (9)5. 管道应力分析评定准则 (11)附件1 管线应力分析分类表 (14)附件2 设备管口承载能力表 (15)附件3 柔性系数k和应力增强系数i (16)附件4 API 610《一般炼厂用离心泵》(摘录) (17)附件5 NEMA SM23 (摘录) (22)附件6 API 661 《一般厂用空冷器》(摘录) (23)1. 总则1.1 适用范围1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。
本规定所列内容为管道应力分析设计工作的最低要求。
1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题:1)管道的应力过大或金属疲劳引起管道或支架破坏。
2)管道连接处泄漏。
3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应力,而影响了设备的正常运行。
4)管架因强度或刚度不够而造成管架破坏。
5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。
6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管道振动及破坏。
1.2 应力分析设计工作相关的标准、规范:1) GB150-1999 《钢制压力容器》2) GB50316-2000 《工业金属管道设计规范》3) HG/T20645-1998 《化工装置管道机械设计规定》4) JB/T8130.2-95 《可变弹簧支吊架》5) JB/T8130.1-95 《恒力弹簧支吊架》6) HQB-B06-05.203PP-2003《简化柔性计算的规定》7) ASME/ANSI B31.3 Process Piping8) ASME/ANSI B31.1 Power Piping9) ASME/ANSI B31.4 Liquid Transmission and Distribution pipingsystems10)ASME/ANSI B31.8 Gas Transmission and Distribution pipingsystems11)API 610 Centrifugal Pumps for General Refinery Services12)API 617 Liquid Transportation System for Hydrocarbone,Liquid ,Petroleum Gve, Anhydrone Ammonis , and Alcohols13) NEMA SM-23 Steam Turbine14) API 661 Air-Cooled Heat Exchangers for General RefineryService15) HQB-B06-05.105PP-2003 《管道配管设计规定》16) HQB-B06-04.301PP- 《管架设计工程规定》17) SHJ.41-91 《石油化工企业管道柔性设计规范》18) GB 50316-2000 《工业金属管道设计规范》2. 应力分析管线的分类及应力分析方法2.1 应力分析管线的分类原则上,所有的管线均应做应力分析,并根据管线的类别(温度、压力、口径、壁厚、所连接的设备的荷载要求等)确定应力分析的方法和详细程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道应力设计基础1 适用范围1.0.1适用于管道机械专业对非埋地碳素钢、合金钢及不锈钢管道的柔性设计。
1.0.2不适用于长输管道、加热炉炉管及设备内部管道的柔性设计。
2 相关标准2.0.1 《石油化工管道柔性设计规范》SH3041-2001《石油化工企业非埋地管道抗震设计通则》SH3039-1991《石油化工企业管道支吊架设计规范》SH3073-95《石油化工企业管道设计器材选用通则》SH3059-94《金属波纹管膨胀节通用技术条件》GB/T12777-1999《工业金属管道设计规范》GB50316-2000《钢制压力容器》GB150-19983 设计原则3.0.1 管道柔性设计包括简化分析方法和详细分析方法。
简化分析采用直观经验判断、经验公式和图表法等;详细分析采用计算机程序进行。
3.0.2 以下两种情况的管道,宜采用详细分析方法进行柔性设计:(1)DN≥100且 t≥150℃的管道;(2)DN≥100且t ≤-45℃的管道;(3)t ≥315℃或t ≤-140℃的所有管道;(4)DN≥650的管道;(5)DN≥100的与空冷器连接的管道,t≥120℃的与空冷器连接的管道;(6)DN≥600受外压的薄壁管道;(7)与放在称量设备上的容器相连接的管道;(8)夹套管道;(9)进出加热炉及蒸汽发生器的高温管道;(10)进出汽轮机的蒸汽管道;(11)进出往复压缩机、透平鼓风机的工艺管道;(12)进出反应器的高温管道;(13)与离心泵连接的管道,可根据设计要求或按图3.0.1确定柔性设计方法;(14) 连接易碎设备(如:石墨换热器、搪瓷设备等)的管道;(15) 需要设置弹簧支吊架或特殊管架的管道及配管设计人员要求提供支承点详细 受力状况的管道(16) 与下沉量较大的设备(塔、罐、槽等)相连接的管道;(17) 利用简化分析方法分析后,表明需要进一步详细分析的管道。
3.0.3 计算机分析采用美国COADE 公司的CAESAR II 软件。
3.0.4 下列管道可不再进行柔性设计:图3.0.1 离心泵柔性设计方法的选择图(1) 温度在 -45℃至100℃之间的管道,但管道在两固定点间不能直线相连(软连接除外)。
(2) 对运行良好的管道进行复制的管道,或在系统中未作重大改动且有完整满意的操作记录的更换管道。
(3) 与已分析并合格的管道相比较,能作出肯定的判断,认为具有足够的柔性的管道。
(4) 对具有同一直径、同一壁厚、无支管、两端固定、无中间约束并能满足下式要求的非极度危害或非高度危害介质管道: D Y L U 02083()2.-≤ (3.0.3-1) Y = (△X 2+△Y 2+△Z 2)1/2 (3.0.3-2)式中 D 0──管道外径(mm);Y ──管道总变形量(mm);△X、△Y、△Z ──分别为管道沿座标轴在X、Y、Z轴方向的变形量(mm);U──管道两固定点间的直线距离(m);L──管道在两固定点间的展开长度(m)。
式(3.0.3-1)不适用于下列管道:(1)在剧烈循环条件下运行,有疲劳危险的管道;(2)大直径薄壁管道(管件应力增强系数 i≥5);(3)不在连接固定点方向的端点附加位移量占总位移量大部分的管道;(4)L/U > 2.5的不等腿U形弯管,或近似直线的锯齿状管道。
4 一般规定4.0.1 管道柔性设计应保证管道在各种工况下具有足够的柔性,防止管道因热胀冷缩、端点附加位移、管道支承设置不当等原因造成的下列问题:(1) 管道应力过大或金属疲劳引起管道破坏;(2) 管道连接处产生泄漏;(3) 管道推力和力矩过大,使与其相连接的设备产生过大的应力或变形,影响设备正常运行;(4) 管道推力和力矩过大引起管道支架破坏。
4.0.2 在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:(1)静止设备产生热胀冷缩时对连接管道施加的附加位移;(2) 转动设备热胀冷缩在连接管口处产生的附加位移;(3) 加热炉管对加热炉进出口管道施加的附加位移;(4) 储罐等设备基础沉降在连接管口处产生的附加位移;(5) 不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移。
4.0.3 对于复杂管道可用固定点将其划分成几个形状较为简单的管段,如L形、Π形、Z形等管段,再进行分析计算。
4.0.4 确定管道固定点位置时,宜使两固定点间的管段能够自然补偿。
4.0.5 管道应首先利用改变走向获得必要的柔性,但由于布置空间的限制或其它原因也可采用补偿器获得柔性。
4.0.6 在有毒及可燃介质管道中严禁采用填料函式补偿器。
4.0.7 采用∏型管段补偿器时,宜将其设置在两固定点中部。
4.0.8 冷紧可降低操作时管道对连接设备或固定点的推力和力矩,但连接转动设备的管道不应采用冷紧。
4.0.9 管道采用冷紧时,冷紧有效系数热态取2/3, 冷态取1。
4.0.10 在管道柔性设计中,应考虑支架摩擦力的影响,摩擦系数μ如下表所示:4.0.11 当采用吊杆或弹簧吊架承受管道荷载时,可不考虑摩擦力的影响。
4.0.12 往复式压缩机和往复泵的进出口管道除应进行柔性设计外,还应考虑流体压力脉动的影响。
4.0.13 管道运行中可能出现各种工况时,应按各工况的条件分别计算。
4.0.14 计算中的任何假设与简化,不应对计算结果的作用力、应力等产生不利或不安全的影响。
4.0.15 支吊架生根在有位移的设备上时,计算时应计入此项热位移值。
5 计算参数的确定5.0.1 管道计算温度应根据工艺设计条件及下列要求确定:(1) 对于无隔热层管道:介质温度低于65℃时,取介质温度为计算温度;介质温度等于或高于65℃时,取介质温度的95%为设计温度。
(2) 对于有外隔热层管道,除另有计算或经验数据外,应取介质温度为计算温度;对外伴热管道应根据具体条件确定计算温度。
(3) 对于夹套管道,介质温度高于伴热介质温度时,取介质温度作为计算温度;介质温度低于伴热介质温度时,取伴热介质温度作为计算温度。
(4) 对于衬里管道应根据计算或经验数据确定计算温度。
(5) 对于安全泄压管道,应取排放时可能出现的最高或最低温度作为计算温度。
(6) 进行管道柔性设计时,不仅应考虑正常操作条件下的温度,还应考虑开车、停车、除焦、再生及蒸汽吹扫等工况。
5.0.2 管道计算压力应取计算温度下对应的操作压力。
5.0.3 除另有规定外,管道安装温度宜取20℃。
5.0.4 当管道端点无附加角位移时,管道线位移全补偿值应按下列公式计算:△X=△X B-△X A-△X t AB△Y=△Y B-△Y A-△Y t AB (5.0.4-1)△Z =△Z B-△Z A -△Z t AB式中△X、△Y、△Z ──分别为管道沿座标轴X、Y、Z的线位移全补偿值(mm);△X A、△Y A、△Z A─分别为管道始端A沿座标轴X、Y、Z的附加线位移(mm);△X B、△Y B、△Z B─分别为管道末端B沿座标轴X、Y、Z的附加线位移(mm);△X t A B、△Y t A B、△Z A B─分别为管道AB沿座标轴X、Y、Z的热伸长值(mm);△X t AB =αt (X B-X A)(T-T0)△Y t AB =αt (Y B-Y A)(T-T0) (5.0.4-2)△Z t AB =αt (Z B-Z A)(T-T0)式中αt─管道材料在安装温度与计算温度间的平均线膨胀系数(mm/mm℃);X、Y A、Z A─管道始端A的座标值(mm);AX、Y B、Z B─管道末端B的座标值(mm);BT─管道计算温度(℃);T─管道安装温度(℃);5.0.5 当管道沿座标轴X、Y、Z方向的冷紧比不同时,每个方向的冷紧值应根据该方向的冷紧比进行计算。
当管道上有几个冷紧口时,沿座标轴X、Y、Z方向的冷紧值分别为各冷紧口在相应座标轴方向冷紧值的代数和。
5.0.6 管材的平均线膨胀系数应按《工业金属管道设计规范》(GB50316-2000)表B.0.2选取。
5.0.7 管材的弹性模量应按《工业金属管道设计规范》(GB50316-2000)表B.0.1选取。
5.0.8 计算二次应力范围时,管材的弹性模量应取安装温度下的弹性模量。
6 安全评定标准6.0.1 常用钢管材料的许用应力应按《工业金属管道设计规范》(GB50316-2000)表A.0.1取值。
6.0.2 管道由于热胀冷缩和其他位移受约束而产生的二次应力范围不得大于按下式计算的许用应力范围。
〕t=f (1.25〔σ〕t0+0.25 〔σ〕t ) (6.0.2-1)〔σr〕t──管道材料的许用应力范围(MPa);式中〔σr〔σ〕t0──管道材料在安装温度下的许用应力(MPa);〔σ〕t──管道材料在计算温度下的许用应力(MPa);f──在预计寿命内,考虑循环总次数影响的许用应力范围的减小系数,按下表取值。
D D G G F M P eq 23416ππ+=6.0.3 当计算的应力范围不能满足第 6.0.2条的要求,且内压和外部持续荷载产生一次纵向应力σL 低于〔σ〕t 时,允许将〔σ〕t 与σL 的差值加在许用应力范围中,以扩大二次应力的许用范围。
在此情况下,许用应力范围应按下式计算。
〔σr 〕t = f [1.25(〔σ〕t0 +〔σ〕t ) -σL ] (6.0.3-1)式中 σL ──由内压及持续外荷载产生的纵向应力(MPa)。
6.0.4 对于开停车、放空、蒸汽吹扫、除焦、再生等短时操作情况,可按下列规定提高管道的许用应力:(1) 当一次超载持续时间不超过10h ,每年累计不超过100h 时,许用应力可提高33%;(2) 当一次超载持续时间不超过50h ,每年累计不超过500h 时,许用应力可提高20%。
6.0.5 对弯头、三通等连接处应考虑柔度系数和应力增强系数,并按《工业金属管道设计规范》(GB50316-2000)表E.0.1计算。
三通的柔度特性与其肩部结构有关,选用三通时应予以考虑。
6.0.6 为了保证法兰连接的可靠性,法兰设计压力不应小于按下式确定的值。
P FD =P + P eq (6.0.6-1)(6.0.6-2)式中 P FD ──法兰设计压力(MPa);P ──管道设计压力(MPa);P eq ──管道操作时,作用在法兰连接处的弯矩和轴向力的当量压力(MPa);M ──管道操作时作用在法兰连接处的弯矩(N ·mm);D G ──垫片压紧力作用中心圆直径(mm);F ──管道操作时作用在法兰连接处的轴向力(N)。
在计算中只考虑使管道受拉伸时的轴向力,当轴向力使管道受压缩时, 取F =0。
6.0.7 管道作用在设备或固定点上的推力和力矩应按下列原则计算:(1) 按热胀、冷缩、端点附加位移、有效冷紧、自重和支吊架反力等条件计算管道工作状态下的推力和力矩;(2) 按冷紧、自重和支吊架反力等条件计算冷态下的推力和力矩;(3) 对于无中间约束的两端固定管道,其推力和力矩的瞬时最大值可按下列公式计算:R m =R (1-2C/3)(Em/Ea ) (6.0.7-1)R a =CR 或R a =C 1R (取其中较大值) (6.0.7-2)式中 R m ──在最高或最低设计温度下的瞬时最大推力(N)或力矩(N ·m );R ──按全补偿值及E a 为基础计算的推力(N)或力矩(N ·m );C ──冷紧比,无冷紧时C=0,100%冷紧时C=1.0;E a ──安装温度下管道材料的弹性模量(MPa);E m ──最高或最低计算温度下管道材料的弹性模量(MPa );R a ──安装温度下的估计瞬时推力(N)或力矩(N ·m);C 1──估计的自均衡系数,按下式计算:(6.0.7-3) 式中 σr ──管道由于热胀冷缩和其他位移产生的二次应力(MPa)。