规则碎纸片的拼接复原
B题碎纸片的拼接复原
![B题碎纸片的拼接复原](https://img.taocdn.com/s3/m/0e9e8f708762caaedc33d409.png)
B题碎纸片的拼接复原(总28页)页内文档均可自由编辑,此页仅为封面B题碎纸片的拼接复原摘要图像碎片拼接复原是借助计算机把大量的图像碎片重新拼接成初始图像的完整模型。
这一问题在考古、刑侦、古生物学以及壁画保存等方面具有广泛的应用。
要从成千上万的图像碎片中找到相互邻接的图像碎片,并最终拼接成完整的模型,需要用计算机和人工干预辅助相结合的方式来完成。
本文就对碎纸片的拼接复原问题进行分析研究,针对单面纵切,单面既纵切又横切,双面既纵切又横切纸片等情况的拼接复原问题,建立了相应的数学模型,并运用Excel、MATLAB等数学软件,分别对题目所提出的问题进行求解。
对于问题一,我们将碎纸片信息导入MATLAB软件中,得到每个碎纸片的像素值,并利用该像数值计算出碎纸片间拼接的候选权重C,再以该权重值)i,(j为依据对碎纸片进行配对,得到了碎纸片的拼接顺序,进而实现了仅纵切纸片时中、英文碎片的拼接复原。
对于问题二,我们首先筛选出了左右两侧有空白的碎片,并把剩余碎片的信息导入MATLAB中,按照问题一中的方法计算出候选权重;利用该候选权重对碎片的编号进行定位,得到了一个定位矩阵并将其导入到Excel中,在Excel中分析该矩阵,可得到一个最优的拼接次序;再进行人工干预,找到左页边的碎片编号并将其置于第一位,然后按照最优连接次序将碎片进行拼接,得一个完整的行碎片。
再对行碎片进行拼接,最优选择标准为:同一段落内行间距相同。
可以得到按段落划分的几个碎片。
此时进行人工干预,人为拼接为完整图片。
在本问中,由于中、英文字的差异,在对英文碎片拼接时本文只采用了候选权重法进行处理。
对于问题三,考虑到英文双面的数据过于庞大,本文先对数据进行分类,用MATLAB软件将处于同一行的碎片提取出来,分别存放在不同的文件夹中;然后再对文件夹内的数据进行候选权重的处理,按照问题二中的方法得到最优排列次序,按该排列次序拼接碎片得到了22个横向碎片,其中有11对正反面,再对这些横向碎片进行计算候选权重的处理,然后确定一个最优排列次序,完成图片的拼接。
碎纸片拼接复原的数学方法
![碎纸片拼接复原的数学方法](https://img.taocdn.com/s3/m/bd4c5bf664ce0508763231126edb6f1aff007127.png)
碎纸片拼接复原的数学方法拼图游戏,一种看似简单却富含深度的游戏,给人们带来了无穷的乐趣。
然而,大家是否想过,这样的游戏其实与数学有着密切的?让我们一起探索碎纸片拼接复原背后的数学方法。
碎纸片拼接复原,其实就是一个计算几何问题。
在数学领域,欧几里得几何和非欧几里得几何是两个基本而又重要的分支。
欧几里得几何主要研究的是在平面上两点之间的最短距离,这是我们日常生活中常见的几何学。
而非欧几里得几何则研究的是曲面上的几何学,这种几何学并不符合我们日常生活中的直觉。
碎纸片拼接复原的问题就是一种非欧几里得几何问题。
在计算机科学中,图论是研究图形和网络的基本理论。
其中,图形遍历算法可以用来解决碎纸片拼接复原问题。
这种算法的基本思想是:从一点出发,尽可能多地遍历整个图形,并在遍历的过程中对图形进行重建。
对于碎纸片拼接复原问题,我们可以将每一张碎纸片看作是图中的一个节点,当两张碎纸片拼接在一起时,它们就形成了一个边。
通过这种方式,我们可以将所有的碎纸片连接起来,形成一个完整的图形。
在计算机科学中,碎纸片拼接复原问题被广泛应用于图像处理、数据恢复等领域。
例如,在数字图像处理中,如果一张图片被切割成若干块,我们可以通过类似的方法来恢复原始的图片。
在数据恢复领域,当一个文件被删除或格式化时,我们也可以通过类似的方法来恢复文件。
碎纸片拼接复原的问题不仅是一个有趣的拼图游戏,更是一个涉及计算几何、图论等多个领域的数学问题。
通过运用这些数学方法,我们可以有效地解决这个问题,从而更好地理解和应用这些数学理论。
在我们的日常生活中,我们经常会遇到一些破碎的物品,例如碎镜子、破碎的瓷器,或是碎纸片等。
这些物品的复原过程都需要一种科学的方法来帮助他们重新拼接起来。
这种科学方法就是碎纸片拼接复原技术。
碎纸片拼接复原技术是一种基于数学模型的方法,它通过比较碎纸片边缘的形状、纹理、颜色等特征,来找到碎纸片之间的相似性和关联性,从而将它们拼接起来。
碎纸片自动拼接复原模型的实现
![碎纸片自动拼接复原模型的实现](https://img.taocdn.com/s3/m/7b8afac126fff705cc170abd.png)
式) a =( a , 1 , …, 口 : ) 与a , =( 日 , 以 1一 , ), 我们定义相似度:
通过对图 中碎片的观察与分析 , 我们发现这些碎片具有共同的
特征。 如图 4 6 ) 中碎片上被标记的部分所示。 l 8 O ∑n 0 n 由图 4 6 ) 可以看出, 这些图片都是有一行 缺少英文字符 , 使得碎片 ( , Z ) 这些特殊的5 ' , -  ̄ l t 图片都是可以人工干预处理的。 ( 2 ) 对应的模式比较异常。 在 此基 础上 考虑 碎 片拼接 过程 , 先 对分 类 的碎 片左 右 拼接 , 匹配 仅 其中 为临界值。若 , x o 则我们认为 与 同属一类, 对于 在所在行匹配合成 。 上下匹配还要考虑行内其他元素的上下匹配。 合成 那些存在特殊情况的碎片 , 我们在分好类的基础上 , 再进行人工干预处 时整行都要合成。 综合考虑以上因素 , 我们对所有可以拼接的数据进行 理。c 同 类碎片拼接。 按照单面纵向拼接方法对每—类中的所有碎片进 拼接整 合 。( 图5 ) 行拼接 ,则可得到 同一类中碎片的拼接方案 ,进而得到横 向的 “ 大碎 在这里,处理特殊碎片需遵循 的原则 :以第二次拼接 的图片为底 片” 。c L 不同类“ 大碎片” 的拼接。“ 大碎片” 为横向的, 但此 问题- 仍 属于单 图, 剩下的 1 8 块依次和底图匹配 , 匹配原则包含经此处理之后便于观 面单向的拼接问题 , 因此可采用计算灰度值耦合度的方法进行拼接。 察整体拼接隋况, 但是拼接后在合成部分已做断开划线处理 , 这样便于 2 . 2 . 2英文单面纵横切碎片拼接。 考虑到英文的特殊 陛, 根据英文的 将剩下 的碎片进行拼接分析。 经过此次拼接过程 , 可以观察已组合部分 书写版式原则 , 可以将整篇文章放在带有英文四线格的底面中。 既然可 是否匹配正确 , 若不匹配 的话 , 可 以暂时先将那块碎片剔除, 放到第 三 以放在 四线格中, 这里我们把一行四线格看成一行, 可以确定每相邻行 部分再进行匹配组合。 碎片四边都要依次匹配 , 匹配度最高的就是缺少 的行间距是一定的。行宽也是一定的, 考虑字母仅占有上中、 中、 中下 、 块部分。按 以上方法对样本文件 4中的碎片进行拼接 ,结果见图 5所 上中下等几种情况 , 可 以确定每一个字母都是在中间有书写笔画的, 四 不 。 线格中上下行都具有英文笔画的是少数。 结束 语 基于这种考虑, 可以对每一行四线格的中间内容进行求和, 当其和 通过 研究 规 则切割 碎 纸片 的拼 接复原 问题 ,我们 针 对单 面 中英 文 的值小于某一值的时候我们忽略四线格上面和下面的内容 ,进而只考 纵向切割碎片以及单面中英文纵横双向切割碎片提 出了不同的拼接复 虑 四线 格 的中 间部 分 。 对 于那些 特殊 的碎 片 , 我们 可采用 人 工干预 的方 原模型以及方法。该方法将一张张碎片文件转换成 了一个个像素点值 式将其挑出, 所以将英文中四线格的上半部分和下半部分的内容忽略 , 矩阵, 对于计算机来说 , 碎片文件 的处理就变成了矩阵集合 的操作 ; 另 可以采取中文碎片模式转换的类似方法, 从而到英文碎片的模式。 外引入欧式距离将图像的拼接转化为耦合度的计算 ;接着考虑到印刷 3 实验 结果 及分析 文本文件的排版特点 , 引入模式识别的概念 , 可 以将大量杂乱碎片进行 实验是在 Mi c r o s o f t Wi n d o w s 7系统上进行 ,内存限定是 2 G B , 算 分类 , 然后逐类拼接 , 最终将双向拼接问题转化为单 向拼接问题 ; 最后 法实现语言为 M A T L A B 7 . 0版本。根据不同的样本文件使用相应的拼 所建立的模型效率好 , 精度高, 从实验结果上可以看 出该模型的可行性 接算 法 , 从 而得到 下面 的模拟 结果 。 和有 效 胜。 3 . 1 中英文单面纵切拼接实验。 样本文件 1 和2 分别为中英文单面 致谢 纵切碎片数据 ,其中每页纸被切为 1 9 条碎片 ,分别用 O 0 0 . b mp 一 0 1 8 . 感谢对此项研究工作提供基金资助的西北民族大学 中央高校基本 b mp 编号命名。利用 MA T L A B工具中的 自 带 函数 i m2 b w和 i m r e a d , 将 科研业务费专项资金 N o . 3 1 9 2 0 1 3 0 0 0 8 ) t ) 2 及西北民族大学科研创新 团 图像转化为仅包含 0和 1 的向量 ,接着根据中英文单面纵切算法可以 队计划 , 同时感谢参与本论文讨论的赵习猛 、 任宗秀和王本涛。 得到碎片的耦合度矩阵 , 由此可得样本文件 1 , 即中文单面纵切碎片的 参考 文献 拼接 复 利l 赙 为:
纸张撕碎重新复原的方法
![纸张撕碎重新复原的方法](https://img.taocdn.com/s3/m/7e3dc3d5846a561252d380eb6294dd88d0d23d07.png)
纸张撕碎重新复原的方法
将纸张撕成小块后,可以试用以下方法重新复原:
1. 拼图法:根据纸张上的图案或文字的特征,将撕碎的纸张小块一一拼接在一起。
可以使用胶水或透明胶带将小块粘接在一起,直到整张纸张还原为完整的状态。
2. 粘贴法:将所有纸张小块按照纸张上的线条方向,粘贴在一张背景纸上。
根据纸张上的文字或图案特征,可以推测纸张的排列顺序。
3. 数字法:对每个纸张小块进行编号,然后根据编号重新排列纸张小块。
4. 计算机辅助法:使用扫描仪或相机将撕碎的纸张进行扫描或拍照,然后使用图像处理软件将图像还原,最后打印出完整的纸张。
请注意,纸张撕碎再复原的难度取决于撕碎的程度和纸张的特性。
有些纸张可能不易复原或需要特殊的技术手段,如复印纸、碎纸机处理后的纸张等。
碎纸片的拼接还原研究
![碎纸片的拼接还原研究](https://img.taocdn.com/s3/m/921716d5168884868762d6be.png)
碎纸片的拼接复原摘要碎纸片的拼接复原是一门借助计算机,把大量碎纸片重新拼接成初始纸张的技术。
针对问题一,本文首先利用碎纸片图像灰度矩阵的边缘矩阵,建立了两个碎纸片之间的匹配度函数,求得了每一张图片之间左右边缘匹配度矩阵。
然后根据左边边缘位置的碎片的左边空白部分最多的特点,确定了左边位置的碎纸片。
接着根据拼接碎纸片的拼接复原时,所有碎纸片匹配度之和取极大值的原则,采用贪心算法,得到了所有碎纸片的初始位置,拼接复原了附件1和附件2中纸片。
针对问题二,由于附件3碎片数量太多,并且碎片的拼接复原,是一个以碎纸片总匹配度为目标函数的组合优化问题。
所以本文采用遗传算法将碎纸片的编号作为基因,并将基因均匀分成19段,按顺序每一段对应一个初始纸片列位置,进行了求解。
然后,根据边缘碎纸片某些边的空白部分多的特征,对初始基因进行了优化。
接着,根据碎纸片的黑色像素密度不同的特点,将碎纸片分成三类,根据同类纸片优先匹配的原则,对遗传算法的运行过程进行了优化,拼接复原了附件3和附件4中纸片。
针对问题三,随着碎纸片量的增多,计算量急剧增加。
在上述拼接复原碎纸片的基础上,又引进了同行位置碎纸片的上部(或下部)空白位置宽度相近的聚类思想。
先对每个类内部拼接,在合并所有类并做一次整体拼接。
由于时间有限,我们未能完成最后一次的整体的拼接,但我们会在比赛后继续探究。
关键词:边缘矩阵匹配度函数遗传算法聚类一、问题重述碎片拼接实际用途已经越来越广泛,传统上拼接复原工作由人工完成,碎片拼接的准确率较高,但效率很低。
并且当碎片数量很大时,人工短时间内拼接出来几乎是不可能的。
所以开发碎纸的拼接技术,以提高拼接复原效率已成为越来越多人的期望。
现在,在碎纸片是规则的情况下,题目要求我们在以下条件建立碎纸片拼接复原模型和算法。
1.来自同一页印刷文字文件(中文、英文各一页)的碎纸机破碎纸片(仅纵切)拼接复原,并将附件1和附件2复原。
2.对碎纸机既纵切又横切文件的情形,将碎纸片拼接完整。
基于规则碎纸片文字特征的拼接复原算法
![基于规则碎纸片文字特征的拼接复原算法](https://img.taocdn.com/s3/m/f5a2ea3a0622192e453610661ed9ad51f01d5483.png)
基于规则碎纸片文字特征的拼接复原算法承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):中国人民解放军第三军医大学参赛队员(打印并签名) :1. 王家*2. 黄嘉*3. 邵*指导教师或指导教师组负责人(打印并签名):周*(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于规则碎纸片文字特征的拼接复原算法摘要目前对于碎纸片的拼接问题,大多数方法是基于不规则碎纸片的几何边缘特征进行拼接,而本题是基于规则碎纸片的文字特征进行的。
我们首先提取各碎纸片的像素边缘特征,然后通过寻找最大匹配率和少量人工干预,得到碎片拼接方案。
碎纸片的拼接复原
![碎纸片的拼接复原](https://img.taocdn.com/s3/m/39ae8f12650e52ea551898ff.png)
碎纸片的拼接复原摘要本文研究了碎纸片的复原问题。
对已有的碎纸片,我们利用Matlab求碎纸片边各侧边线的灰度值,通过最小偏差平方和法进行碎纸片间的相互匹配,中间加入人工干预进行筛选,将附件中的碎纸片全部还原。
之后,我们将该方法进行推广,可用以处理更复杂形状碎图片的的还原问题。
对问题一:首先假定附件一所给仅纵切的碎纸片的行文方向与各碎纸片两侧边线垂直,在此基础上先人工干预,根据碎纸片的剪切规范,甄选出原始图片的第一张和最后一张碎纸片,编号分别为008和006。
其次通过Matlab求出图片边线处各小网格点的灰度值,采用最小偏差平方和法,对编号008碎片右边线处的灰度值和其它碎纸片的左边线处的灰度值进行对应网格点的数值匹配,找到最匹配的碎纸片。
附件二碎片的处理进行了类似处理,给出的复原图片见附表4。
对问题二:附件三文本既纵切又横切,同样我们假设所给附件三中碎纸片的行文方向与碎纸片的上下左右边线分别平行或垂直。
在问题一的算法基础上,通过Matlab求出各碎纸片的4条边线的边界灰度值,然后利用最小偏差平方和法,对上下左右四边进行灰度值匹配,当结果多个时,我们进行了人工干预。
附件四依照附件三的方法类似处理,最终的复原见附表7和附表9。
对问题三:附件五中的图片既纵切又横切而且是正反面。
我们参照问题一、二的处理方法,加入反面的灰度值测算,随机选择一张碎纸片与其他碎纸片进行遍历匹配,得出4张匹配的碎纸片后,以这4张碎纸片为下一起点,扩张匹配,最终给出的复原图见附表12。
为适应更一般的情形,我们在模型改进部分,给出了当碎纸片的文字行文方向与碎纸片两侧边线不垂直时的处理方法(只处理了边线为直线的情形)。
首先是通过测算出的碎纸片灰度值确定出碎纸片的边缘线,其次定出碎纸片边缘线附近网格点的灰度值,最后完成边线的的匹配。
关键词:人工干预灰度矩阵灰度值最小偏差平方和法一问题重述1.1问题背景纸片文字是人们获取和交换信息的主要媒介,尤其是在计算机技术飞速发展、数码产品日益普及的今天。
基于欧氏距离的规则碎纸片拼接复原模型
![基于欧氏距离的规则碎纸片拼接复原模型](https://img.taocdn.com/s3/m/a9fc893acfc789eb162dc809.png)
其中, D 中第 i 行第 J 列元素表示第 i 号二值
矩 阵 所属 的碎 片 的左 边缘 和第 J 号 二值 矩 阵所 属 的
d 一 0 =
, j 等于 1 或2
( 5 )
d 一 =
, j 等于 1 或2
( 4 )
氏距 离 ( i , l = 0 , 1 , 2 , …, n ) 。
其中, d u - U 表示列向 量磊 与列向量 之间的欧
3 - 3 分割横 向复原图片并纵 向拼接
根据 已知每横行碎片个数 ,分割碎片横向拼接
图片,仅取各个横 向复原拼接图片的第一个碎片二 值矩阵的第一行与最后一行 , 组成矩阵 s ’ , 转置得到
矩阵 s i T计算 中各 列 向量 间的欧 氏距 离 。 记第 i 幅分 割后 的横 向拼 接 图片 中第 一 个碎 片
一
列之间的排列顺序 , 继而得到碎片的复原顺序。 由于 些碎片的边缘全为白色, 无法确定其位置 , 此时需
虑将碎纸片横向复原 , 得到横向呈带状的拼接图片 ; 然后根据附件 5的每横行碎片个数 , 分割横 向拼接 图片并进行纵 向复原 , 最后对无法判定 的碎片进行
人工 干 预 。
要 人 工干 预 。
运用 Ma t l a b 软件 , 得到附件 5 所有碎片数据的
二值 矩 阵 。
记碎片的正面的二值矩 阵为第 1 号至第 n 号, 碎片的反面的二值矩阵为第 n + l 号至 n + 2号 , 将所 有读人碎片的二值矩阵的第一列和最后一列取 出, 组成矩阵 s , 计算 s中各列 向量间的欧氏距离。 记第 i 号二值矩阵的第一列为 , 最后一列为
碎纸片的拼接复原数学模型的构建
![碎纸片的拼接复原数学模型的构建](https://img.taocdn.com/s3/m/256fac12b9f3f90f77c61b33.png)
碎纸片的拼接复原数学模型的构建摘要院本文讨论在碎纸机以不同方式破碎纸片的情况下建立碎纸片的拼接复原模型,以解决碎片数量巨大时人工拼接的难题,本文建立了三个具有针对性的模型。
模型一:方差分析法下的碎纸片拼接模型。
在以纵切方式破碎纸片的情况下,提取碎纸片左右边缘的灰度列向量,利用碎纸片边缘处为单边同宽空白区域的特殊性对碎纸片进行定位,再利用方差分析法和欧式距离解决了纵切碎纸片的拼接复原问题。
模型二:文字行间距一致性的碎纸片拼接模型。
以纵横方式破碎纸片,利用同行文字行间距一致性的主要特性可解决横向碎纸片的拼接复原问题,简化了模型,将离散的像素灰度矩阵平均化处理,进而利用欧氏距离对碎纸片进行匹配,得到了碎纸片复原后的完整图片。
模型三:二值化Otsu 算法的碎纸片拼接复原模型。
本文从双面纵横破碎纸片的问题出发,建立了纸片二值化Otsu 法拼接模型,先对碎纸片分组预处理,为将复杂模型简单化,再利用全局阈值方法中典型的Otsu 法求取碎纸片的最佳阈值,以该阈值对碎纸片中所含灰度值信息进行划分实现二值化处理,将边缘区域明显化,利用统计学方法求取拼接后的纸片间成功匹配的像素点占纸片边缘的概率,最终双面纵横破碎纸片的拼接复原问题得以解决。
Abstract: This paper discusses the construction of splicing scrap recovery model under the condition of shredder breaking paper intopieces in different ways, so as to solve the problem of artificial splicing when there is a great amount of pieces. This paper establishes threecorresponding model.Model One: Paper Scrap Splicing Model under Analysis of Variance.Shredding paper through longitudinal mode, the paper selects the gray scraps of paper around the edge extraction column vector,locates the paper scrap by using edge of paper scraps as blank area with same width, then solves the problem of reconstruction of thelongitudinal cutting paper splicing through analysis of variance method and Euclid Distance.Model Two: Paper Scrap Splicing Model with Consistency of Text Line Spacing.Shredding paper through vertical and horizontal mode, its main characteristics of peer text line spacing consistency can solve theproblem of reconstruction of splicing transverse paper scraps, simplifies the model, processes the pixel matrix of discrete in average andmatches the paper scraps through Euclid Distance and then gets the complete picture of paper scrap afterrecovery.Model Three: Paper Scrap Splicing Model Based on Binaryzation Otsu Algorithm.This paper firstly expounds the double side's vertical and horizontal mode, establishes the paper scrap splicing model based onbinaryzation Otsu algorithm. The paper firstly does preconditioning for paper scraps into groups, simplifies the complex model, and then getsthe optimal threshold of the paper scraps by using typical Otsu algorithm of global threshold method. The paper classifies the gray valueinformationof paper scraps through this threshold to realize binaryzation processing, specifies the edge area, evaluates the probability ofsuccessful matching pixels on edge of splicing paper, and finally solves the mosaic and restoration problems of double side's vertical andhorizontal mode.关键词院离散;方差分析;置信区间;阈值;Otsu 算法Key words: discrete;analysis of variance;confidence interval;threshold;Otsu algorithm中图分类号院TQ018 文献标识码院A 文章编号院1006-4311(2014)25-0238-031模型一考虑以为空间拼接情况,为了获取拼接图像所必须的数据,文章以像素为单位离散所得碎片:利用VC++使用了Windows.H 头文件并调用RGB 等结构定义获得不同像素点的g 值[1],生成了多个灰度矩阵。
碎纸片的拼接还原研究
![碎纸片的拼接还原研究](https://img.taocdn.com/s3/m/921716d5168884868762d6be.png)
碎纸片的拼接复原摘要碎纸片的拼接复原是一门借助计算机,把大量碎纸片重新拼接成初始纸张的技术。
针对问题一,本文首先利用碎纸片图像灰度矩阵的边缘矩阵,建立了两个碎纸片之间的匹配度函数,求得了每一张图片之间左右边缘匹配度矩阵。
然后根据左边边缘位置的碎片的左边空白部分最多的特点,确定了左边位置的碎纸片。
接着根据拼接碎纸片的拼接复原时,所有碎纸片匹配度之和取极大值的原则,采用贪心算法,得到了所有碎纸片的初始位置,拼接复原了附件1和附件2中纸片。
针对问题二,由于附件3碎片数量太多,并且碎片的拼接复原,是一个以碎纸片总匹配度为目标函数的组合优化问题。
所以本文采用遗传算法将碎纸片的编号作为基因,并将基因均匀分成19段,按顺序每一段对应一个初始纸片列位置,进行了求解。
然后,根据边缘碎纸片某些边的空白部分多的特征,对初始基因进行了优化。
接着,根据碎纸片的黑色像素密度不同的特点,将碎纸片分成三类,根据同类纸片优先匹配的原则,对遗传算法的运行过程进行了优化,拼接复原了附件3和附件4中纸片。
针对问题三,随着碎纸片量的增多,计算量急剧增加。
在上述拼接复原碎纸片的基础上,又引进了同行位置碎纸片的上部(或下部)空白位置宽度相近的聚类思想。
先对每个类内部拼接,在合并所有类并做一次整体拼接。
由于时间有限,我们未能完成最后一次的整体的拼接,但我们会在比赛后继续探究。
关键词:边缘矩阵匹配度函数遗传算法聚类一、问题重述碎片拼接实际用途已经越来越广泛,传统上拼接复原工作由人工完成,碎片拼接的准确率较高,但效率很低。
并且当碎片数量很大时,人工短时间内拼接出来几乎是不可能的。
所以开发碎纸的拼接技术,以提高拼接复原效率已成为越来越多人的期望。
现在,在碎纸片是规则的情况下,题目要求我们在以下条件建立碎纸片拼接复原模型和算法。
1.来自同一页印刷文字文件(中文、英文各一页)的碎纸机破碎纸片(仅纵切)拼接复原,并将附件1和附件2复原。
2.对碎纸机既纵切又横切文件的情形,将碎纸片拼接完整。
碎纸片拼接问题(2013B)
![碎纸片拼接问题(2013B)](https://img.taocdn.com/s3/m/b442512cb90d6c85ec3ac675.png)
方法2:聚类算法:主要方法,效果好。
• 计算 Ai 的行和,得到一个特征向量 ri 。定义适当的 向量相似度指标,对 ri 进行相似度计算,然后对所有 碎片进行聚类,得到分行结果。
几种相似度度量指标:
1 欧式距离倒数: d ij || ri r j ||
夹角余弦: cos ij || r || || r || i j 相关系数: ij
规划方法:将每一行的碎片依次编号为 1, 2, , N . 定义两碎片之间的有向距离为 cij 。
令 xi ,k 1, 第 i 块碎片在第 k 个位置上 否则 0,
ห้องสมุดไป่ตู้
min z
N 1 N
c
k 1 i 1 j 1 , j i
N
ij
x i ,k x j ,k 1
c
MN
k ,l
x i , j , k x i , j 1 ,l
M 1 N MN
i 1 j 1 k 1 l 1 , l k
d
MN
k ,l
x i , j ,k x i 1 , j ,l
约束条件: (1)每个碎片只能放在一个位置上。
x
i 1 j 1
(1)整体的文字拼接正确度;
不易衡量。
(2)纸片两两之间的拼接正确度。
•如何计算纸片两两之间的拼接正确度? 分析:假设纸片 i 和 j 拼接在一起,i 左 j 右,则 应该可以计算出一个相关的正确度指标。 怎么计算?
• 利用什么信息计算? 利用Matlab 软件读取碎片,生成相对应的灰度值 数字矩阵 Ai 。
如何确定碎纸片的位置?
方法一:一次性确定所有碎纸片的位置。 方法二:分组确定碎纸片的位置。 方法三:逐一确定碎纸片的位置。
碎纸片拼接复原解题思路
![碎纸片拼接复原解题思路](https://img.taocdn.com/s3/m/26a8c170f6ec4afe04a1b0717fd5360cba1a8df8.png)
碎纸片拼接复原解题思路一、背景介绍碎纸片拼接复原是一项需要巧妙操作和观察力的游戏。
在这个游戏中,玩家需要拼接一些碎纸片,使其还原成完整的图案。
这个任务名称为“碎纸片拼接复原解题思路”。
二、游戏规则碎纸片拼接复原的游戏规则一般如下: 1. 给定一些碎纸片,每个碎纸片上都有一部分图案。
2. 碎纸片上的图案可能是图片、文字、颜色等。
3. 玩家需要根据碎纸片上的图案,将其拼接在一起还原成一个完整的图案。
4. 拼接时,碎纸片之间必须符合一定的拼接规则,比如图案的延续、颜色的衔接等。
三、解题思路要解决碎纸片拼接复原的问题,可以采取以下的思路: ### 1. 观察碎纸片首先,我们需要仔细观察每一个碎纸片,分析其图案、颜色以及可能的拼接方式。
这可以帮助我们理解整个图案的构成和拼接规则。
2. 找出连接点接下来,我们需要找出能够将两个碎纸片连接在一起的连接点。
连接点可能是某个图案的延续,或者是两个图案相衔接的部分。
通过找出连接点,我们可以确定碎纸片之间的拼接方式。
3. 确定连接顺序在找到连接点后,我们需要确定碎纸片的连接顺序。
这可以通过观察碎纸片上的图案延续和颜色衔接来判断。
我们可以先找到一个碎纸片,然后找到与之相连的碎纸片,并将其拼接在一起。
然后,再找到与已经拼接好的碎纸片相连的碎纸片,逐步拼接完成整个图案。
4. 拼接碎片根据确定的拼接顺序,我们可以开始拼接碎纸片了。
将每个连接点对齐,确保拼接的效果与原图案尽可能接近。
可以使用胶水或其他粘合剂来固定碎纸片,以确保它们不会松动。
四、技巧和注意事项在解决碎纸片拼接复原问题时,还需要注意以下几个技巧和注意事项: 1. 仔细观察:细心观察碎纸片上的图案和连接点,可以帮助我们找到正确的拼接方式。
2. 缓存碎片:将已经拼接好的碎纸片暂时存放在一边,以便于找到下一个相连的碎纸片。
3. 小步拼接:将拼接过程分成小步骤,逐步完成拼接,可以降低出错的概率。
4. 调整拼接角度:如果遇到无法拼接的情况,可以尝试旋转碎纸片,调整拼接角度,找到合适的连接点。
碎纸片的拼接复原
![碎纸片的拼接复原](https://img.taocdn.com/s3/m/84c6d002581b6bd97f19ea3d.png)
碎纸片的拼接复原摘要1.问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。
随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。
请讨论以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。
2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
复原结果表达要求同上。
3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。
附件5给出的是一页英文印刷文字双面打印文件的碎片数据。
请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。
【数据文件说明】(1)每一附件为同一页纸的碎片数据。
(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。
(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。
(4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。
该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。
【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格;(2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格;(3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格;(4)不能确定复原位置的碎片,可不填入上述表格,单独列表。
数学建模—碎纸片的拼接复原
![数学建模—碎纸片的拼接复原](https://img.taocdn.com/s3/m/d208965ff01dc281e53af0e5.png)
碎纸片的拼接复原模型摘要本文针对破碎纸片形状规则和碎片间无有效重叠区域等特点,选取了信息熵、差方和、欧氏距离、相关系数、互信息和灰色斜率关联度作为碎纸片之间的相似性判别准则,给出了碎纸片拼接复原模型和算法,解决了破碎纸片的拼接复原问题.对于问题1,引入信息熵来衡量每个碎片含有的信息量,将熵值最小的碎片确定为印刷文字文件的第一列;利用差方和计算出第1列右端与其余碎片左端的相似程度,求得碎纸片之间的最佳匹配组合,借助Matlab软件成功实现了附件1和附件2的碎片拼接复原.对于问题2,通过计算每个碎片的信息熵,找到印刷文字文件第一列的11个碎片;再利用互信息和相关系数评价碎纸片之间的相似性程度,确定出碎片间的上下位置关系,得到了印刷文字文件的第一列;然后利用欧氏距离作为相似性测度,进一步进行碎片间的粗拼接.若某个碎纸片与多个碎片的欧氏距离相等,则利用灰色斜率关联度进行碎纸片间的细拼接,借助Matlab软件完成了对附件3和附件4给出的碎片拼接复原.对于问题3,基于模糊聚类方法,粗略地确定出每个碎片的正面和反面;然后利用问题2的算法对已分类的正面碎纸片进行拼接复原;针对无法复原的碎纸片,借助Matlab 软件和最优搜索算法进行人工干预,确定出附件5文件正面的拼接复原;根据碎片数据编号的命名规则,在正面碎片数据的拼接复原结果中填充对应编号的反面碎片数据,实现了附件5文件反面的拼接复原.最后,对碎纸片的拼接复原模型和算法进行了分析和展望.关键词:破碎纸片的拼接复原;信息熵;差方和;互信息;欧氏距离;灰色斜率关联度;模糊聚类1. 问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率,需解决以下几个问题:问题1,考虑对于给定的来自同一页印刷文字文件仅纵切的破碎纸片的拼接复原模型和算法,并针对B 题附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原.如果复原过程需要人工干预,还需要写出干预方式及干预的时间节点.并就附件1和附件2的碎片数据给出拼接复原结果.问题2,考虑对于碎纸机既纵切又横切的情形,设计出碎纸片拼接复原模型和算法,并针对B 题附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预的时间节点.并就附件3和附件4的碎片数据给出拼接复原结果.问题3,则需要考虑更一般的情形,即考虑有双面打印文件的碎纸片拼接复原问题.对B 题附件5给出的是一页英文印刷文字双面打印文件的碎片,设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果.2. 模型假设(1) 碎纸片的切割是等间距的,忽略切割碎纸片时由机器工作所产生的摩擦误差; (2) 碎片切缝处的图像灰度平滑;(3) 碎片在缩放的情况下,像素点保持稳定; (4) 碎片上的文字只显示黑白两种颜色.3. 符号说明N :每张碎片像素点的数目;ij a 、ij b :图像A 、B 在()j i ,的像素值;),(B A SSD :A 与B 的差方和;)(a h A :图像A 中第a 个灰度级的像素个数与总的像素个数之比;)(ab h AB :图像A 中第a 个灰度级和图像B 中第b 个灰度级的像素对数与两幅图像总的像素对数之比;)(A H 、)(B H :图像A 和B 各自含有的信息量;)(AB H :两幅图像A 和B 的联合信息熵;ij d :两幅图像A 和B 的欧式距离;ij a 、ij b :图像A 和B 在 ()j i ,位置的像素值; a :图像A 像素值的平均值;),(B A C :两幅图像A 和B 的相关系数;)(a P A 、)(b P B :碎片边缘概率密度; )(ab P AB :两碎片A 和B 的联合概率密度;);(B A I :两碎片A 和B 的互信息;)(t X :系统特征函数;)(t Y i :相关因素函数;tt x ∆∆)(:系统特征函数)(t X 在t 到t t ∆+的斜率; tt y i ∆∆)(:相关因素函数)(t Y i 在t 到t t ∆+的斜率; )(t x ∆:系统特征函数在t 到t t ∆+的增量;)(t y i ∆:相关因素函数在t 到t t ∆+的增量; x :系统特征函数的均值;i y :相关因素函数的均值;)(t i ξ:)(t X 与)(t Y i 在t 时刻的灰色斜率关联系数;D :对称距离矩阵;i ε:)(t X 与)(t Y i 在t 时刻的灰色斜率关联度.4. 问题分析由于文章以行书写,只有段首段尾有空白,切缝处恰好以列之间的空白或笔画出断开的概率较小,在拼接碎纸片前需要对B 题附件1—5的碎片内图像进行二值化处理,进而获取由0和1组成的矩阵.扫描后的图像有亮的图像和暗的背景组成,由于光照、拍摄角度等因素,一幅图像往往包括文字、背景还有噪声等.如果从多值的数字图像中直接提取目标,最常用的方法就是设定阈值T ,用T 将图像的数据分为两部分:大于T 的像素群和小于T 的像素群.由于5个附件中的文字显示都是黑白颜色,因此先调用Matlab 软件中的im2bw()对每个碎纸片进行二值化图像预处理,然后综合利用图像的相似性测度寻找高精度的匹配碎片,从而实现整个印刷文字文件的复原.5. 模型的建立与求解5.1 问题1的求解5.1.1 模型的建立差方和利用两幅图像对应位置的差方和均值表示图像之间的相似程度,定义为[1],∑-=ij21),()(ij ij NB A SSD b a (1) 式中,N 为每幅图像像素点的数目,ij a 和ij b 分别是图像A 和B 在()j i ,位置的像素值.当两幅图像正好可拼接时,),(B A SSD 值最小.差方和计算的时间复杂度为()2N O .信息熵反映了图像含有的信息量大小.信息熵越小,图像包含的信息量越小,往往空白区域越多,其定义为[2-4]:∑=aA A a h a h A H )(log )()( (2)其中,)(a h A 表示图像A 中第a 个灰度级的像素个数与总的像素个数之比. 5.1.2 拼接复原算法附件1和附件2中碎纸片的切割方式只有纵切一种,假设碎片的总数为n 个.考虑到纵切的特殊性,给出如下的拼接复原算法:步骤1 计算每一个碎纸片)1(n i A i ≤≤的信息熵)(i A H ,并确定出熵值最小的一个碎片n i i A H 1)}(min{=为印刷文字文件的第1列;步骤2 计算第1列图像A 的右边与其余1-n 个碎片)1,1(≠≤≤j n j A j 的左边的差方和),(1j A A SSD ,确定出与第1列图像差方和最小的碎片为印刷文字文件的第2列;步骤3 重复步骤2,依次继续,直到找到印刷文字文件的n 列为止. 5.1.3 问题1的求解借助Matlab 软件对以上拼接复原算法进行仿真,得到如下结果: (1) 附件1中的中文文件复原结果表1 附件1中19个碎片的信息熵从表1可以看出,19个碎片所包含的信息量中,第008碎片的信息熵最小,因此第008碎片是附件1中的中文文件的第1列.表2 附件1中19个碎片之间差方和最小的配对碎片表从表2可以得到附件1中的中文文件复原结果,如下表所示:表3 附件1中文件的拼接复原结果表附件1中的中文文件复原图结果见附录1.(2)附件2中的英文文件复原结果表4 附件2中19个碎片的信息墒从表4可以看出,所有19个碎片所包含的信息量中,第003碎片的信息墒最小,因此第003碎片是附件2文件的第1列.表5 附件2中19个碎片之间差方和最小的配对碎片表从表5可以得到附件2的英文文件复原结果,如下表所示表6 附件2英文件的拼接复原结果表附件2中英文文件的复原结果图见附录2.5.2 问题2的求解5.2.1 模型的建立由于互信息测度是从图像的统计信息出发,既不需要两幅图像的灰度关系,也不需要图像进行预处理,因此成为目前广泛使用的图像配准相似性测.在图像配准过程中,如果两幅图像精确匹配,互信息达到最大.联合熵定义如下[5]:)(log )()(,ab h ab h AB H AB ba AB ∑= (3)其中)(ab h AB 表示图像A 中第a 个灰度级和图像B 中第b 个灰度级的像素对数与两幅图像总的像素对数之比.互信息定义为)()()();(AB H B H A H B A I -+= (4)欧氏距离被视为两个图像的相似程度,距离越近就越相似,其定义为∑-=2)(ij ijij b ad (5)相关系数是标准化的协方差函数,当两幅图像的灰度之间存在线性畸变时,仍能较好的评价两幅图像之间的匹配性程度.图像的相关系数1),(≤B A C ,它是两幅图像A 和B 特征点之间近似程度的一种线性描述.如果),(B AC 越接近于1,两幅图像的相似程度越大,越近似于线性关系.选择相关系数中最大的相关系数所对应的特征点为这个点的匹配特征点.当两幅图像可匹配时,相关系数达到最大值.相关系数定义如下[7-9]:2/122))(*)(()(*)(),(∑∑∑----=b b a a b b a bB AC ij ij ijij ij(6)两幅图像相关系数计算的时间复杂度为)(2N O ,其中N 为每幅图像像素点的数目. 灰色斜率关联度的基本思想是根据待拼碎片的特征曲线(称系统特征函数)与参照碎片的特征曲线(称相关因素函数)的相似程度来判断其联系是否紧密,曲线越接近,关联度就越大,反之就越小.灰色斜率关联度的定义为[10]:∑-=-=11)(11n t i i t n ξε (7) 其中,t t y yt t x x t t x x tt x x t i i ∆∆-∆∆+∆∆+∆∆+=)(*1)(*1)(*11)(*11)(ξ (8)为灰色斜率关联系数.(7)、(8)式中)(t X 为系统特征函数,)(t Y i ()m i ,,2,1 =为相关因素函数(对应于参照碎片的特征曲线),∑==nt t x n x 1)(1,)()()(t x t t x t x -∆+=∆,t t x ∆∆)(为系统特征函数)(t X 在t 到t t ∆+的斜率, ∑==nt i i t y n y 1)(1,)()()(t y t t y t y i i i -∆+=∆, t t y i ∆∆)(为相关因素函数)(t Y i 在t 到t t ∆+的斜率.对于灰色斜率关联系数)(t i ξ公式(8)有如下性质[11-13]:(1) 任意的系统特征函数)(t X 与相关因素函数)(t Y i 的灰色斜率关联系数满足:1)(0≤<t i ξ,m i ,,2,1 =;(2) 灰色斜率关联系数)(t i ξ满足对称性;(3) 灰色斜率关联系数)(t i ξ只与)(t X 与)(t Y i 的几何形状有关,与相对位置无关; (4) )(t X 与)(t Y i 的斜率越接近,灰色斜率关联系数)(t i ξ就越大;(5) )(t X 与)(t Y i 在t 到t t ∆+的变化速度相同时,它们的斜率相等,这时1)(=t i ξ; 由上述公式及性质可知,灰色斜率关联系数反映了两曲线在某一点的变化率的一致程度,而灰色斜率关联度则是整个区间上灰色斜率关联系数的平均值.灰色斜率关联度i ε具有下列性质: (1) 10≤<i ε;(2) i ε只与)(t X 与)(t Y i 的变化率有关,而与它们的空间相对位置无关; (3) 当)(t X 与)(t Y i 变化率相同时, 1=i ε; (4) )(t X 与)(t Y i 的变化率越接近, i ε就越大;5.2.2 拼接复原算法附件3和附件4中碎纸片的切割方式有纵切和横切两种,假设碎片的总数为n 个(m ⨯k 个碎片组成整个原图),具体的拼接复原算法如下:步骤1 计算每一个碎纸片)1(n i A i ≤≤的信息熵)(i A H ,并确定出熵值最小的m 个碎片n i i A H 1)}(min{=为印刷文字文件的第1列的m 个碎片;步骤2 计算步骤1找到的m 个碎片的上半部图像和下部分图像之间互信息和相关系数,确定出m 个碎片的上下位置关系,得到印刷文字文件的第1列;步骤3 计算第1列中m 个碎片右边与其它碎片左边的欧氏距离,得到碎片之间关于欧氏距离的矩阵n m M ⨯;在矩阵n m M ⨯中,第i 行的值ij d 表示第i 个碎片与第j 个碎片之间的欧氏距离.步骤4 在n m M ⨯中,计算第)1(m i i ≤≤行的最小值i min ;若n m M ⨯中i min 在第i 行出现的次数为1且对应的列标为j ,则第i 个碎片和第j 个碎片是最佳匹配组合;若i min 在第i 行出现的次数为大于1,则进行步骤5.步骤5 i m i n 在i 行中出现的次数为大于1,则计算第i 个碎片的右边图像与其余碎片左边图像的灰色斜率关联度)1(n f if ≤≤ε,记灰色斜率关联度最大的值ih ε对应的列为k ;若第k 个碎片在步骤4的最佳匹配组合中没有出现,那么第i 个碎片和第k 个碎片是最佳匹配组合;若第k 个碎片已在步骤4的最佳匹配组合中出现过,选择灰色斜率关联度仅次于ih ε)(ih iy εε<的值对应的列y ;若第y 个碎片在步骤4的最佳匹配组合中没有出现,则第i 个碎片和第y 个碎片是最佳匹配组合,否则继续寻找第i 个碎片的最佳匹配碎片,直止找到满足斜率关联度最大且在以前的最佳匹配组合中没出现条件的碎片.步骤6 重复以上步骤,直到所有的碎片找到最佳的匹配组合为止.按照最佳匹配组合的关系将所有碎片链接起来,并在第1列中出现的碎片位置出换行,便可对文件的所有碎片数据进行拼接复原. 5.2.3 问题2的求解运行matlab 软件对以上算法进行仿真,得到如下的结果.(1) 附件3中的中文文件复原结果表7 附件3中碎片的排列序号附件3中文件的最终复原图见附录4.(2) 附件4中的英文文件复原结果附件4的复原结果表格形式如下表所示:表8 附件4中碎片的排列序号附件4中文件的最终复原图见附录6.5.3 问题3的求解5.3.1 模型的建立模糊聚类分析是一种将样本或者变量分类的统计方法,基于物以类聚的思想,它根据样本数量计算样本之间的距离(相似程度),按距离的大小,将样本或变量逐一归类,关系密切的类聚到一个小的分类单位,使同一类的对象之间具有较高的相似度,然后逐步扩大,使得关系疏远的类聚合到一个大的分类单位,知道所有的样本或变量都累计完毕.模糊聚类分析法常用的距离为绝对值距离和欧式距离,其中,欧氏距离在聚类分析中用的最广.计算流程如下[14-15]:(1) 将n 张碎纸片分为n 类,取其中一个碎纸片右侧一列和另外任意碎纸片左侧一列作为样本,两个样本之间的距离构成一个对称距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00021221112 n n n n d d d d d d D (2) 选择)0(D 中的非对角线上的最小元素,设这个最小元素是pq D ,此时{}p P x G =与{}q q x G =的距离最近,将q P G G 和合并成一个新类{}q P r G G G ,=.在)0(D 中消去q P G G 和所对应的行与列,并加入由新类r G 与剩下的其他未聚合的类间的距离所组成的新的距离矩阵)1(D ,它是n-1阶方阵;(3) 从)1(D 出发重复(2)的做法得)2(D ,再由)2(D 出发重复上述步骤,直到碎纸片聚成一个整体,聚类完成. 5.3.2 拼接复原算法附件5的碎片均为双面,假设碎片的总数为n 个(m ⨯k 个碎片组成整个原图的正面),具体的拼接复原算法如下:步骤1 基于模糊聚类分析法的思想,借助Matlab 软件编程将所有碎片区分粗分为正面和反面两大类;步骤2任选某一大类的碎片,利用问题2的拼接复原算法对该类的碎片进行拼接复原;步骤3 对无法拼接的碎片进行人工干预,直至所有的最碎片找到最佳的匹配组合为止.将所有的碎片进行链接,可复原文件的原图.根据碎片编号的命名规则,如果一面的原图复原成功,选择原图每个碎片对应序号的反面,可直接拼接复原出反面的原图.5.3.3 问题3的求解运行matlab软件对以上算法进行仿真,得到如下的结果.(1)附件5中的文件正面复原结果附件5中的文件正面复原结果见表9.附件5中文件正面的复原结果中间图见附录7.附件5中文件正面的复原结果中间图见附录8.对附录8中的碎片49a、161b、108b、045b、021a、042a、048b、180b、041b、202b和175b进行人工干预,得到附录9。
碎片拼接复原技术研究
![碎片拼接复原技术研究](https://img.taocdn.com/s3/m/1e4f7e350166f5335a8102d276a20029bd6463e0.png)
Science &Technology Vision 科技视界1研究背景与意义传统的拼接复原工作需要由人工完成,虽然准确率较高,但效率很低,不适合运用于大量拼接。
随着计算机技术的发展,破碎纸片的自动拼接技术运用而生,使其在司法物证复原、历史文献修复以及军事情报获取等领域获得更加广泛、便捷的应用。
但是,目前研究较多的自动化拼接一般都是利用碎片边缘的面积特征、尖点特征、尖角特征等几何特征,探索与之相匹配的相邻碎纸片进行拼接。
这种基于边界形状的拼接方法并不适用于边缘形状相似的碎纸片。
由于规则碎片其每一片碎片的大小、形状都是相同的,因此,利用形状、轮廓进行拼接不是很实际。
通常情况下,文档是被手或者碎纸机撕碎的。
其中手撕的文件将会产生不规则的碎纸片。
而一种碎纸机将文件切成成条状,在这种情况下,产生的文档被称为条形文档。
当然也有从水平和垂直方向来进行的碎纸机,这种类型的机器就会产生正交分解文档。
关于重建的问题,这些文件可以被认为是一个特殊的拼图。
给定N 碎片,每个二进制位图的大小都是W×H 像素,并假设碎片放在正确的方向,重构分解文档就是找到这些碎片的正确定位使得它们组成原始文档。
在重建条形文档的这个问题所能参考的研究很少。
Prandtstetter 和Raidl 提出邻域搜索方法,它使用一个特定的变量的方法来重建文件,涉及用户在过程中进行人工干预从而提高正确率。
Ukovich 等人提出了一个算法重建条形粉碎文件,特别重视使用MPEG7描述符的可能性。
如Marques 和Freitas 使用边界颜色和利用最近邻算法来计算对应的特征向量之间的欧几里得距离等特征。
通过建立的模型,我们能够研究利用计算机进行不规则和规则碎片的拼接,帮助人们快速地获得大致的拼接结果。
在此基础上,再加以人工干预,更快得到拼接的结果,提高拼接的速率和正确率。
2碎纸片拼接模型的建立中文规则碎纸片的拼接模型:在对碎纸片进行了二值化处理之后,我们试着建立一个碎纸片拼接的数学模型来解决这个问题。
碎纸片的拼接复原(1)
![碎纸片的拼接复原(1)](https://img.taocdn.com/s3/m/5cbe09f84693daef5ef73d25.png)
碎纸片的拼接复原摘要计算机辅助碎片拼接是模式领域中的一个典型问题,它是司法鉴定,文物修复等领域有着广泛的应用。
目前的研究都是针对不规则图片的复原,对规则图片的研究还有待实现。
本文主要是研究规则形图片的复原问题,规则形图片的拼接不能像不规则图片拼接那样考虑其形状等,所以我们考虑从边缘相似度方面进行处理。
对于问题一:基于余弦相似度的算法,先对图片进行数字化处理,利用matlab程序求出每个图片的灰度值,然后提取出每个图片的最左边缘和最右边缘的灰度值并进行归类处理。
根据灰度值,利用人工干预,挑选出完整拼接图的第一张图片和最后一张图片。
我们把挑选出来的第一张图片的最右边缘灰度值和剩下的图片的最左边缘灰度值采用了余弦相似度算法进行匹配,找到最大相似度匹配图片。
之后依次循环遍历找到所有图片的最大相似匹配图。
最后利用matlab图片拼接技术实现图片的复原。
5.1问题一模型的建立和求解本文主要是研究碎纸片的拼接问题,由附件分析可知,这些图片均为规则的,所以我们没有考虑图片的形状问题。
为了得到完整的碎纸片的拼接图,我们着重研究了碎纸片颜色分布特征。
5.1.1图片的数字化灰度值,实现图片的数字化。
灰度是根据matlab程序我们计算出每张图片的]1[指黑白图像中点的颜色程度,范围一般从0到255,白色为255,黑色为0。
5.1.2图片的预处理图片预处理的目的是提取碎纸片的边缘颜色分布特征向量,预处理的过程为:图像边缘灰度值的提取——灰度值进行分类图像边缘灰度值的提取:根据图片的数字化结果,我们把每张图片的第一列和最后一列的灰度值提取出来,作为这张图片的颜色分布特征,。
灰度值进行分类:根据提取出的灰度值,我们把每张图片的第一列灰度值归为一类,放入excel表格中,我们称为left表格,把每张图片的最后一列灰度值归为一类,也放入excel表格中,我们称为right表格。
5.1.3图片的提取一张完整的纸张的左右两边都有空白的地方即左右边界灰度值都为255,所以我们先进行人工选择,把这张纸的左右两边先挑选出来,根据灰度值分类,我们从left表格中找出灰度值全为255的那列,即为第一张图片,从right表格中找出灰度值全为255的那列,即为最后一张图片。
基于结构特征的碎纸片的拼接复原问题—课程设计论文
![基于结构特征的碎纸片的拼接复原问题—课程设计论文](https://img.taocdn.com/s3/m/67d0e92e76c66137ee061941.png)
课程设计论文基于结构特征的碎纸片的拼接复原问题基于结构特征的碎纸片的拼接复原问题摘要碎纸自动拼接技术是图像处理与模式识别领域中的一个典型的应用,该技术通过扫描和图像提取技术获取一组碎纸片的形状、纹理及内容等信息,然后利用计算机进行相应理解从而实现对这些碎纸片的全自动或半自动拼接还原。
针对问题一,考虑到纵切的碎纸片所含有的信息量较大,利用图像处理中的信号匹配方法,结合左右两个碎纸片的灰度像素矩阵的边缘特征,建立基于结构特征的灰度匹配模型,对英文字母制定了灰度相似的配准规则,使待拼接的碎纸片边缘的对应行像素之差的平方和最小;而结合中文字符的横笔结构特征,对中文字制定了“横笔”匹配相似度的配准规则,并给出了最终的碎纸拼接图和拼接次序,拼接的正确率是100%。
针对问题二,对于既纵切又横切的情形,每一个纸片的边缘所含的信息量相对较少,故对中、英文碎片的拼接复原需各自建模分析。
首先利用“分而治之”的思想,将一个难以直接解决的大问题,分割成一些规模较小的相同问题。
对于中文碎片拼接复原,根据中文的方块特点,给出了中文的文字结构特征向量及其边缘像素的特征向量。
根据这些结构特征向量对所有的碎纸片进行粗分类,在此基础上设计了基于边缘特征的匹配规则集,对每一行从左到右在进行细匹配。
利用等距序列图像的快速拼接技术拼出左边第一列,基于灰度匹配,将图像转化为二值图像并对每行进行最优匹配。
先按照行配准,然后再进行列配准,最终匹配出误差最小的图像;对于英文碎片复原同样采取人工干预粗分类,粗匹配后,采用神经网络算法对碎片图像训练、学习构建BP网络对英文字母进行匹配识别,结合剪枝定界法实现英文碎片的拼接复原。
发现每行匹配率为78.85%,整篇匹配率大约为68.73%。
针对问题三,由于碎片数据均为双面打印文件,文字特征相同,仅用问题二中的方法产生的误差太大,仍沿用粗分类特点通过神经网络拼接、灰度匹配修正、人工干预,结合等距序列拼接技术实现单面拼接,然后验证反面的正确性并修正。
规则碎纸片的拼接复原模型
![规则碎纸片的拼接复原模型](https://img.taocdn.com/s3/m/ee064d01dd88d0d232d46a87.png)
规则碎纸片的拼接复原模型摘要图像碎片复原技术是一项综合的并具有实用价值的研究课题,它的最终目的是要从大量的任意图像碎片中找出真正符合实际的匹配对,并根据这些匹配关系将相邻的图像碎片拼合起来重现图像的原貌。
图像碎片的复原工作是以实际碎片为参考依据进行的,建立能够准确描述实物的计算机模型是图像碎片复原工作的关键步骤之一,对碎片复原的后续工作有基础性的作用,模型建立的准确性和复杂性将影响到后续工作能否顺利进行下去。
本文利用边缘特征点匹配,相关系数,广度搜索法等方法建立了规则碎纸片的拼接复原模型。
对于问题一,我们利用边缘特征点匹配的方法,先提取边缘特征点的灰度矩阵,再寻找矩阵相似度最大的碎片实现匹配。
对于问题二,我们采用了基于文字特征的半自动拼接方法,通过找到相交点距离相等的最大个数来确定匹配图像。
对于问题三,我们提取了各边的像素作为灰度矩阵,用X ,Y ,H ,L 确定目标函数min d (,i j X Y )=i j X Y -,min d (,i j H L )=i j H L -,运用广度搜索算法找出最佳匹配项。
最后,本文还对模型推广进行了进一步讨论,分析了模型的优缺点,提出了改进模型的方法和思路。
关键词:图像拼接;规则碎片;图像复原;灰度矩阵;广度搜索算法;特征匹配;自动拼接;图像分割;匹配准则一.问题的重述破碎文件的拼接在司法物证复原、历史文献修复及军事情报获取等领域都有重要的应用。
传统拼接复原工作由人工完成,准确率较高,但效率很低。
随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。
碎纸自动拼接技术是图像处理与模式识别领域中的一个较新但是很典型的应用,它是通过扫描和图像提取技术获取一组碎纸片的形状、颜色等信息,然后利用计算机进行相应的处理从而实现对这些碎纸片的全自动或半自动拼接还原。
请讨论以下问题:1. 对于给定同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。
碎扑克复原魔术原理
![碎扑克复原魔术原理](https://img.taocdn.com/s3/m/c70581cd82d049649b6648d7c1c708a1284a0a0d.png)
碎扑克复原魔术原理
碎扑克复原魔术的原理主要是利用了一些物理和数学的原理,以及心理学的小技巧。
以下是一些可能的原理:
1. 力学原理:扑克牌的质地和结构使其具有一定的弹性,当扑克牌被撕碎时,其碎片可能会以某种方式互相钩挂或卡在一起,形成一个较为稳定的结构。
魔术师可以利用力学原理,通过适当的操作使扑克牌碎片恢复原状。
2. 数学原理:扑克牌的尺寸和形状都有一定的规律,魔术师可以利用这些规律,通过计算和测量,将扑克牌碎片准确地拼回原来的形状。
3. 心理学原理:魔术师利用观众的心理预期和注意力,引导他们相信自己看到的扑克牌复原是真实的。
魔术师可能会使用暗示、引导、转移注意等技巧,让观众难以察觉其中的奥秘。
总的来说,碎扑克复原魔术需要魔术师具备高超的技巧和丰富的经验,同时还要掌握相关的物理、数学和心理学原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论 文 检 测 报 告报告编号: 5d95e0aadf5149a5a9ef1ecb397c466d送检文档: 规则碎纸片的拼接复原论文作者: 陈芳芳文档字数: 2981检测时间: 2015-01-07 12:39:34检测范围: 论文库,中文期刊库(涵盖中国期刊论文网络数据库、中文科技期刊数据库、中文重要学术期刊库、中国重要社科期刊库、中国重要文科期刊库、中国中文报刊报纸数据库等),Tonda论文库(涵盖中国学位论文数据库、中国优秀硕博论文数据库、部分高校特色论文库、重要外文期刊数据库如Emerald、HeinOnline、JSTOR等),资源共享库。
一、检测结果:总相似比: 36.05% [即复写率与引用率之和]检测指标: 自写率 63.95%复写率 36.05%引用率 0.0%相 似 比: 互联网 36.05% 学术期刊 0.0% 学位论文 0.0% 资源共享 0.0%其他指标: 表格 0 个 脚注 0 个 尾注 0 个章节抄袭比36.05% 规则碎纸片的拼接复原二、相似文献汇总:序号标题文献来源作者出处发表时间11213年碎纸片拼接复原数模论文互联网互联网213年碎纸片拼接复原数模论文-豆丁网互联网互联网32013年全国大学生数学建模竞赛国家一等奖论文B题碎纸片的拼接...互联网互联网4【图】科密碎纸机 深圳碎纸机 黑金刚碎纸机 可碎光碟 - 罗湖办公...互联网互联网5一种碎纸自动拼接中的形状匹配方法-《计算机仿真》2006年11期-...互联网互联网6国家奖碎纸片的拼接还原_百度文库互联网互联网7基于蚁群优化算法的碎纸拼接-豆丁网互联网互联网8求2013数学建模题B题(2)的中文原题以及附件3不胜感激_百度知道互联网互联网9沈阳建筑大学_徐俊杰.郭书恒.唐杰_百度文库互联网互联网10碎纸机批发,厂家,图片,商贸城-马可波罗网互联网互联网三、全文相似详情: (红色字体为相似片段、浅蓝色字体为引用片段、深蓝色字体为可能遗漏的但被系统识别到与参考文献列表对应的引用片段、黑色字体为自写片段)碎纸机,是用来切碎销毁纸张的机器,为了达到废弃文件保密的目的,要把纸张分割成很多的细小纸片,碎纸机切割的纸粒工整利落,能达到保密的效果。
随着数据时代发展,大量的政府机关、企事业单位都采用了碎纸机对废弃文件或失效的机密文件进行破碎处理。
碎纸方式是指当纸张经过碎纸机处理后被碎纸刀切碎后的形状。
市面上有些碎纸机可选择两种或两种以上的碎纸方式。
不同的碎纸方式适用于不同的场合,如果是一般性的办公场合则选择段状、粒状、丝状,条状的就可以了。
但如果是用到一些对保密要求比较高的场合就一定要用沫状的。
随着现代技术的不断发展和市场的需求,现在的碎纸机,除了对纸张的处理,也可以对信用卡、光盘等进行切割。
本文研究的只是针对印刷文字文件在碎纸机中被切割的碎片,它是规则的黑白图片,对于非印刷文字文件的碎纸片、彩色碎纸片、形状不规则或边缘有破损的碎纸片等都是该碎纸片拼接技术的重要影响因素。
随着科学技术的不断发展,人们对信息交流、存储和销毁的需求也不断的增加。
目前,大量政府机关、企事业单位都是用打印机来打印文件,也都采用了碎纸机对废弃文件或失效的机密文件进行破碎处理。
当遇到误销毁的文件时,就要靠人工对碎纸片进行拼接,而人工拼接工作量大,不仅费力耗时,可能还会出现拼接错误等情况。
如果应用当前的图像处理与模式识别技术来开发碎纸片的自动拼接技术,用计算机对所有碎片进行搜索和筛选,对能够在某种指标上匹配的碎片进行拼接复原。
这样会大大的提高拼接复原的效率,从而降低了人工的工作量和难度。
目前在情报资料碎片整理、司法技术鉴定等领域中, 碎纸的拼接工作大部分都是靠人工的方式完成。
虽然国外对这项工作有进行了一些研究, 但是由于碎纸的自动修复技术应用背景的特殊性, 目前几乎没有公开的研究资料可以参考。
类似的研究主要是集中在文物碎片的自动修复、虚拟考古、故障分析以及计算机辅助设计、医学分析等领域。
所以对规则碎片自动拼接问题的研究,不仅具有广阔的应用前景,而且具有很强的理论意义。
问题1:对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(纵切),建立碎纸片拼接复原模型和算法,针对附件1、附件2针对文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
分析:针对问题1,在附件一及附件二中,碎纸片仅纵切,则纸片边缘的字有可能出现完整、残缺、标点符、空格四种情况,每个字又由多个像素点组成,故我们利用Matlab图像处理函数imread()将各个碎片文字像素二值化,并取出代表各个碎片左右两边缘的像素点的列向量,如此在每张碎片左右两边缘所获的值都可组成一组向量,且分别设左边缘 ,右边缘 ( )。
设复原图像的第1列像素为 向量,第72列像素为 向量列,以此类推直到最后一列像素为 。
因为原图像的第一列像素全为255(白色),所以可找出 ,从而可以确定 和 对应的 和 ,将该碎纸片数据放入向量A中,再将列向量 逐一与剩下的所有图片的列向量 元素作差,列方向绝对值求和,则和最小的就是能与 匹配的碎片,以此类推。
匹配完成后用Matlab图像处理函数imshow()将向量A转换成图片。
问题2:对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
分析:针对问题2,加入横向分割后,各碎片便出现上下左右四个边缘,此时,需要多提取碎片图像上边缘 及下边缘 像素的向量( ),图片处理方法同问题1;因为原图像的左上角碎片具有左边、上边全白的特点,右上角碎片具有右边、下边全白的特点,左下角碎片具有左边、下边全白的特点,右下角碎片具有下边、右边全白的特点,所以可以先找出左上角的第一块碎纸片,接下来用二叉树搜索方法进行匹配,此时有两个匹配方向:一是先向右进行匹配,完成一行,再向下匹配完成下一行直至匹配完成;二是先向下匹配,完成一列,再向右匹配完成下一列直至匹配完成;考虑到原图除了第一行的碎纸片会出现上边缘为全白,最后一行的碎纸片会出现下边缘全白的情况,中部也有可能出现全白的情况,若选第一个匹配方法匹配的精准率不大理想,有可能出现不能匹配而中断,所以本文选择第二种匹配方法:用问题1的匹配模型将第一块碎纸片的下边缘与剩下的碎纸片上边缘进行匹配直至下侧边缘碎片完成第一列碎纸片拼接。
再将左上角碎纸片右边缘 逐一与剩下的所有碎纸片的左边缘 进行匹配,确定第二列第一张碎纸片,再向下进行匹配,可以得到第二列碎纸片,以此类推直至匹配完成,用Matlab图像处理函数imshow()将向量A转换成图片。
针对问题1,在附件一及附件二中,碎纸片仅纵切,则纸片边缘的字有可能出现完整、残缺、标点符、空格四种情况,每个字又由多个像素点组成,故我们利用Matlab图像处理函数imread()将各个碎片文字像素二值化,并取出代表各个碎片左右两边缘的像素点的列向量,如此在每张碎片左右两边缘所获的值都可组成一组向量,且分别设左边缘 ,右边缘 ( )。
设复原图像的第1列像素为 向量,第72列像素为 向量列,以此类推直到最后一列像素为 。
因为原图像的第一列像素全为255(白色),所以可找出 ,从而可以确定 和 对应的 和 ,将该碎纸片数据放入向量A中,再将列向量 逐一与剩下的所有图片的列向量 元素作差,列方向绝对值求和,则和最小的就是能与 匹配的碎片,以此类推。
匹配完成后用Matlab图像处理函数imshow()将向量A装换成图片。
针对问题2,加入横向分割后,各碎片便出现上下左右四个边缘,此时,需要多提取碎片图像上边缘 及下边缘 像素的向量( ),图片处理方法同问题1;因为原图像的左上角碎片具有左边、上边全白的特点,右上角碎片具有右边、下边全白的特点,左下角碎片具有左边、下边全白的特点,右下角碎片具有下边、右边全白的特点,所以可以先找出左上角的第一块碎纸片,用问题1的匹配方法将第一块碎纸片的下边缘与剩下的碎纸片上边缘进行匹配直至下侧边缘碎片。
接下来用二叉树搜索方法进行匹配,将左上角碎纸片右边缘 逐一与剩下的所有碎纸片的左边缘 进行匹配,确定第二列第一张碎纸片,再向下进行匹配,可以得到第二列碎纸片,以此类推直至匹配完成,用Matlab图像处理函数imshow()将向量A转换成图片。
本论文针对不同碎纸片的类型和尺寸,具体问题具体分析,为每一种情况设计了不同的算法来实现碎纸片的复原。
对匹配率相近的碎纸片,采用人工干预的方法提高精准度。
本论文针对不同碎纸片的类型和尺寸,具体问题具体分析,为每一种情况设计了不同的算法来实现碎纸片的复原。
对匹配率相近的碎纸片,采用人工干预的方法提高精准度。
规则碎纸片的拼接复原是数学建模中一个特殊的案例。
以数学中的相似度的基本原理为基础,以计算机图像处理技术为手段,根据读取的图片文字特征值,建立匹配模型,在适当的算法下寻求最优的匹配方案。
利用最优匹配方法对碎纸片进行拼接复原。
在较强的理论基础,以及相应的MATLAB软件支持下,自动拼接技术不仅匹配度高,而且简单易行。
比用其他软件或人工拼接,在拼接效率上就占有较大优势,使得自动拼接得到的结果准确又省时,该技术不仅具有广阔的应用前景,而且具有很强的理论意义。
四、指标说明:1. 总相似比即类似于重合率。
总相似比即送检论文中与检测范围所有文献相似的部分(包括参考引用部分)占整个送检论文的比重,总相似比=复写率+引用率。
2. 引用率即送检论文中被系统识别为引用的部分占整个送检论文的比重(引用部分一般指正确标示引用的部分)。
3. 自写率即送检论文中剔除雷同片段和引用片段后占整个送检论文的比重,一般可用于论文的原创性和新颖性评价,自写率=1-复写率-引用率。
4. 复写率即送检论文中与检测范围所有文献相似的部分(不包括参考引用部分)占整个送检论文的比重。
5. 红色字体代表相似片段;浅蓝色字体代表引用片段、深蓝色字体代表可能遗漏的但被系统识别到与参考文献列表对应的引用片段;黑色字体代表自写片段。
五、免责声明:鉴于论文检测技术的局限性以及论文检测样本库的局限性,网站不保证检测报告的绝对准确,相关结论仅供参考,不做法律依据。
Gocheck论文检测服务中使用的论文样本,除特别声明者外,其著作权归各自权利人享有。
根据中华人民共和国著作权法相关规定,Gocheck网站为学习研究、介绍、评论、教学、科研等目的引用其论文片段属于合理使用。
除非经原作者许可,请匆超出合理使用范围使用其内容和本网提供的检测报告。