二次函数图像练习题

合集下载

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案一、单选题(共12题;共24分)1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>-1时y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.-1C.2D.-2 3.已知二次函数y=x2−x+14m−1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 4.二次函数y=x2-2x-2与坐标轴的交点个数是()A.0B.1C.2D.3 5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤6.如图,抛物线y=ax2+bx+c交x轴于(-1,0),(3,0),则下列判断错误的是().A.图象的对称轴是直线x=1B.当x>1时y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根分别是-1和3D.当y<0时x<-17.若抛物线y=x2﹣2x+m与x轴有两个交点,则m的取值范围是()A.m<﹣1 B.m<1C.m>﹣1D.m>1 8.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353①ac<0;②当x>1时y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个9.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥2C.m≥0D.m>4 10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4 11.已知抛物线y=ax2﹣2ax+a﹣c(a≠0)与y轴的正半轴相交,直线AB∥x轴,且与该抛物线相交于A(x1,y1)B(x2,y2)两点,当x=x1+x2时函数值为p;当x=x1+x2q.则p﹣q的值为()2时函数值为A.a B.c C.﹣a+c D.a﹣c 12.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根二、填空题(共6题;共6分)13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为.15.若抛物线y=x2与直线y=x+2的交点坐标为(﹣1,1)和(2,4),则方程x2﹣x﹣2=0的解为.16.已知二次函数y=x2-2x-3与x轴交于A、B两点,在x轴上方的抛物线上有一点C,且∥ABC的面积等于10,则C点坐标为.17.抛物线y=(m﹣1)x2+2x+ 12m图象与坐标轴有且只有2个交点,则m=.18.若二次函数y=kx2−4x+3的函数值恒大于0,则k取值范围是.三、综合题(共6题;共56分)19.已知二次函数y=x2-(m+2)x+2m-1(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,3).①求函数图象与x轴的交点坐标;②当0<x<5时求y的取值范围.20.(1)解方程:x2−x+13=3(x2+1)+5x;(2)求二次函数y=2x2−5x的图象与x轴的交点坐标.21.已知二次函数y=mx2﹣5mx+1(m为常数,m>0),设该函数的图象与y轴交于点A,该图象上的一点B与点A关于该函数图象的对称轴对称.(1)求点A,B的坐标;(2)点O为坐标原点,点M为该函数图象的对称轴上一动点,求当M运动到何处时∥MAO的周长最小.22.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标.23.已知函数y=mx2﹣6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.24.已知二次函数y=ax2﹣4ax+1(1)写出二次函数图象的对称轴:;(2)如图,设该函数图象交x轴于点A、B(B在A的右侧),交y轴于点C.直线y=kx+b经过点B、C.①如果k=﹣13,求a的值②设点P在抛物线对称轴上,PC+PB的最小值为√13,求点P的坐标.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】A10.【答案】C11.【答案】A12.【答案】C13.【答案】0或114.【答案】815.【答案】﹣1或216.【答案】(4,5)或(-2,5)17.【答案】﹣1或2或018.【答案】k>4 319.【答案】(1)解:令y=0,则x2−(m+2)x+2m−1=0,∴△=[−(m+2)2]−4(2m−1)=m2+4m+4−8m+4=m2−4m+8=(m−2)2+4≥4∴△>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)解:①∵函数的图象与y轴交于点(0,3).∴2m−1=3,∴m=2,∴抛物线的解析式为:y=x2−4x+3,当x2−4x+3=0,∴(x−1)(x−3)=0,∴x1=1,x2=3,所以抛物线与x 轴的交点坐标为:(−1,0),(−3,0). ②∵y =x 2−4x +3=(x −2)2−1,∴ 抛物线的开口向上,当x =2时函数的最小值为−1, 当x =0时 当x =5时∴ 当0<x <5时y 的取值范围为:−1≤y <8.20.【答案】(1)解:将方程化为一般式,得x 2+3x −5=0.∵Δ=b 2−4ac =32−4×1×(−5)=29>0.∴x =−3±√292×1=−3±√292.解得x 1=−3+√292,x 2=−3+√292.(2)解:把y =0代入y =2x 2−5x 中得2x 2−5x =0. 解得x 1=0,x 2=52.∴二次函数y =2x 2−5x 的图象与x 轴的交点坐标是(0,0)和(52,0).21.【答案】(1)解:当x=0时y=1,则点A 的坐标为(0,1)∵抛物线对称轴为x= 5m 2m = 52∴B 点坐标为(5,1)(2)解:设直线OB 解析式为y=kx ,把B (5,1)代入可得5k=1,解得k= 15 ∴直线OB 解析式为y= 15 x由轴对称的性质可知当点M 运动到直线OB 与二次函数对称轴的交点时∥MAO 的周长最小.当x= 52时y= 12∴M 点的坐标为( 52, 12 )22.【答案】(1)解:由顶点A (﹣1,4),可设二次函数关系式为y=a (x+1)2+4(a≠0).∵二次函数的图象过点B (2,﹣5) ∴点B (2,﹣5)满足二次函数关系式 ∴﹣5=a (2+1)2+4 解得a=﹣1.∴二次函数的关系式是y=﹣(x+1)2+4(2)解:令x=0,则y=﹣(0+1)2+4=3∴图像与y轴的交点坐标为(0,3);令y=0,则0=﹣(x+1)2+4解得x1=﹣3,x2=1故图像与x轴的交点坐标是(﹣3,0)、(1,0)23.【答案】(1)解:当x=0时y=1.所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);(2)解:①当m=0时函数y=mx2﹣6x+1的图象与x轴只有一个交点;②当m≠0时若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根所以∥=(﹣6)2﹣4m=0,m=9.综上,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则m的值为0或9 24.【答案】(1)直线x=2(2)解:①当x=0时y=1∴点C的坐标为(0,1).将(0,1)代入y=kx+b,得:b=1.∵k= −1 3∴y=−13x+1当y=0时有−13x+1=0解得:x=3∴点B的坐标为(3,0).将B(3,0)代入y=ax2﹣4ax+1,得:9a﹣12a+1=0解得:a=3;②当PC+PB取最小值时点P是直线BC与直线x=2的交点,且PC+PB的最小值=BC= √13.∵OC=1∴在Rt∥OBC中OB= 2√3∴此时点B的坐标为(2√3,0)将点B的坐标代入y=kx+1得:2√3k+1=0解得:k=−√36∴此时直线BC的解析式为:y=−√36x+1∵当x=2时.∴点P的坐标为(2,3−√33)。

二次函数的图像和性质练习题(含答案)

二次函数的图像和性质练习题(含答案)

1.下列函数中是二次函数的为 A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x2D .y =x 3+2x -32.抛物线y =2x 2+1的的对称轴是 A .直线x =14B .直线x =14-C .x 轴D .y 轴3.抛物线y =-(x -4)2-5的顶点坐标和开口方向分别是 A .(4,-5),开口向上B .(4,-5),开口向下C .(-4,-5),开口向上D .(-4,-5),开口向下4.抛物线y =-x 2不具有的性质是 A .对称轴是y 轴B .开口向下C .当x <0时,y 随x 的增大而减小D .顶点坐标是(0,0)5.已知点(-1,2)在二次函数y =ax 2的图象上,那么a 的值是 A .1B .2C .12D .-126.已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是 A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>07.当函数y =(x -1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是 A .x >0B .x <1C .x >1D .x 为任意实数8.对于二次函数2(3)4y x =--的图象,给出下列结论:①开口向上;②对称轴是直线3x =-;③顶点坐标是34--(,);④与x 轴有两个交点.其中正确的结论是 A .①②B .③④C .②③D .①④9.一种函数21(1)53m y m x x +=-+-是二次函数,则m =__________.10.把二次函数y =x 2-4x +3化成y =a (x -h )2+k 的形式是__________.11.将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为__________. 12.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C (5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.13.已知:抛物线2y x bx c =-++经过(30)B ,、(03)C ,两点,顶点为A . 求:(1)抛物线的表达式;(2)顶点A 的坐标.14.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.15.在平面直角坐标系中,将抛物线y=-12x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是A.y=-12x2-x-32B.y=-12x2+x-12C.y=-12x2+x-32D.y=-12x2-x-1216.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+a的图象大致是A.B.C D.17.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()(0)a b m am b m +>+≠,其中正确的结论有A .2个B .3个C .4个D .5个18.二次函数y =x 2-2x -3,当m -2≤x ≤m 时函数有最大值5,则m 的值可能为__________. 19.若直线y =ax -6与抛物线y =x 2-4x +3只有一个交点,则a 的值是__________.20.如图,已知二次函数y =ax 2+bx +8(a ≠0)的图象与x 轴交于点A (-2,0),B (4,0),与y 轴交于点C .(1)求抛物线的解析式及其顶点D 的坐标; (2)求△BCD 的面积;(3)若直线CD 交x 轴与点E ,过点B 作x 轴的垂线,交直线CD 与点F ,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).21.(2018·四川成都)关于二次函数2241y x x =+-,下列说法正确的是A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-322.(2018·湖北黄冈)当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为A .-1B .2C .0或2D .-1或223.(2018·江苏连云港)已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t(s )满足函数表达式h =-t 2+24t +1.则下列说法中正确的是 A .点火后9 s 和点火后13 s 的升空高度相同 B .点火后24 s 火箭落于地面 C .点火后10 s 的升空高度为139 m D .火箭升空的最大高度为145 m24.(2018·山东德州)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是A .B .C D .25.(2018·湖北恩施州)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断中:①abc >0;②b 2-4ac >0;③9a -3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤5a -2b +c <0. 其中正确的个数有A.2 B.3 C.4 D.5 26.(2018·江苏淮安)将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是__________.27.(2018·山东淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.1.【答案】B2.【答案】D【解析】∵抛物线y =2x 2+1中一次项系数为0,∴抛物线的对称轴是y 轴.故选D . 3.【答案】B【解析】∵抛物线的解析式为2(4)5y x =---, 10a =-<,∴抛物线的开口向下.抛物线2()y a x h k =-+的顶点坐标为(h ,k )∴抛物线2(4)5y x =---的顶点坐标为(4,-5).故选B . 4.【答案】C5.【答案】B【解析】∵点(-1,2)在二次函数2y ax =的图象上,∴2(1)2a ⋅-=,解得2a =.故选B . 6.【答案】C【解析】∵抛物线y =ax 2(a >0)的对称轴是y 轴,∴A (-2,y 1)关于对称轴的对称点的坐标为(2,y 1).又∵a >0,0<1<2,且当x =0时,y =0,∴0<y 2<y 1.故选C . 7.【答案】B【解析】对称轴是:x =1,且开口向上,如图所示,∴当x <1时,函数值y 随着x 的增大而减小.故选B . 8.【答案】D【解析】∵a =1>0,∴开口向上,①正确;∵x -3=0,∴对称轴为x =3,②错误;∵顶点坐标为:(3,-4),故③错误;∴在第四象限,所以与x 轴有两个交点,故④正确.故选D . 9.【答案】-1【解析】根据二次函数的二次项的次数是2,二次项的系数不等于零,可由21(1)53my m x x +=-+-是二次函数,得m 2+1=2且m −1≠0,解得m =-1,m =1(不符合题意要舍去).故答案为:-1. 10.【答案】y =(x -2)2-1【解析】y =x 2-4x +3=(x 2-4x +4)-4+3=(x -2)2-1,故答案为:y =(x -2)2-1. 11.【答案】y =2(x +2)2+2【解析】将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为y =2(x -1+3)2+2,即y =2(x +2)2+2.故答案为:y =2(x +2)2+2.13.【解析】(1)把(30)B ,、(03)C ,代入2y x bx c =-++,得9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩.故抛物线的解析式为223y x x =-++.(2)223y x x =-++=2(21)31x x --+++2(1)4x =--+, 所以顶点A 的坐标为(1,4).14.【解析】(1)∵二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点,∴42011645a b c c a b c ++=⎧⎪=⎨⎪++=⎩, ∴a =12,b =-12,c =-1, ∴二次函数的解析式为y =12x 2-12x -1. (2)当y =0时,得12x 2-12x -1=0,解得x 1=2,x 2=-1, ∴点D 坐标为(-1,0). (3)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4. 15.【答案】A【解析】将抛物线y =-12x 2向下平移1个单位长度,得y =-12x 2-1,再向左平移1个单位长度,得到y =-12x +(1)2-1,即y =-12x 2-x -32.故选A .16.【答案】C【解析】∵二次函数图象开口向上,∴a >0,∵对称轴为直线x =-02ba,∴b <0,∴一次函数y =bx +a的图象经过一、二、四象限,故选C . 17.【答案】B18.【答案】0或4【解析】令y =5,可得x 2-2x -3=5,解得x =-2或x =4,所以m -2=-2或m =4,即m =0或4.故答案为:0或4. 19.【答案】2或-10【解析】由题意可知:x 2−4x +3=ax −6,整理得x 2−(4+a )x +9=0,∵只有一个交点,∴Δ=(4+a )2−4×1×9=0,解得a 1=2,a 2=−10.故答案为:2或-10.(3)如图,∵C(0,8),D(1,9),代入直线解析式y=kx+b,∴89bk b=⎧⎨+=⎩,解得18kb=⎧⎨=⎩,21.【答案】D【解析】∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误;该函数的对称轴是直线x=-1,故选项B错误;当x<-1时,y随x的增大而减小,故选项C错误;当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.22.【答案】D【解析】当y=1时,有x2-2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=-1,故选D.23.【答案】D【解析】A、当t=9时,h=136;当t=13时,h=144;所以点火后9 s和点火后13 s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24 s火箭离地面的高度为1 m,此选项错误;C、当t=10时h=141 m,此选项错误;D、由h=-t2+24t+1=-(t-12)2+145知火箭升空的最大高度为145 m,此选项正确.故选D.24.【答案】B【解析】A.由一次函数y=ax-a的图象可得:a<0,此时二次函数y=ax2-2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0.故选项正确;C.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上.故选项错误.故选B.25.【答案】B26.【答案】y=x2+2【解析】二次函数y=x2-1的顶点坐标为(0,-1),把点(0,-1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.27.【答案】2【解析】如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.。

二次函数的图像与性质练习题及答案

二次函数的图像与性质练习题及答案

二次函数的图像战本量训练题之阳早格格创做一、采用题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A 、1个;B 、2个;C 、3个;D 、4个 2.闭于213y x =,2y x =,23y x =的图像,下列道法中没有精确的是( )A .顶面相共B .对付称轴相共C .图像形状相共D .最矮面相共3.扔物线()12212++=x y 的顶面坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象通过本面,则m 的值为 ( )A . 0或者2B . 0C . 2D .无法决定5.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像启心由小到大的程序是( )A 、321y y y <<B 、123y y y <<C 、231y y y <<D 、132y y y <<6.二条扔物线2y x =与2y x =-正在共一坐标系内,下列道法中没有精确的是( )A .顶面相共B .对付称轴相共C .启心目标差异 D .皆有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列论断:①0abc >;b+c<0;;其中精确的论断有( )A .1个B .2个C .3个D .4个8.已知扔物线的顶面为(-1,-2),且通过(1,10),则那条扔物线的表白式为( )A .y=32(1)x --2 B .y=32(1)x ++2C .y=32(1)x +-2D .y=-32)1(-x +29.扔物线23y x =背左仄移1个单位,再背下仄移2个单位,所得到的扔物线是( ) A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.扔物线244y x x =--的顶面坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与扔物线y=-12x 2+3x -5的形状、启心目标皆相共,惟有位子分歧的扔物线是( ) A. y = x 2+3x -5 B. y=-12x 2C. y =12x 2+3x -5D. y=12x 212.对付扔物线y=22(2)x --3与y=-22(2)x -+4的道法没有精确的是( )A .扔物线的形状相共B .扔物线的顶面相共C .扔物线对付称轴相共D .扔物线的启心目标差异13.对付于扔物线21(5)33y x =--+,下列道法精确的是( )A .启心背下,顶面坐标(53),B .启心进与,顶面坐标(53),C .启心背下,顶面坐标(53)-,D .启心进与,顶面坐标(53)-,14.扔物线y=222x mx m -++的顶面正在第三象限,试决定m 的与值范畴是( )A .m <-1或者m >2B .m <0或者m >-1C .-1<m <0D .m <-115.正在共背来角坐标系中,函数y mx m=+战222y mx x =-++(m 是常数,且0m ≠)的图象大概..是( )16(A .曲线x=2 B .曲线a=-2 C .曲线y=2 D .曲线x=417.二次函数y=221x x --+图像的顶面正在( )A .第一象限B .第二象限C .第三象限D .第四象限18.如果扔物线y=26x x c ++的顶面正在x 轴上,那么c 的值为( )ABCDA.0 B.6 C.3 D.919.已知二次函数2y ax bx c=++,如果a>0,b<0,c<0,那么那个函数图像的顶面必正在()A.第一象限 B.第二象限 C.第三象限D.第四象限20.已知正比率函数kxy=的图像如左图所示,则二次函数222kxkxy+-=22.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图象上的三面,则y1,y2,y3的大小闭系是()A、y1<y2<y3B、y2<y1<y3C、y3<y1<y2D、y1<y3<y2B.挖空题:23.二次函数2y ax=(0<a)的图像启心背____,对付称轴是____,顶面坐标是____,图像有最___面,x___时,y随x的删大而删大,x___时,y随x的删大而减小.24.扔物线y=-21(2)2x+-4的启心背___,顶面坐标___,对付称轴___,x___时,y随x 的删大而删大,x___时,y随x的删大而减小.25.化243y x x=++为y=a2()x h-k+的形式是____,图像的启心背____,顶面是____,对付称轴是____.26.扔物线y=24x x +-1的顶面是____,对付称轴是____.27.将扔物线y=3x 2背左仄移6个单位,再背下仄移728.已知二次函数2y axbx c =++所示,则面()P a bc ,正在第象限.C .解问题29.通过配圆变形,道出函数2288y x x =-+-的图像的启心目标,对付称轴,顶面坐标,那个函数有最大值仍旧最小值?那个值是几?30.(1)已知二次函数的图象以A (-1,4)为顶面,且过面B (2,-5)供该函数的闭系式;(2)扔物线过(-1,0),(3,0),(1,-5)三面,供二次函数的剖析式;31.已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图像通过面(2,3),供那个函数的闭系式.32.已知二次函数y = -x 2+bx +5,它的图像通过面(2,-3).(1)供那个函数闭系式及它的图像的顶面坐标. (2)当x 为何值时,函数y 随着x 的删大而删大?当为x 何值时,函数y 随着x 的删大而减小?33.二次函数c bx ax y ++=2的图像与x轴接于面A (-8,0)、B (20),与y 轴接于面C,∠ACB=90°.(1)、供二次函数的剖析式;(2)、供二次函数的图像的顶面坐标;参照问案一、采用题2.6.D 7.二、挖空题23. 下 y轴(0,0)大 x<0 x>0;24. 下 y轴(-2,-4)曲线x=-2 x<-2 x>-2;25. 1)2(2-+=xy上(-2,-1)曲线x=-1;26. (-2,-5) 曲线x=-2 ; 27.7)6(32-+=xy三、解问题29.解法1:设y=a2(8)x-+9,将x=0,y=1代进上式得a=18-,∴y=21(8)8x--+9=21218x x-++解法2:设y=2ax bx c++,由题意得21,8,249,4cbaac ba⎧⎪=⎪⎪-=⎨⎪⎪-=⎪⎩解之1,82,1.abc⎧=-⎪⎪=⎨⎪=⎪⎩∴y=21218x x-++415,25,45-=-==cba4)1(2++-=x y (1) (2)30.31.5)1(22+--=x y32.(1)b=-2 522+--=x x y (2) (-1,6) x<-1 x>-133.(1) 提示:根据:OB OA OC ⋅=2,可供出OC=4,则C (0,4)。

中考数学专项复习《二次函数图像的几何变换》练习题及答案

中考数学专项复习《二次函数图像的几何变换》练习题及答案

中考数学专项复习《二次函数图像的几何变换》练习题及答案一、单选题1.若二次函数y=mx2-(m2-3m)x+1-m的图象关于y轴对称,则m的值为()A.0B.3C.1D.0或32.抛物线y=(x+2)2+1可由抛物线y=x2平移得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位3.将抛物线y=﹣2(x+1)2﹣3先向右平移4个单位长度,再向上平移5个单位长度,得到的抛物线的函数表达式是()A.y=﹣2(x﹣5)2+8B.y=﹣2(x﹣3)2+8C.y=﹣2(x﹣5)2+2D.y=﹣2(x﹣3)2+24.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2)点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.-3B.-1C.1D.36.在平面直角坐标系中将二次函数y=x2的图象向上平移2个单位,所得图象的解析式为()A.y=x2﹣2B.y=x2+2C.y=(x﹣2)2D.y=(x+2)27.函数y=2x2+4x+1①;y=2x2-4x+1②的图象的位置关系是()A.②在①的上方B.②在①的下方C.②在①的左方D.②在①的右方8.将抛物线y=x2向左平移一个单位,再向上平移2个单位,得到的抛物线解析式为()A.y=(x−1)2+2B.y=(x+1)2−2C.y=(x+1)2+2D.y=(x+2)2+1 9.在平面直角坐标系中如果抛物线y=2x2+1不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2+ 3B.y=2(x-2)2-1C.y=2(x + 2)2-1D.y=2(x + 2)2 + 310.把抛物线y=(x﹣1)2+2向左平移1个单位,再向下平移2个单位,所得抛物线是()A.y=x2B.y=(x﹣2)2C.y=(x﹣2)2+4D.y=x2+411.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣212.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0 的根情况是()A.有两个相等的实数根B.有一个实数根C.有两个不相等的实数根D.没有实数根二、填空题13.已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b=,c=.14.抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是.15.把抛物线y=12x2−1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为.16.将二次函数y=﹣(x﹣1)2的图象沿x轴向左平移2个单位,得到的函数表达式为.17.一抛物线和另一抛物线y=﹣2x2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为.18.在平面直角坐标系中将抛物线y=x2﹣x﹣12向上(下)或左(右)平移m个单位,使平移后的抛物线恰巧经过原点,则|m|的最小值为.三、综合题19.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?20.如图,二次函数y=(x−1)(x−a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式. 21.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?22.如图①,抛物线y=−x2+bx+c与x轴交于两点A,B(4,0)(点A位于点B的左侧),与y轴交于点C(0,4),拋物线的对称轴l与x轴交于点N,长为2的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)求抛物线的关系式;(2)在线段PQ运动过程中当PC+PA的值最小时,求此时点P的坐标;(3)如图②过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.23.已知抛物线y=x2+bx+c经过点(﹣2,1),它的对称轴为直线x=﹣1(1)求抛物线的表达式和顶点坐标.(2)如图,已知点A(P,t)(P>0)在(1)中的抛物线上,将该抛物线向右平移若干个单位后得到抛物线l,点A在抛物线l上的对应点为点B(t,t),若抛物线l恰好经过点C(2,0),求P,t 的值.24.如图,抛物线y=x2﹣3x+k与x轴交于A、B两点,与y轴交于点C(0,﹣4).(1)k=;(2)点A的坐标为,B的坐标为;(3)设抛物线y=x2﹣3x+k的顶点为M,求四边形ABMC的面积.参考答案1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】A11.【答案】C12.【答案】A13.【答案】0;-614.【答案】y=(x﹣4)2﹣315.【答案】y=12(x−1)2−316.【答案】y=﹣(x+1)2 17.【答案】y=﹣2(x+2)2+1 18.【答案】319.【答案】(1)解:如图所示:抛物线y=12x2开口向上,对称轴为y轴,顶点坐标(0,0);抛物线y=12x2-1开口向上,对称轴为y轴,顶点坐标(0,-1)(2)解:抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到20.【答案】(1)解:y=(x−1)(x−a)=x2−(1+a)x+a. ∵图象的对称轴为直线x=2∴a+12=2∴a =3 .(2)解:∵a =3∴二次函数的表达式为 y =x 2−4x +3 ∴抛物线向下平移3个单位后经过原点∴平移后图象所对应的二次函数的表达式为 y =x 2−4x .21.【答案】(1)证明:∵△=(﹣2m )2﹣4×1×(m 2+3)=4m 2﹣4m 2﹣12=﹣12<0∴方程x 2﹣2mx+m 2+3=0没有实数解即不论m 为何值,该函数的图象与x 轴没有公共点 (2)解:y=x 2﹣2mx+m 2+3=(x ﹣m )2+3把函数y=(x ﹣m )2+3的图象沿y 轴向下平移3个单位长度后,得到函数y=(x ﹣m )2的图象,它的顶点坐标是(m ,0)因此,这个函数的图象与x 轴只有一个公共点所以,把函数y=x 2﹣2mx+m 2+3的图象沿y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点22.【答案】(1)解:∵y =−x 2+bx +c 过B(4,0),C(0,4)∴0=−16+4b +c ∴b =3 c =4∴抛物线的关系式为y =−x 2+3x +4;(2)解:∵A 点关于对称轴l 的对称点是B ,连接CB 交对称轴l 于点P ,连接PB 由对称性可知 PA =PB ∴PC +PA =PC +PB ≥CB当C 、P 、B 三点在一条直线上时,PC +PA 有最小值 ∵B(4,0) C(0,4)设直线BC 的解析式为y =kx +b ∴{4k +b =0b =4 解得{k =−1b =4 ∴y =−x +4∵由在y =−x 2+3x +4得抛物线对称轴为直线x =−3−2=32 ∴y =−32+4=52∴P(32,52);(3)解:如图:由在y =−x 2+3x +4得抛物线对称轴为直线x =−3−2=32 设Q(32,t)(t >0),则P(32,t +2) M(0,t +2) N(32,0)∵B(4,0) C(0,4);∴BN =52QN =t PM =32 CM =|t −2|∵∠CMP =∠QNB =90°∴△CPM 和△QBN 相似,只需CM QN =PM BN 或CM BN =PMQN ①当CM QN =PM BN 时,|t−2|t =3252 解得t =54或t =5 ∴Q(32,54)或(32,5);②当CM BN =PM QN 时,|t−2|52=32t 解得t =2+√192或t =2−√192(舍去) ∴Q(32,2+√192)综上所述,Q 的坐标是(32,54)或(32,5)或(32,2+√192).23.【答案】(1)解:y =x 2+bx +c 经过点(﹣2,1)对称轴为直线x =﹣1,即 −b2a=−1 ∴b =2∴y =x 2+2x +c将点(﹣2,1)代入得: 1=4−4+c 解得: c =1 ∴y =x 2+2x +1∵y =x 2+2x +1=(x +1)2∴y ≥0 恒成立,当 x =−1 时取得最小值, y =0 ∴顶点坐标为: (−1,0) ;(2)解:∵y 向右平移若干单位与l 重合,且l 过点(2,0) ∴平移距离为 2−(−1)=3 ,且A (P ,t )平移到B (t ,t )∴t =p +3 ,即 p =t −3∴A ( t −3 ,t )代入 y =(x +1)2 得: t =(t −3+1)2 ,即 t 2−5t +4=0 解得: t 1=1 t 2=4∴p =t −3=1−3=−2 或 p =t −3=4−3=1 ∵P >0∴p =−2 (舍去) ∴p =1,t =4 .24.【答案】(1)k=﹣4(2)(﹣1,0);(4,0)(3)解:∵y=x 2﹣3x ﹣4= (x −32)2−254∴M(32,−254)设抛物线的对称轴与x 轴交于N ,如图所示:则四边形ABMC 的面积=S △ACN +S △NCM +S △NMB = 12×AN ×OC +12×NM ×ON +12×NB ×NM = 12×52×4+12×254×32+12×52×254 = 352∴四边形ABMC 的面积是 352.。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

二次函数图像与性质运用练习题

二次函数图像与性质运用练习题

二次函数图像与性质运用练习题1、二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的是 。

2、已知一元二次方程230x bx +-=的一根为3-,在二次函数23y x bx =+-的图象上有三点14 5,y ⎛⎫- ⎪⎝⎭、25 4,y ⎛⎫- ⎪⎝⎭、31 6,y ⎛⎫⎪⎝⎭,1y 、2y 、3y 的大小关系是 。

3、若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( ) A .x 1<x 2<a <b B .x 1<a <x 2<b C .x 1<a <b <x 2 D .a <x 1<b <x 2 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系是 。

4、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,且关于x 的一元二次方程ax 2+bx +c ﹣m =0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的是 。

5、抛物线y =ax 2+bx +c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a +b +c <0;③c ﹣a =2;④方程ax 2+bx +c ﹣2=0有两个相等的实数根.其中正确结论的个数为 。

6、“如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A . m <a <b <nB . a <m <n <bC . a <m <b <nD . m <a <n <b7、二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则t 的取值范围是 。

二次函数的图象和性质练习题(含参考答案)

二次函数的图象和性质练习题(含参考答案)

新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。

二次函数图像题-专题练习

二次函数图像题-专题练习

类型一二次函数系数与图像的关系1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a >0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的序号数是()2、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(),下列2A.1B.2C.3D.4(1题图)(2题图)(3题图)(4题图)3.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()4已知二次函数y=ax2+bx+c的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤c﹣a>1,其中正确的结论有_________.类型二:二次函数与一次函数、反比例函数在同一图像问题1、在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()2 二次函数y=ax2+bx+c的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是()3.已知二次函数y=(x-a)(x-b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是ayx=y bx=xA B第3题图类型三:用图像解决二次函数与一元二次方程关系的有关问题二次函数y=ax 2+bx+c 的图像如图 根据图像解答下列问题:(1) 写出方程02=++c bx ax 的两根 (2)写出不等式02>++c bx ax 的解集 (2) 写出y 随x 的增大而增大的自变量x 的取值范围(3) 如方程k c bx ax =++2有两个不相等的实数根,求k 的取值范围(5)如方程无实数根,求k 的取值范围自我检测:1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )2.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限且过点(0,1) 和(﹣1,0)下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论是( )(1题图) (2题图) (4题图)4.如图是二次函数y=ax 2+bx+c (a ≠0)的图象的一部分,给出下列命题:①abc <0②b >2a ;③a+b+c=0④ax 2+bx+c=0的两根分别为﹣3和1;⑤8a+c >0.其中正确的命题是 _______________5.二次函数y=ax 2+bx+c 的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc <0;④4ac ﹣b 2<0;⑤当x ≠2时,总有4a+2b >ax 2+bx 其中正确的有 _________ (填写正确结论的序号).(5题图) (6题图) (7题图)6 如图所示,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列结论:①abc >0;②4a ﹣2b+c <0;③2a ﹣b >0;④b 2+8a >4ac ,正确的结论是 _________ .7.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (x 1,0),﹣3<x 1<﹣2,对称轴为x=﹣1.给出四个结论:①abc >0;②2a+b=0;③b 2>4ac ;④a ﹣b >m (ma+b )(m ≠﹣1的实数);⑤3b+2c >0.其中正确的结论有( )8设a、b为常数,并且b<0,抛物线的图象为图中的四个图象之一.则a=_________.课后延伸:1.(2013•鄂州)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息有()2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c <0,△<0;③c﹣4b>0;④4a﹣2b+c=16a+4b+c.其中正确结论的是()3已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论:①abc>0;②3a+b>0;③>﹣3;④2c>3b,其中结论正确的为()4.(2013•德州)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()(4题图)(5题图)(6题图)5.如图,开口向下的抛物线y=ax2+hx+c交y轴的正半轴于点A,对称轴是直线x=1,则abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正确的结论的个数是()7.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c >0;④2a﹣b+1>0.其中正确结论的是().。

九年级数学:二次函数的图像练习题

九年级数学:二次函数的图像练习题

九年级数学:二次函数的图像练习题A 练就好基础基础达标1.函数y=2x2+8x-3图象的对称轴是直线( D)A.y=-2 B.y=2 C.x=2 D.x=-22.抛物线y=x2-4x-4的顶点坐标是( C)A.(2,0) B.(2,-2) C.(2,-8) D.(-2,-8)3.二次函数y=ax2-4ax-5的图象顶点的横坐标是( A)A.2 B.-2 C.3 D.-34.将抛物线y=(x-1)2+2向上平移 2个单位,再向右平移3个单位后得到的抛物线为( B)A.y =(x-1)2+4 B.y =(x-4)2+4C.y=(x+2)2+6 D.y =(x-4)2+65.抛物线y=-2x2-4x+3的开口__向下__,对称轴为__直线x=-1__,顶点坐标为(-1,5) ,顶点是抛物线上的最__高__点.6.已知抛物线y=x2+(m-2)x-2m,当m=__2__时,顶点在y轴上;当m=__-2__时,顶点在x轴上;当m=__0__时,抛物线经过原点.第7题图7.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b,c的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在如图所示坐标系中画出二次函数y=x2+bx+c的图象.解:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0),∴3=16+4b+c,0=9+3b+c,解得b=-4,c=3.(2)∵该二次函数为y=x2-4x+3=(x-2)2-1,∴该二次函数图象的顶点坐标为(2,-1),对称轴为直线x=2.(3)列表如下:描点作图如下:第7题答图第8题图8.已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图所示,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.解:(1)∵二次函数的图象与x轴有两个交点,∴Δ=22+4m>0,∴m>-1.(2)∵二次函数的图象过点A(3,0),∴0=-9+6+m,∴m=3,∴二次函数的解析式为y=-x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB 的解析式为y =kx +b, ∴⎩⎨⎧0=3k +b ,3=b ,解得⎩⎨⎧k =-1,b =3, ∴直线AB 的解析式为y =-x +3,∵抛物线y =-x 2+2x +3的对称轴为直线x =1, ∴把x =1代入y =-x +3,得y =2, ∴P(1,2).第9题图9.某广场中心有高低不同的各种呈抛物线状的喷泉,其中一支高度为1 m 的喷水管喷水的最大高度为 3 m,此时喷水的水平距离为12 m .在如图所示的坐标系中,求这支喷泉的函数表达式.解:由题意知抛物线的顶点坐标为⎝ ⎛⎭⎪⎫12,3,设抛物线的解析式为y =a ⎝⎛⎭⎪⎫x -122+3,把点(0,1)代入,得1=a ⎝ ⎛⎭⎪⎫0-122+3,解得a =-8,所以,该抛物线的解析式为y =-8⎝ ⎛⎭⎪⎫x -122+3.B 更上一层楼 能力提升第10题图10.如图所示,抛物线y=a(x+1)2+4与x轴相交于点A,B两点,与y轴交于点C,若A的坐标为(-3,0),则△ABC的面积为( C)A.8 B.16 C.6 D.1211.如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,且∠OBC=45°,则下列各式中成立的是( D)A. b-c-1=0 B.b+c-1=0 C.b-c+1=0 D.b+c+1=011题图第12题图12.如图所示,抛物线y=a(x-1)2+2(a≠0)经过y轴正半轴上的点A,点B与点C分别是此抛物线和x轴上的动点,点D在OB上,且△AOD与△ABD面积相同,过点D作DF∥BC交x.轴于点F,则DF的最小值是2第13题图13.如图所示,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求出抛物线的解析式.解:(1)抛物线的对称轴为直线x=--5a2a=52.(2)由抛物线y=ax2-5ax+4经过点C,且C在y轴上,可知点C(0,4),又∵对称轴为x=52,BC∥x轴,∴BC=5,B(5,4),又AC=BC=5,OC=4, 在Rt△AOC中,由勾股定理,得AO=3, ∴A(-3,0),B(5,4),C(0,4).把点A坐标代入y=ax2-5ax+4中,解得a=-16,∴y=-16x2+56x+4.C 开拓新思路拓展创新14.如图所示,一段抛物线C1:y=-x(x-3)(0≤x≤3)与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得到C13.若P(37,m)在抛物线C13上,则m=__2__.第14题图15.二次函数y=x2-2x-3的图象与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,C,D的坐标,并在平面直角坐标系中画出该二次函数的大致图象;(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到;(3)求四边形OCDB的面积.解:(1)当y=0时,x2-2x-3=0,解得x1=-1,x2=3.∵A在B的左侧,第15题答图∴点A,B的坐标分别为(-1,0),(3,0).当x=0时,y=-3,∴点C的坐标为(0,-3).又∵y=x2-2x-3=(x-1)2-4,∴点D的坐标为(1,-4).(也可利用顶点坐标公式求解)画出二次函数图象如图.(2)∵y=x2-2x-3=(x-1)2-4,∴抛物线y=x2向右平移1个单位,再向下平移4个单位可得到抛物线y=x2-2x-3.(3)解法一:连结OD,作DE⊥y轴于点E,作DF⊥x轴于点F.S四边形OCDB =S△OCD+S△ODB=12OC·DE+12OB·DF=12×3×1+12×3×4=152.解法二:作DE⊥y轴于点E.S四边形OCDB =S梯形OEDB-S△CED=12(DE+OB)·OE-12CE·DE=12(1+3)×4-12×1×1=152.解法三:作DF⊥x轴于点F,S四边形OCDB =S梯形OCDF+S△FDB=12(OC+DF)·OF+12FB·FD1 2(3+4)×1+12×2×4=152.=。

中考数学《二次函数图像的几何变换》专项练习题及答案

中考数学《二次函数图像的几何变换》专项练习题及答案

中考数学《二次函数图像的几何变换》专项练习题及答案一、单选题1.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣22.将抛物线影响y=-x2向左平移2个单位后,得到的抛物线的解析式是()A.y=-(x+2)2B.y=-x2+2C.y=-(x-2)2D.y=-x2-23.若将抛物线y=5x2先向右平移2个单位,再向下平移3个单位,可得到新的抛物线是()A.y=5(x+2)2+3B.y=5(x−2)2+3C.y=5(x+2)2−3D.y=5(x−2)2−34.在平面直角坐标系内,将抛物线y=(x+2)2−3经过两次平移后,得到的新抛物线为y=(x−1)2−4.下列对这一平移过程描述正确的是()A.先向右平移3个单位长度,再向下平移1个单位长度B.先向左平移3个单位长度,再向下平移1个单位长度C.先向右平移3个单位长度,再向上平移1个单位长度D.先向左平移3个单位长度,再向下平移1个单位长度5.下列平移中,不能使二次函数y=2x2+4x−6经过原点的是()A.向左平移1个单位B.向右平移3个单位C.向上平移6个单位D.向上平移8个单位6.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+37.如图,在直角坐标系中,O为坐标原点,点A(4,0),以OA为对角线作正方形ABOC,若将抛物线y= 12x2沿射线OC平移得到新抛物线y= 12(x-m)2+k(m>0).则当新抛物线与正方形的边AB有公共点时,m的值一定是()A.2,6,8B.0<m≤6C.0<m≤8 D.0<m≤2 或6 ≤ m≤88.将抛物线y=3x2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式是()A.y=3(x﹣2)2﹣5B.y=3(x﹣2)2+5C.y=3(x+2)2﹣5D.y=3(x+2)2+59.在平面直角坐标系中,对于二次函数y=(x−2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到10.抛物线y=12x2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是()A.y=12(x+1)2﹣2B.y=12(x﹣1)2+2C.y=12(x﹣1)2﹣2D.y=12(x+1)2+211.将二次函数y=x2的图象如何平移可得到y=x2+4x+3的图象()A.向右平移2个单位,向上平移一个单位B.向右平移2个单位,向下平移一个单位C.向左平移2个单位,向下平移一个单位D.向左平移2个单位,向上平移一个单位12.把抛物线y=(x+2)2向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是()A.y=(x+2)2+2B.y=(x+1)2−2C.y=x2+2D.y=x2−2二、填空题13.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.14.抛物线y=-x2-2x+3可由抛物线y=ax2平移得到,则a的值是。

(完整版)二次函数的图像与性质练习题及答案

(完整版)二次函数的图像与性质练习题及答案

二次函数的图像和性质练习题一、选择题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A 、1个;B 、2个;C 、3个;D 、4个 2.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定 5.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像开口由小到大的顺序是( )A 、321y y y <<B 、123y y y <<C 、231y y y <<D 、132y y y <<6.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①0abc >;②a+b+c>0③a-b+c<0;A .1个B .2个C .3个D .4个8.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( )A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32)1(-x +29.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与抛物线y=-12x 2+3x -5的形状、开口方向都相同,只有位置不同的抛物线是( )A. y = x 2+3x -5B. y=-12x 2xC. y =12x 2+3x -5D. y=12x 212.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反13.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,14.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1 15.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )16.函数y=12-2x +2x -5的图像的对称轴是( ) A .直线x=2 B .直线a=-2 C .直线y=2 D .直线x=4 17.二次函数y=221x x --+图像的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 18.如果抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为( )A .0B .6C .3D .9ABCD19.已知二次函数2y ax bx c =++,如果a >0,b <0,c <0,那么这个函数图像的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限 20.已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-= 21.如图所示,满足a >0,b <0的函数y=2ax bx +的图像是( )22.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 2二、填空题:23.二次函数2y ax =(0<a )的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

初中数学二次函数图像性质练习题(附答案)

初中数学二次函数图像性质练习题(附答案)

初中数学二次函数图像性质练习题(附答案)1、函数y=a(x-h)²的图像与性质:顶点坐标为(h,0),当x=h时,y有最小值。

2、抛物线y=3x²经过下列平移后得到的抛物线的解析式及对称轴和顶点坐标:1)y=3(x-2)²,对称轴为x=2,顶点坐标为(2,0);2)y=3(x+1)²,对称轴为x=-1,顶点坐标为(-1,0);3)y=3(x-3)²+1,对称轴为x=3,顶点坐标为(3,1)。

3、函数y=(x+1)²和y=x²+1具有的共同性质:对称轴都为x轴,顶点坐标都为(-1,1)。

4、已知a=1/2,OA=OC,抛物线的解析式为y=1/2(x-1)²。

5、抛物线y=3(x-3)²与x轴交点为(3,0),与y轴交点为(0,27),△AOB的面积为27.6、二次函数y=a(x-4)²,当自变量x由增加到2时,函数值y增加6.解得a=3/4,关系式为y=3/4(x-4)²,函数值y随x值的变化情况为随着x的减小而增加。

7、顶点在坐标轴上的抛物线y=x²-(k+2)x+9的顶点坐标为(1,k+6),由对称性可知对称轴为x=1,即k+2=2,解得k=0.22、y=a(x-h)²+k的图像与性质:顶点坐标为(h,k),开口方向由a的正负决定,当x=h时,y有最小值或最大值。

1、以(2,3)为顶点,开口向上的二次函数为y=a(x-2)²+3.2、二次函数y=(x-1)²+2,当x=1时,y有最小值为2.3、函数y=(x-1)²+3,当x增大时,y也随之增大。

4、函数y=(x+3)²-2的图像可由函数y=x²的图像向左平移3个单位,再向下平移2个单位得到。

5、已知抛物线顶点坐标为(2,1),过点(3,5),则抛物线的关系式为y=(1/2)(x-2)²+1.6、抛物线顶点坐标为P(1,3),函数y随自变量x的增大而减小的x的取值范围是x<1.7、函数y=-3(x-2)²+9的开口方向向下,对称轴为x=2,顶点坐标为(2,9);当x=2时,抛物线有最值9;当x增大时,y随之减小;当x减小时,y随之增大。

二次函数图像练习题

二次函数图像练习题

二次函数图像练习题一. 图像的基本性质二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a≠0。

1. 请画出以下二次函数的图像,并写出其对应的二次函数公式:1) y = x^22) y = -x^23) y = (x - 1)^24) y = -(x - 1)^25) y = 2x^26) y = -2x^27) y = x^2 + 1二. 图像的平移、反转、缩放1. 请在第一题的基础上,画出以下二次函数的图像,并写出其对应的二次函数公式:1) y = (x + 2)^22) y = -(x + 2)^23) y = (x - 3)^24) y = -(x - 3)^25) y = 2(x - 1)^26) y = -2(x - 1)^27) y = (x + 1)^2 + 2三. 二次函数的最值1. 求出以下二次函数的最值,并说明最值点坐标:1) y = x^2 - 4x + 32) y = -2x^2 + 4x - 13) y = 2x^2 + 4x + 14) y = -x^2 - 2x + 3四. 二次函数的开口方向和对称轴1. 判断以下二次函数的开口方向,并写出其对称轴方程:1) y = -x^2 + 4x - 32) y = x^2 + 4x + 43) y = -2x^2 - 5x - 24) y = 3x^2 - 6x五. 解方程1. 解以下方程,其中a、b、c为常数:1) x^2 - 5x + 6 = 02) 3x^2 + 2x - 1 = 03) 2x^2 + 5x + 3 = 04) 4x^2 - 4x + 1 = 0六. 给定二次函数y = -2x^2 + 4x - 1,回答以下问题:1. 该函数的开口方向是向上还是向下?2. 该函数的最值点坐标是多少?3. 该函数的对称轴方程是什么?4. 画出该函数的图像。

5. 求出此函数的零点,并用图像验证。

二次函数图象和性质练习题

二次函数图象和性质练习题

二次函数图像和性质练习1、已知抛物线342++=x x y ,请回答以下问题:⑴、它的开口向 ,对称轴是直线 ,顶点坐标为 ; ⑵、图像与x 轴的交点为 ,与y 轴的交点为 。

2、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .3、二次函数2243y x x =--,当x = 时,函数y 有最 值是 .4(1)二次函数y=-x 2+6x+3的图像顶点为_________对称轴为_________。

二次函数122--=x x y 的顶点坐标为 ,对称轴为 。

(2)二次函数y=2x 2-4的顶点坐标为________,对称轴为__________。

5.二次函数y=2x -mx+3的对称轴为直线x=3,则m=________。

6.二次函数1)3(22-+-=x y 由1)1(22+--=x y 向_____平移_______个单位,再向_____平移_______个单位得到。

7、抛物线3)2(32-+=x y 可由抛物线2)2(32++=x y 向 平移 个单位得到.8、将抛物线2)3(652+-=x y 向右平移3个单位,再向上平移2个单位,得到的抛物线是 9、把抛物线1)1(2---=x y 向 平移 个单位,再向_____平移_______个单位得到抛物线3)2(2-+-=x y .10、抛物线122--=x x y 可由抛物线142+-=x x y 向 平移 个单位,再向_____平移_______个单位得到. 11.抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 0. 12.已知二次函数232)1(2-++-=m mx x m y ,则当=m 时,其最大值为0. 一、请准确填空1、抛物线y =21(x +3)2的顶点坐标是______.对称轴是_____。

2、抛物线23(1)y x =--可由抛物线23y x =-向____平移______个单位得到。

二次函数的图像和性质基础练习题

二次函数的图像和性质基础练习题

二次函数的图像和性质基础练习题班级:_________姓名:___________得分:__________一、选择题:1、下列函数是二次函数的有2y?1?x2;y?2;y?x;y?ax2?bx?c;y?2x?1 y=22-2x2xA、1个;B、2个;C、3个;D、4个. y=2+2的对称轴是直线A.x=-1 B.x=1C.y=-1 D.y=1. 抛物线y??x?2?2?1的顶点坐标是A. B.C.D.. 函数y=-x-4x+3图象顶点坐标是A.B.C. D.2125.已知二次函数y?mx2?x?m的图象经过原点,则m的值为图A. 0或B. 0 C. D.无法确定26.函数y=2x-3x+4经过的象限是A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限7.已知二次函数y?ax2?bx?c的图象如图5所示,有下列结论:①abc?0;②a+b+c>0③a-b+c D.4个138、已知二次函数y1??3x2、y2??x2、y3?x2,它们的图像开口由小到大的顺序是32A、y1?y2?y3B、y3?y2?y1C、y1?y3?yD、y2?y3?y112x+3x-5的形状、开口方向都相同,只有位置不同的抛物线是111y = x2+3x-5 y=-x2y =x2+3x-5 y=x222210.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2-2x+k2的大致图象是B.2个 C.3个9、与抛物线y=-11.把二次函数y?x2?2x?1配方成顶点式为A.y?B. y?2? C.y?2?1 D.y?2?2112.对于抛物线y??2?3,下列说法正确的是33) A.开口向下,顶点坐标 C.开口向下,顶点坐标 B.开口向上,顶点坐标 D.开口向上,顶点坐标2y?3 y?32?y?32?2?2y?32?215.在同一直角坐标系中,函数y?mx?m和y??mx2?2x?2的图象可能是..A.B.C.D.二、填空题:11、抛物线y?2?4可以通过将抛物线y=向平移____个单位、3再向平移个单位得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像练习题
1.已知反比例函数y=k x 的图象如左图所示,则二次函数y=2kx 2-x+k 2
的图象大致为( )
2.已知函数y=ax 2
+bx+c 的图像如左下图所示,则函数y=ax+b 的图像可能是下图中的
( )
3.小明从右边的二次函数y =ax 2
+bx+c 图像中,观察得出了下面的六条信息:①a <0 ②c =0 ③函数的最小值为-3 ④当x <0时,y >0 ⑤当0<x 1<x 2<2时,y 1>y 2. ⑥对称轴是直线x=2.你认为其中正确的有______个.
A :2
B :3
C :4
D :5
4.二次函数y=ax 2
+bx +c (a ≠0)的图象如图4所示,则下列说法不正确的是( )
A .2
40b ac ->
B .0a >
C .0c >
D .02b
a
-
< 5.如图,抛物线y =ax 2
+bx+c (a ﹥0)的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的
值为( ) A. 0 B. -1 C. 1 D. 2
6.已知函数y=ax 2
+bx +c 的图象如图所示,则下列结论正确的是( )
A .a >0,c >0
B .a <0,c <0
C .a <0,c >0
D .a >0,c <0
7.函y=ax+b 和y=ax 2+bx +c 在同一直角坐标系内的图象大致是( )
3题 4题 6题
B .
C .
D .
8.如图为二次函数y=ax 2
+bx +c 的图象,在下列说法中:
①ac <0; ②方程ax 2
+bx +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0
④当x >1时,y 随x 的增大而增大。

正确的说法有_____________。

(填序号)
9.已知二次函数y =ax 2
+bx+c (a ≠0)的图象如图所示,则下列结论:①ac ﹥0;②方程ax 2
+bx+c=0
的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( ) A .4个 B .3个 C .2个 D .1个
10.已知二次函数y=ax 2
+bx+c (a ≠0)的图象如图所示,有下列四个结论:①b <0②c >0
③b 2
-4ac >0④a-b+c <0,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个
11.二次函数y =ax 2
+bx+c (a ≠0)的图象如图(1
)所示,则直线与反比例函数y=ac
x

在同一坐标系内的大致图象为( )
12.函数y=ax +1与y=ax 2
+bx +1(a ≠0)的图象可能是( )
8题
10题。

相关文档
最新文档