人教版八年级数学下册 周测练习题
八年级数学下学期第2周周测试卷(含解析) 新人教版
2015-2016学年江苏省镇江市丹阳市云阳学校八年级(下)第2周周测数学试卷一、填空:(本大题共9小题,每题2分,共18分)1.如图,是从镜中看到的一串数字,这串数字应为.2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为度.8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP 之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系.二、选择题:(每小题3分,共18分)10.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边12.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点D.不能确定13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称三、解答题:(本大题共6小题,共64分)16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.四、知者加速题:(本大题共2题,共20分)22.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.23.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置;若不能,请说明理由;(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.2015-2016学年江苏省镇江市丹阳市云阳学校八年级(下)第2周周测数学试卷参考答案与试题解析一、填空:(本大题共9小题,每题2分,共18分)1.如图,是从镜中看到的一串数字,这串数字应为810076.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为810076,故答案为:810076.2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,可以根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP 之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.【考点】全等三角形的判定与性质.【分析】数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.二、选择题:(每小题3分,共18分)10.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边【考点】作图—复杂作图.【分析】能不能作出唯一直角三角形要看所给条件是否满足全等三角形的判定条件,然后利用三角形全等的判定方法对各选项进行判定.【解答】解:A、已知两条直角边和直角,可根据“SAS”作出唯一直角三角形,所以A选项错误;B、已知两个锐角,不能出唯一的直角三角形,所以B选项之前;C、已知一直角边和直角边所对的一锐角,可根据“AAS”或“ASA”作出唯一直角三角形,所以B 选项错误;D、已知斜边和一直角边,可根据“HL”作出唯一直角三角形,所以D选项错误.故选B.12.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点D.不能确定【考点】线段垂直平分线的性质.【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【解答】解:∵直角三角形的外接圆圆心在斜边中点可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选C.13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE ≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm【考点】轴对称的性质.【分析】由轴对称的性质可得PA=PG,PB=BH,从而可求得△PAB的周长.【解答】解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=PG,PB=BH,∴PA+AB+PB=GA+AB+BH=GH=10cm,即△PAB的周长为10cm,故选B.15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选:D.三、解答题:(本大题共6小题,共64分)16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)【考点】作图-轴对称变换.【分析】(1)分别作出A、B、C关于直线MN的对称点即可.(2)作线段AB的垂直平分线,直线m、n组成的角的平分线,两线的交点就是所求的点.【解答】解:(1)如图1中,作点A关于直线MN的对称点E,点B关于直线MN的对称点F,点C关于直线NM的对称点G,连接EF、FG.EG,△EFG就是所求作的三角形.(2)如图2中,图中点P和点P′就是满足条件的点.17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.【考点】线段垂直平分线的性质.【分析】已知DE垂直平分斜边AB可求得AE=BE,∠EAB=∠EBA.易求出∠AEB.【解答】解:∵DE垂直平分斜边AB,∴AE=BE,∴∠EAB=∠EBA.∵∠CAB=∠B+30°,∠CAB=∠CAE+∠EAB,∴∠CAE=30°.∵∠C=90°,∴∠AEC=60°.∴∠AEB=120°18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【考点】等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt△AED 和Rt△AFD全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.【解答】解:AD⊥EF.理由如下:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和Rt△AFD中,∵,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠EAF,∴AD⊥EF(等腰三角形三线合一).20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【考点】线段垂直平分线的性质.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE 即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC 的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.四、知者加速题:(本大题共2题,共20分)22.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.【考点】线段垂直平分线的性质;线段的性质:两点之间线段最短;角平分线的性质.【分析】(1)根据两点之间线段最短,连接AB,线段AB交直线l于点O,则O为所求点;(2)根据线段垂直平分线的性质连接AB,在作出线段AB的垂直平分线即可;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,由三角形全等的判定定理求出△BDQ≌△B′DQ,再由全等三角形的性质可得出∠BQD=∠B′QD,即直线l平分∠AQB.【解答】解:(1)连接AB,线段AB交直线l于点O,∵点A、O、B在一条直线上,∴O点即为所求点;(2)连接AB,分别以A、B两点为圆心,以任意长为半径作圆,两圆相交于C、D两点,连接CD与直线l 相交于P点,连接BD、AD、BP、AP、BC、AC,∵BD=AD=BC=AC,∴△BCD≌△ACD,∴∠BED=∠AED=90°,∴CD是线段AB的垂直平分线,∵P是CD上的点,∴PA=PB;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,∵B与B′两点关于直线l对称,∴BD=B′D,DQ=DQ,∠BDQ=∠B′DQ,∴△BDQ≌△B′DQ,∴∠BQD=∠B′QD,即直线l平分∠AQB.23.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置;若不能,请说明理由;(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.【考点】轴对称-最短路线问题.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,继而求得答案.【解答】解:(1)①作出点P关于AC、BC的对称点D、G,②连接DG交AC、BC于两点,③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=48°,∴∠EPF=132°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=48°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=48°,∴∠MPN=132°﹣48°=84°.文本仅供参考,感谢下载!。
2023-2024学年全国初二下数学人教版模拟考试试卷(含答案解析)
20232024学年全国初二下数学人教版模拟考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. (2分)下列选项中,不是同类二次根式的是()A. √2 和√3B. √18 和√8C. √27 和√3D. √50 和√22. (2分)若a+b=5,ab=3,则a²+b²的值为()A. 16B. 18C. 20D. 223. (2分)下列各数中,是无理数的是()A. √9B. √16C. √3D. √14. (2分)下列函数中,是正比例函数的是()A. y=2x+1B. y=x²C. y=3/xD. y=3x5. (2分)在平面直角坐标系中,点P(a,b)关于原点对称的点是()A. (a,b)B. (a,b)C. (a,b)D. (b,a)6. (2分)下列各式中,是分式方程的是()A. 3x+5=7B. 2/x=3C. x²4=0D. 1/x+1/y=17. (2分)已知一组数据的方差是9,那么这组数据每个数据都加上10后,方差是()A. 9B. 10C. 11D. 19二、判断题(每题1分,共20分)8. (1分)平行线的性质是同位角相等。
()9. (1分)一元二次方程的解一定是实数。
()10. (1分)两个无理数相加一定是无理数。
()11. (1分)对角线互相垂直的平行四边形是菱形。
()12. (1分)函数y=kx(k≠0)的图象是一条过原点的直线。
()13. (1分)若a>b,则a²>b²。
()14. (1分)中位数的定义是:将一组数据从小到大(或从大到小)排列,位于中间位置的数。
()三、填空题(每空1分,共10分)15. (2分)若|a|=3,则a=______。
16. (3分)在三角形ABC中,若a=8,b=10,cosA=3/5,则sinB=______。
17. (3分)函数y=2x1的图象是一条直线,其斜率为______,y轴截距为______。
2021年人教版八年级数学下册-18.1 《平行四边形》- 周测 A卷(无答案)
第十八章 18.1 平行四边形同步测试 A卷班级:姓名:学号:分数:一、选择题(本大题共12题,满分36分,每小题3分)1.在□ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A .45° B. 55° C. 65° D. 75°2.如图,平行四边形ABCD的对角线AC,BD交于点O,若AD=16,AC=24,BD=12,则△OBC的周长为()A.26B.34C.40D.523.如图,□ABCD的对角线AC、BD相交于点O,且 AC+BD=16,CD=6,则△ABO的周长是()A. 10B. 14C. 20D. 224.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠ABO=∠CDO B.∠BAD=∠BCDC.AO=CO D.AC⊥BD5.在□ABCD中,AC=24,BD=38,AB=m, 则m的取值范围是()A. 24<m<39B.14<m<62C.7<m<31D.7<m<126.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.107.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:28.根据下列条件,不能判定四边形为平行四边形的是( )A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行9..如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10.已知四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是()A.8cm B.10cmC.12cm D.14cm11..如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( ) A.8 B.10 C.12 D.1612.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为 ( )A.1B.2C.4D.8二、填空题(本大题共4题,满分16分,每小题4分)13.如图,在□ABCD中.(1)若∠A=130°,则∠B=______ ,∠C=______ ,∠D=______.(2)若AB=3,BC=5,则它的周长= ______.14.如图,平行四边形ABCD的面积为20,对角线AC,BD相交于点O,点E,F分别是AB,CD上的点,且AE=DF,则图中阴影部分的面积为_______.15.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,则BD的长是 .16..如图,点 D、E、F 分别是△ABC 的三边AB、BC、AC的中点.(1)若∠ADF=50°,则∠B=°;(2)已知三边AB、BC、AC分别为12、10、8,则△ DEF的周长为 .三、解答题(本大题共6题,满分68分)17.(12分)如图,在□ABCD中.(1)若∠A =32。
人教版八年级数学下册单元测试题全套(含答案)
人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)
2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 2^3B. 3^2C. (3^2)^2D. 2^(3^2)2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 梯形C. 正三角形D. 菱形3. 已知x²=25,那么x的值为()A. 5B. 5C. ±5D. 5或54. 下列函数中,奇函数是()A. y=x²B. y=2xC. y=x³D. y=|x|5. 若a²+b²=25,则下列选项中正确的是()A. a+b=5B. ab=0C. ab=5D. a²+b²=625二、判断题5道(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 平方根和立方根都只有一个解。
()3. 任何数都有倒数。
()4. 两个奇数相加的结果是偶数。
()5. 任何数乘以1都等于它本身。
()三、填空题5道(每题1分,共5分)1. 3的平方根是______。
2. 若a=3,b=3,则a+b=______。
3. 5的立方是______。
4. 若x²=9,则x的值为______。
5. 任何数乘以0都等于______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述偶函数的定义。
3. 请简述一元二次方程的解法。
4. 请简述平行四边形的性质。
5. 请简述菱形的性质。
五、应用题:5道(每题2分,共10分)1. 已知a=2,b=3,求a²+b²的值。
2. 已知x²6x+9=0,求x的值。
3. 计算下列表达式的值:3²+4²。
4. 已知一个正方形的边长为a,求该正方形的面积。
5. 计算下列表达式的值:√(64)+√(49)。
六、分析题:2道(每题5分,共10分)1. 已知a²+b²=25,求a和b的值。
2024年【每周一测】第八周数学八年级下册基础练习题(含答案)
2024年【每周一测】第八周数学八年级下册基础练习题(含答案)试题部分一、选择题:1. 在下列各数中,无理数是()A. 0.333…B. √2C. 1.414D. 3/22. 下列各式中,二次根式是()A. √(1)B. √9C. √(x^2 1)D. √(x^2 + 1)3. 已知一组数据的方差是9,那么这组数据每个数据都加5后,方差是()A. 4B. 9C. 14D. 1444. 下列函数中,既是奇函数又是偶函数的是()A. y = x^3B. y = x^2C. y = |x|D. y = x^3 + x^25. 在平面直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(a, b)6. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a b)^2 = a^2 b^2C. (a + b)(a b) = a^2 b^2D. (a + b)^3 = a^3 + b^37. 若平行线l1:3x 4y + 6 = 0,l2:3x 4y 8 = 0,则两平行线间的距离是()A. 2B. 4C. 6D. 88. 已知三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()A. 40°B. 70°C. 80°D. 100°9. 下列关于x的不等式中,有解的是()A. x^2 < 0B. x^2 > 0C. x^2 = 0D. x^2 ≠ 010. 若a、b为实数,且a≠b,则下列等式中正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab + b^2C. (a + b)(a b) = a^2 b^2D. 所有选项都正确二、判断题:1. 两个无理数的和一定是无理数。
()2. 一组数据的方差越大,说明这组数据的波动越大。
八年级数学下册周周测试卷
一、选择题(每题3分,共30分)1. 若一个数的平方根是2,则这个数是()A. 4B. -4C. 8D. -82. 下列各组数中,互为相反数的是()A. 3和-5B. 0和0C. -3和3D. 5和-53. 下列图形中,对称轴最多的是()A. 等边三角形B. 等腰三角形C. 长方形D. 正方形4. 若a、b、c是三角形的三边,且a+b>c,则下列不等式中一定成立的是()A. a+c>bB. b+c>aC. a-b>cD. a-b<c5. 下列函数中,自变量x的取值范围是全体实数的是()A. y=2x+1B. y=x²-1C. y=√xD. y=1/x6. 下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)³=a³+3a²b+3ab²+b³D. (a-b)³=a³-3a²b+3ab²-b³7. 下列方程中,解为x=2的是()A. 2x-3=5B. 3x+2=7C. x+3=8D. 2x+1=58. 下列图形中,中心对称图形是()A. 等边三角形B. 等腰三角形C. 长方形D. 正方形9. 下列各式中,正确的是()A. 3x+4y=5B. 2x-3y=6C. 4x+5y=10D. 5x-6y=1210. 下列各式中,正确的是()A. a²+b²=c²B. a²-c²=b²C. b²-c²=a²D. a²+b²=c²+2ab二、填空题(每题3分,共30分)11. 已知a=-2,则a²的值是________。
12. 下列数中,负数的倒数是________。
2024年人教版八年级下册数学周周测试题及答案(六)
周周测(六)_____月_____日建议用时:45分钟(考查范围:18.2.2-18.2.3)1.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是(A)A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②2.下列说法中正确的是 (B)①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形;③两条对角线互相垂直的平行四边形是菱形;④两条对角线相等的菱形是正方形.A.①②③B.①③④C.①②D.①②③④3.(2023·贵阳修文县期末)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=20 cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为(D)A.20 cmB.30 cmC.40 cmD.20√2 cm4.(2022·遵义湄潭县质检)如图,正方形ABCD中,点F为AB上一点,CF与BD交于点E,连接AE,若∠BCF=20°,则∠AEF的度数是(D)A.35°B.40°C.45°D.50°5.将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,MN,甲、乙两人有如下结论:甲:若四边形ABCD为正方形,则四边形PQMN必是正方形;乙:若四边形PQMN 为正方形,则四边形ABCD必是正方形.下列判断正确的是(B)A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙都不正确D.甲、乙都正确6.(2023·重庆中考B卷)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为(D)A.2B.√3C.1D.√27.(2023·齐齐哈尔中考)如图,在四边形ABCD中,AD=BC,AC⊥BD于点O.请添加一个条件:AD ∥BC(或AB=CD或OB=OD或∠ADB=∠CBD等),使四边形ABCD成为菱形.8.在▱ABCD中,AC,BD为对角线,如果AB=BC,AC=BD,那么▱ABCD一定是正方形.9.已知,一菱形的面积为a2+ab,一条对角线长为a+b,则该菱形的另一条对角线长为2a .10.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,CD上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为5cm.11.(2023·广西中考)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD上的动点,M,N分别是EF,AF的中点,则MN的最大值为12.如图,在7×7的正方形网格中,网格线的交点称为格点,点A,B在格点上,每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.【解析】(1)如图所示:四边形ABCD即为所画菱形,(答案不唯一,画出一个即可).×2×6=6,(2)图1菱形面积S=12图2菱形面积S=1×2√2×4√2=8,2图3菱形面积S=(√10)2=10.13.如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【解析】∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.14.(2023·贵阳清镇市质检)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2√2,求正方形ADCE的周长.。
2022年八年级数学下册周周卷二特殊的平行四边形习题课件新版新人教版
(2)若AE=6,BF=8,CE=3,求四边形 A解:B过C点DF作的FG面⊥B积C于点. G.
∵四边形ABEF是菱形,AE=6,BF=8,AE⊥BF,
∴OE= 1 AE=3,OB= 1 BF=4,
2
2
∴BE= OB2 + OE2 =5,∴BC=BE+CE=8.
∵S菱形ABEF=
1 2
AE·BF=BE·FG,即 1
– C.75°
– D.80°
7.如图,已知O是矩形ABCD的对角线的交 点,∠AOB=60°,DE∥AC,CE∥BD, DE,CE相交于点E.若四边形OCED的周长
B
是–2A0.5,则BC的长是 ( – B.5 )
3
– C.10
– D.10
3
8.如图,在四边形ABCD中,E是AB上的一 点,△ADE和△BCE都是等边三角形,CP, Q–,A.M等腰,梯N形分别为AB,BC,CD,DA的中点, 则–四B.矩边形形MNPQ是( )
13.如图,O是矩形ABCD的对角线AC的中 点,菱形2 3ABEO的边长为2,则BC的长为
________.
14.如图,在正方形ABCD中,点P在边AB
上,AE⊥DP于点E,3 CF⊥DP于点F.若AE =4,CF=7,则EF=________.
15.如图,将两条宽度都为3的纸片重叠在 一起,使∠6A3BC=60°,则四边形ABCD 的面积为________.
附加题(20分)
如图,在矩形ABCD中,AD=6,DC=7,菱形EFGH的
三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上
,AH=2,连接CF.
2
(1)当四边形EFGH为正方形时,6 DG的长为________;
初二数学下册周测试卷答案
一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. 0C. 2D. -5答案:B2. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 6D. 2或3答案:D3. 下列函数中,是二次函数的是()A. y = x^3 + 2B. y = x^2 + 3x + 4C. y = 2x + 5D. y = x^4 - 1答案:B4. 在等腰三角形ABC中,若AB = AC,则∠BAC的度数为()A. 45°B. 60°C. 90°D. 120°答案:D5. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a + 2 < b + 2D. a - 2 > b - 2答案:A6. 下列图形中,是平行四边形的是()A. 正方形B. 矩形C. 菱形D. 以上都是答案:D7. 若∠A = 30°,∠B = 75°,则∠C的度数为()A. 45°B. 60°C. 75°D. 105°答案:A8. 下列数中,是负数的是()A. -3/4B. 0C. 3/4D. -√2答案:D9. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a + b < 0D. a - b < 0答案:B10. 下列图形中,是轴对称图形的是()A. 正方形B. 矩形C. 菱形D. 以上都是答案:D二、填空题(每题3分,共30分)11. 若x - 2 = 0,则x = ________。
答案:212. 若y = 3x - 1,当x = 2时,y = ________。
答案:513. 若a = 4,b = -2,则a^2 + b^2 = ________。
人教版数学八年级下册周测试题汇总(共37套)
第十六章二次根式周周测2一选择题1.下列各式一定是二次根式的是()A. B. C. D.2.若2<a<3,则等于()A.5﹣2aB.1﹣2aC.2a﹣1D.2a﹣3.关于的下列说法中错误的是()A.是无理数B.3<<4C.是12的算术平方根D.不能化简4.若=1﹣x,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤15.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0D.x≤﹣26.若1<x<3,则|x﹣3|+的值为()A.2x﹣4B.﹣2C.4﹣2xD.27.函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠18.若+|2a﹣b+1|=0,则(b﹣a)2015=()A.﹣1B.1C.52015D.﹣520159.当x<0 时,|-x|等于()A.0 B.-2x C.2x D.-2x或010.已知,则的值为()A.B.8 C.D.611.已知a<0,化简二次根式的正确结果是().12.已知,,则代数式的值是()A.9B.C.3D.5二填空题13.若+有意义,则(﹣2)a= .14.若,则_______ ,___________ .15.函数中.自变量x的取值范围是.16.函数y=+中自变量x的取值范围是________.17.二次根式有意义的条件是________________.18.已知,则三解答题19.求使下列各式有意义的x的取值范围?(1)(2)(3)(4)20.如图,实数a、b在数轴上的位置,化简﹣﹣.21.若与互为相反数,求的值是多少?22.当时,求代数式的值.23.24.若ABC的三边长分别为a,b,c,其中a和b满足,求边长c的取值范围是多少?25.已知、为实数,且,求的值.第十六章 二次根式周周测2试题答案1.C2.D3.D4.D5.A6.D7.B8.A9.B 10.C11.A 12.C 13.1. 14.5, 6 15.x≤3. 16.5≥x>-3 17.x≥0且x≠4 18.10 19.解:(1)由题意得220,3320,2x x x x ≥-⎧+≥⎧⎪⎨⎨-≥≤⎩⎪⎩解得故x 的取值范围为-2≤x ≤32.(2)00.10,1x x x x -≥≤⎧⎧⎨⎨+≠≠-⎩⎩解得故x 的取值范围为x ≤0且x ≠-1. (3)11000x x x x ⎧≠±⎧-≠⎪⎨⎨≥≥⎪⎩⎩解得故x 的取值范围为x ≥0且x ≠1. (4)1210.2202x x x x ⎧-≥⎧≥⎪⎨⎨-≠⎩⎪≠±⎩解得故x 的取值范围为x ≥12且x ≠2.20.解:由数轴可得:a <0,b >0,a ﹣b <0, 则﹣﹣=﹣a ﹣b+(a ﹣b )=﹣2b .21.解:22.解:23.解:24.解:25.解:由题意得,,且.∴,∴.∴.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第十六章二次根式周周测3一选择题1.化简的结果是()A.B.C.D.2.下列二次根式中,是最简二次根式的是()A. B.C.D.3.下列根式中,是最简二次根式的是()A.B.C.D.4.计算:等于()A.B.C.D.5.把根号外的因式移入根号内,其结果是()A.B.﹣ C.D.﹣6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.下列各式计算正确的是()A.a12÷a6=a2B.(x+y)2=x2+y2C. D.9.下列各等式成立的是( ) A .45×25=85 B .53×42=205 C .43×32=75D .53×42=20610.已知:20n 是整数,则满足条件的最小正整数n 为( ) A .5 B .4 C .3 D .2 二 填空题 11.计算: = . 12.长方形的宽为,面积为,则长方形的长约为 (精确到0.01). 13.若和都是最简二次根式,则m= ,n= .14.化简﹣÷= .15.化简:2244()()a b a b --(b <a <0)得____________________. 三 解答题 16.化简: (1);(2);(3) (4);(5);(6);(7)÷.17.比较大小:﹣ ﹣.18.把根号外的因式移到根号内:(1)(2).19.若x、y为实数,且y=22441x x-+-+,求x y x y+-g的值.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm ,高为=2cm ,求这个长方体的长.22.已知a 为实数,化简:3a --a 1a-,阅读下面李华的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程: 李华的解答过程:3a --a 1a -=a a --a·1aa -=(a-1)a -.第十六章 二次根式周周测3试题答案1. D2. B3. C4. A5. B6. D7. C8. D9. D 10. A 11.4b ca12. 2.83 13. 1 2 14. 2a a - 15. ()2222b aa b -+16.17.解:<18.解:19.解:20.解:21.解:22.解:【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第十六章 二次根式周周测1一 选择题1.已知3+x =0,则x 为( )A.x>3B.x<-3C. x=-3D. x 的值不能确定 2.化简:21(3)a a -+-的结果为( ) A .4—2a B .0 C .2a —4 D .43.如果一个三角形的三边长分别为1.k .3,化简|32|8136472-++--k k k 结果是( )A .4k —5B .1C .13D .19—4k 4.下列命题中,错误..的是( ) A 2x ,则x=5;B .若a (a≥0aC 2(3)π-π-3D 55 5 5.等式33-=-x x x x成立的条件是( )A .x≠3B .x≥0C .x≥0且x≠3D .x>3 6.计算32642xx ÷的结果为( ) A .x 22 B .x 32C .x 26D .x 322 7.计算311÷312÷521的结果是( ) A .275 B .27C 2D .278.化简3227-的结果是( ) A .-23 B .-3C .-6D .-2 9.化简的结果是( ).A. B. C. D.10.估计418⨯的运算结果应在( ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间二 填空题110.160.49=___________.12.化简:32583⨯的结果为 . 13.若xx xx --=--3232成立,则x 满足_______________.14.把aa 1-中根号外面的因式移到根号内的结果是 . 15.若x m n y m n ==,xy 的值是 .三 解答题16.已知18x x+=1x x -的值.17.在△ABC 中,BC 边上的高h=36cm ,它的面积恰好等于边长为23cm 的正方形面积。
2019春人教版八年级数学下册课件:周测循环练(9)
一、选择题(共 5 题,共 40 分) 1 .小明骑自行车上学,路上要经过平路 、上坡、 下坡、平路,小明下坡、上坡及平路速度均为匀速,但 上坡速度最慢,下坡速度最快,那么小明骑自行车上学 时,离开家的路程 s 与所用时间 t 的函数图象大致是 ( )
解:小明骑自行车上学,路上要经过平路、上坡、 下坡、平路,小明下坡、上坡及平均速度均为匀速,但 上坡速度最慢,下坡速度最快,所以小明骑自行车上学 时,离开家的路程 S 与所用时间 t 的函数图象大致先坡 度大,再坡度小,再坡度更大,最后坡度大. 故选 C.
(1)在上述变化过程中,自变量是________,因变量 是________. (2)乙车行驶的速度为________千米/小时.
解:(1)由图象可得,自变量是 x,因变量是 y, 故答案为:x,y; (2)乙车行驶的速度为: 360÷(7-1)=60 千米/小时, 故答案为:60;
三、解答题(共 2 题,共 36 分) 9 .如图,这是反映小明周末从家中出发去新华书 店的时间与距离之间关系的一幅图.
(1)小明从新华书店返回用多长时间? (2)新华书店离家多少米? (3)小明在书店呆了多长时间? (4)计算小明去书店时的平均速度.
解:(1)从第 30 分钟返回,到 45 分钟就回到家,从 新华书店返回用的时间=45-30=15 分钟. (2)小明最远离家 900 米. (3)在书店呆了 10 分钟. (4) 小 明 去 书 店 时 的 平 均 速 度 = 900÷20 = 45( 米 / 分).
A.小丽在便利店时间为 15 分钟 B.公园离小丽家的距离为 2 000 米 C.小丽从家到达公园共用时间 20 分钟 D.小丽从家到便利店的平均速度为 100 米/分钟
2024年全新初二数学下册模拟试卷及答案(人教版)
2024年全新初二数学下册模拟试卷及答案(人教版)一、选择题(每题1分,共5分)1. 若a是正数,b是负数,则下列哪个选项是正确的?A. a + b > 0B. a b > 0C. a b > 0D. a / b > 02. 一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长是?A. 18cmB. 16cmC. 14cmD. 12cm3. 若x² 5x + 6 = 0,则x的值是?A. x = 2, x = 3B. x = 2, x = 3C. x = 2, x = 3D. x = 2, x = 34. 若一个正方形的边长增加20%,则其面积增加?A. 20%B. 40%C. 44%D. 96%5. 若a + b = 5,ab = 4,则a² + b²的值是?A. 21B. 23C. 25D. 27二、判断题(每题1分,共5分)1. 任何数的平方都是正数。
()2. 等腰三角形的两个底角相等。
()3. 两个数相除,如果除数是0,则商是0。
()4. 一个等边三角形的每个角都是60°。
()5. 若a < b,则a² < b²。
()三、填空题(每题1分,共5分)1. 若x² 5x + 6 = 0,则x的值是______。
2. 一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长是______cm。
3. 若a是正数,b是负数,则a b的值是______。
4. 若一个正方形的边长增加20%,则其面积增加______%。
5. 若a + b = 5,ab = 4,则a² + b²的值是______。
四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。
2. 简述正方形的性质。
3. 简述一元二次方程的解法。
4. 简述平方根的定义。
5. 简述百分比的计算方法。
五、应用题(每题2分,共10分)1. 若x² 5x + 6 = 0,求x的值。
2024年人教版八年级下册数学周周测试题及答案(八)
周周测(八)_____月_____日建议用时:45分钟(考查范围:19.2.1-19.2.2.2)1.下列函数中,是正比例函数的是(A)A.y=-8xB.y=-8xC.y=5x2+6D.y=-0.5x-12.下列说法中不正确的是(D)A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数3.(2023·长沙中考)下列一次函数中,y随x的增大而减小的函数是 (D)A.y=2x+1B.y=x-4C.y=2xD.y=-x+14.等腰三角形周长为20 cm,底边长y cm与腰长x cm之间的函数关系是(B)A.y=20-2xB.y=20-2x(5<x<10)C.y=10-0.5xD.y=10-0.5x(10<x<20)5.(2023·陕西中考)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是(D)6.关于函数y=2x-4的图象,下列结论正确的是(C)A.必经过点(1,2)B.与x轴的交点坐标为(0,-4)C.过第一、三、四象限D .可由函数y =-2x 的图象平移得到7.(2023·临沂中考)对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.已知正比例函数y =kx 的图象经过点A (-1,7),则正比例函数的解析式为 y =-7x . 9.已知一次函数y =kx -1,请你补充一个条件 k <0 ,使函数图象经过第二、三、四象限. 10.已知点A (x 1,y 1),点B (x 2,y 2)是一次函数y =2x -m 图象上的两个点,若x 1>x 2,则y 1-y 2 > 0.(填“>”“<”或“=”)11.(2023·贵阳南明区模拟)把直线y =2x -1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 y =2x +3 .12.为了增强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元,超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,则y 关于x 的函数关系式是 y =1.8x -6(x >10) .13.已知正比例函数y =kx (k 是常数,k ≠0),当-3≤x ≤1时,对应的y 值的取值范围是-1≤y ≤13,且y 随x 的减小而减小,求k 的值.【解析】∵y 随x 的减小而减小,∴k >0,则有x =-3时,y =-1;x =1时,y =13,所以点(-3,-1),(1,13)在函数y =kx (k 是常数,k ≠0)的图象上,所以-1= k ·(-3), 所以k =13.14.已知一次函数y =mx -(m -2). (1)若图象过点(0,3),则m 是多少?(2)若它的图象经过第一、二、四象限,则m 的取值范围是多少? (3)若直线不经过第四象限,则m 的取值范围是多少?【解析】(1)∵一次函数y =mx -(m -2)的图象过点(0,3),∴3=-(m -2),解得m =-1; (2)∵一次函数y =mx -(m -2)的图象经过第一、二、四象限,∴{m<0-(m-2)>0,解得m<0,即m的取值范围是m<0;(3)∵一次函数y=mx-(m-2)的图象不经过第四象限,∴{m>0-(m-2)≥0,解得0<m≤2,即m的取值范围是0<m≤2.15.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出该函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积.【解析】见全解全析16.小明同学根据函数的学习经验,对函数y=|x-2|+|x+4|进行了探究,下面是他的探究过程:(1)已知当x=-4时,|x+4|=0;当x=2时,|x-2|=0,化简:①当x<-4时,y=_____ ;②当-4≤x≤2时,y=_____ ;③当x>2时,y=_____ .(2)在平面直角坐标系中画出y=|x-2|+|x+4|的图象,根据图象写出该函数的一条性质:_________________________ .(3)根据上面的探究解决下面问题:已知P(a,0)是x轴上一动点,A(-4,6),B(2,6),则AP+BP的最小值是_____ .【解析】(1)∵x=-4时,|x+4|=0;x=2时,|x-2|=0,①当x<-4时,y=2-x-x-4=-2-2x;②当-4≤x≤2时,y=2-x+x+4=6;③当x>2时,y=x-2+x+4=2x+2.答案:①-2-2x;②6;③2x+2。
人教版八年级数学下册 周测练习题.docx
初中数学试卷桑水出品2017年八年级数学下册周测练习题2.24一、选择题:1、下列各式与是同类二次根式的是( )A. B. C. D.2、使二次根式有意义的实数满足()A. B. C. D.3、若,则的取值范围是( )A. B. C. D.x<74、如果·=,则a的取值范围为()A.a≥4B.a≥0C.0≤a≤4D.a为一切实数5、计算的结果是()A. B. C. D.6、与不是同类二次根式的是()A. B. C. D.7、下列运算正确的是( )A. B. C. D.8、估算的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间9、计算:(2-)2-(2+)2,结果是()A.0B.-8C.12D.810、若,则的值等于()A. 4B.C. 2D.11、若且,则值是()A. B. C. D.12、化简代数式的结果是()A. 3B.C.D.二、填空题:13、一个三角形的三边长分别为,则它的周长是cm。
14、当x=2+时,x2-4x+2010=______________.15、已知,则。
16、化简(-1<x<3)=________.17、已知-1<a<0,化简得.18、观察下列各式:请你将发现的规律用含自然数n(n ≥1)的等式表示出来____________________.三、计算题:19、20、21、22、四、简答题:23、已知,求的值。
24、化简求值:,其中.25、先化简,再求值:,其中26、已知:,求的值。
27、试比较两数的大小,+与+,并说明理由.28、先化简,再求值:,其中x=.参考答案1、A2、B3、D4、A5、A6、A7、A8、C9、B 10、C 11、B 12、D 13、;14、2009; 15、10;16、4 17、.18、19、-20、== 21、-11 22、解:原式=1×=423、 =-=当时,原式=24、325、1226、27、+〈+∵(+)2=10+2,(+)2=10+2∴+<+28、解:原式====。
近年学年八年级数学下册18平行四边形周测新人教版(2021学年)
2017学年八年级数学下册18 平行四边形周测(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017学年八年级数学下册 18 平行四边形周测(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017学年八年级数学下册18平行四边形周测(新版)新人教版的全部内容。
平行四边形1、已知平行四边形ABCD中,∠A=∠B,则∠C= ( )A.120°B.90° C.60° D.30°2、下列给出的条件能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD3、如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数( )A.1对B.2对 C.3对 D.4对4、能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4(B)1∶4∶2∶3 (C)1∶2∶2∶1(D)1∶2∶1∶25、平行四边形的对角线长为x,y,一边长为12,则x,y的值可能是()A.8和14 B.10和14 C.18和20 D.10和346、已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD",那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD",那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC",那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是().(A)①② (B)①③④ (C)②③(D)②③④7、如图,在□ABCD中,下列结论一定正确的是( )①∠1+∠2=180°;②∠2+∠3=180°;③∠3+∠4=180°;④∠2+∠4=180°.A.①②③B.②③④C.①②④D.①③④第7题图第8题图第9题图8、如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28C.16 D.469、如图,□ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长是40cm,则平行四边形ABCD的周长是( )A.40cm B.60cm C.70cm D.80cm10、在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.11、△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为.12、在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是 .13、如图,已知在□ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.14、如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.15、在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .参考答案1、C。
八年级下册数学周测试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -2B. 3C. -1/2D. 02. 如果 |x - 2| = 5,那么 x 的值可能是()A. -3B. 3C. 7D. -73. 已知 a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b < 0C. -a > -bD. a + 2b > 04. 下列函数中,y 是 x 的反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = 55. 一个长方形的长是 a,宽是 b,那么它的周长是()A. 2a + 2bB. a + bC. 2a - bD. 2b - a6. 如果一个三角形的两边长分别为 3 和 4,那么第三边的长度可能是()A. 5B. 6C. 7D. 87. 在平面直角坐标系中,点 A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)8. 下列函数中,y 是 x 的一次函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = x^3D. y = 5x + 29. 一个圆的半径是 5cm,那么它的直径是()A. 10cmB. 15cmC. 20cmD. 25cm10. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 等腰梯形D. 三角形二、填空题(每题5分,共20分)11. 如果 a = -3,那么 |a| 的值是______。
12. 在直角坐标系中,点 P(-2,4)的坐标是______。
13. 一个等腰三角形的底边长是 6cm,腰长是 8cm,那么这个三角形的面积是______cm²。
14. 下列函数中,y 是 x 的二次函数的是______。
15. 一个长方体的长、宽、高分别是 4cm、3cm、2cm,那么它的体积是______cm³。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
2017年八年级数学下册周测练习题
2.17
一、选择题:
1.如果有意义,那么的取值范围是()
A. B. C. D.
2.下列各式中,一定能成立的是()
A. B.
C. D.
3.下列各等式成立的是()
A.4×2=8 B.5×4=20
C.4×3=7 D.5×4=20
4.下列各式中,是最简二次根式的是()
A. B. C. D.
5.如果(y>0)是二次根式,那么,化为最简二次根式是().
A. B. C. D.以上都不对
6.当-1<<1时,化简得()
A.2 B.-2 C.2 D.-2
7.化简|-2|+的结果是()
A.4-2 B.0 C.2 D.4
8.若式子有意义,则点P在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.若的整数部分为,小数部分为,则的值是()
A. B. C. 1 D. 3
10.若0<x<1,则等于()
二、填空题:
11.化去分母中的根号:
12.若,则_________;若,则________.
13.函数中,自变量的取值范围是__________
14.
15.将因式内移的结果为_______
16.已知,则
17.已知数a,b,c在数轴上的位置如图所示:
化简:的结果是:.
18.
三、计算题:
19.计算:(1)(2)(3)
20.在实数范围内分解下列因式:
(1)(2)(3)
四、解答题:
21.求使下列各式有意义的x的取值范围?
(1) (2) (2) (3)
22.若x、y为实数,且y=,求的值.
23.如图,实数a、b在数轴上的位置,化简﹣﹣.
24.若8﹣的整数部分是a,小数部分是b,求2ab﹣b2的值.
25.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.
26.
参考答案
1.B
2.A
3.D
4.C
5.C
6.A
7.A
8.C
9.C 10.D
11.略 12., 13.略 14.略 15.略 16.略 17.略 18.略19.解:(1)=. (2)=. (3)=.
20.解:(1)
(2)
(3)
21.略
22.解:∵∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=∴.
23.【解答】解:由数轴可得:a<0,b>0,a﹣b<0,
则﹣﹣=﹣a﹣b+(a﹣b)=﹣2b.
24.【解答】解:∵3<<4,∴8﹣的整数部分a=4,小数部分b=8﹣﹣4=4﹣,∴2ab﹣b2=2×4×(4﹣)﹣(4﹣)2=32﹣8﹣27+8=5.
25.解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,
xy=(1﹣)(1+)=﹣1,
∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.26.略。