应力状态的基本概念 PPT
合集下载
《应力与应变》课件
《应力与应变》PPT课件
目录
CONTENTS
• 应力概述 • 应变概述 • 应力与应变的关系 • 应力与应变的应用 • 实验与演示 • 总结与展望
01 应力概述
CHAPTER
定义与概念
定义
应力定义为物体内部单位面积上 所承受的力,用于描述物体受力 状态。
概念
应力是物体受力时内部各部分之 间的相互作用,是物体抵抗变形 和破坏的内在能力。
压缩实验
总结词
通过观察物体在压缩过程中的形变,了解应 力和应变的基本性质。
详细描述
压缩实验是应力与应变研究中另一种重要的 实验方法。在实验中,我们将物体的一端固 定,另一端施加逐渐增大的压力,使物体发 生压缩形变。通过测量压缩量,我们可以计 算出物体的应力和应变。通过观察和记录实 验数据,学生可以了解应力和应变的基本性
应力分类
按作用方式
可分为正应力和剪应力。正应力表示 垂直于受力面的力,剪应力表示与受 力面平行且垂直于切线方向的力。
按作用效果
可分为拉应力和压应力。拉应力表示 使物体拉伸的力,压应力表示使物体 压缩的力。
应力单位与表示方法
单位
应力的单位是帕斯卡(Pa),国际单位制中的基本单位。
表示方法
应力的表示方法通常采用符号“σ”或“σxx”(xx表示方向),例如正应力的 表示符号为σ或σxx,剪应力的表示符号为τ或τxy(xy表示剪切方向)。
进步。
谢谢
THANKS
压缩试验
测定材料的抗压强度、弹性模量等指 标,了解材料在受压状态下的性能表 现。
有限元分析
模型建立
根据实际结构或系统建立有限元 模型,将复杂结构离散化为有限
个单元。
加载与约束
目录
CONTENTS
• 应力概述 • 应变概述 • 应力与应变的关系 • 应力与应变的应用 • 实验与演示 • 总结与展望
01 应力概述
CHAPTER
定义与概念
定义
应力定义为物体内部单位面积上 所承受的力,用于描述物体受力 状态。
概念
应力是物体受力时内部各部分之 间的相互作用,是物体抵抗变形 和破坏的内在能力。
压缩实验
总结词
通过观察物体在压缩过程中的形变,了解应 力和应变的基本性质。
详细描述
压缩实验是应力与应变研究中另一种重要的 实验方法。在实验中,我们将物体的一端固 定,另一端施加逐渐增大的压力,使物体发 生压缩形变。通过测量压缩量,我们可以计 算出物体的应力和应变。通过观察和记录实 验数据,学生可以了解应力和应变的基本性
应力分类
按作用方式
可分为正应力和剪应力。正应力表示 垂直于受力面的力,剪应力表示与受 力面平行且垂直于切线方向的力。
按作用效果
可分为拉应力和压应力。拉应力表示 使物体拉伸的力,压应力表示使物体 压缩的力。
应力单位与表示方法
单位
应力的单位是帕斯卡(Pa),国际单位制中的基本单位。
表示方法
应力的表示方法通常采用符号“σ”或“σxx”(xx表示方向),例如正应力的 表示符号为σ或σxx,剪应力的表示符号为τ或τxy(xy表示剪切方向)。
进步。
谢谢
THANKS
压缩试验
测定材料的抗压强度、弹性模量等指 标,了解材料在受压状态下的性能表 现。
有限元分析
模型建立
根据实际结构或系统建立有限元 模型,将复杂结构离散化为有限
个单元。
加载与约束
高等材料力学课件第二章应力状态
§2.3 平衡微分方程
平衡
物体整体平衡,内部任 何部分也是平衡的。 对于弹性体,必须讨论 一点的平衡。
微分平行六面体单元
§2.5 平衡方程2
• x截面,应力分量 • σ x Շxy Շxz • x+dx截面,应力分量
x x xd,xx y x xy d,xx z x xd z ,x
数必须等于3个。
§2.6 主应力与应力主方向
转轴公式描述了应力随坐标转动的变化规律
结构强度分析需要简化和有效的参数
——最大正应力、最大切应力以及方位 主应力和主平面——应力状态分析重要参数 应力不变量——进一步探讨应力状态
§2.6 主应力2
主应力和主平面
切应力为零的微分面称为 主微分平面,简称主平面。 主平面的法线称为应力主 轴或者称为应力主方向。 主平面上的正应力称为主 应力。
zx zy z
代数主子式之和
应力张量元素 构成的行列式
•§2.6应主应力力6 状态特征方程
• ——确定弹性体内部任意一点主应力和应力 主轴方向。
• 主应力和应力主轴方向取决于载荷、形状和 边界条件等,与坐标轴的选取无关。
• 因此,特征方程的根是确定的,即I1、I2、I3 的值是不随坐标轴的改变而变化的。
§2.5 边界条件
弹性体的表面,应力分量必须与表面力满足面 力边界条件,维持弹性体表面的平衡。
边界面力已知——面力边界S
面力边界条件——
确定的是弹性体表面 外力与弹性体内部趋 近于边界的应力分量 的关系。
§2.5 边界条件2
面力边界条件
Fsj ijni
§2.5 边界条件3
面力边界条件描述弹性体表面的平衡, 平衡微分方程描述弹性体内部的平衡。 这种平衡只是静力学可能的平衡。 真正处于平衡状态的弹性体,还必须满足变 形连续条件。
高等材料力学课件第二章应力状态
应变与应力之间的关系
应变和应力之间存在着密切的关系。应变是材料变形程度的度量,而应力是 材料受力的表现。了解应变与应力之间的关系可以帮助我们更好地分析和控 制材料的行为。
应力的平面转动
应力的平面转动是指在不同的坐标系下,应力分量的变化。通过对应力的平 面转动进行研究,我们可以更好地理解材料在不同坐标系下的受力情况应力。掌握主应力和主应力方 向的概念可以帮助我们识别和分析材料的受力情况。
应力状态的分类
应力状态可以分为三种基本形式:平面应力、轴对称应力和空间应力。通过分类应力状态,我们可以更好地理解材 料在不同条件下的受力行为。
平面应力和轴对称应力
平面应力是指只存在于某一平面上的应力,而轴对称应力是指具有旋转对称 性的应力。通过研究平面应力和轴对称应力,我们可以更好地分析材料在不 同维度上的受力情况。
平面应力下的摩尔-库仑方程
摩尔-库仑方程是描述平面应力下材料力学行为的重要方程。通过掌握摩尔-库仑方程,我们可以更好地分析和预测 材料在平面应力下的受力行为。
高等材料力学课件第二章 应力状态
在本章中,我们将深入探讨应力的概念和定义,重点介绍主应力和主应力方 向的概念,以及应力状态的分类以及平面应力和轴对称应力的特点。
应力的定义和概念
了解应力是理解材料行为的关键。应力是材料内部的力,是单位面积上的力。通过深入研究应力的定义和概念,我 们可以更好地理解材料的力学行为。
第八章应力应变状态分析ppt课件
+tx
sin
2
+ + x + y 常量 2
2)t
-t
+
2
2.主应力
t
x x
+
2
-
2
y y
+
x
-
2
y
cos
2
-t
x
sin 2 +t x cos 2
sin
2
和t 都是的函数。利用上式便可确定正应力和
剪应力的极值
d d
-2
x
2
y
sin 2
+
t
x
cos 2
若
x - y
P
A B C D E
A
B
C
D
E
二.基本概念
主平面 剪应力为零的平面 主应力:主平面上的正应力 主方向: 主平面的法线方向
可以证明:通过受力构件内的任一点,一定存在三个 互相垂直的主平面。 三个主应力用σ1、 σ2 、 σ3 表示,按代数值大小 顺序排列,即 σ1 ≥ σ2 ≥ σ3
应力状态的分类:
由
t
x x
+ y
2
- y
2
+
x
-
2
y
cos
2
-t
x
sin 2 +t x cos 2
sin
2
用完全相似的方法可确定剪应力的极值
dt d
( x - y ) cos2 - 2t x sin 2
若
1时,能使
dt d
0
( x - y ) cos21 - 2t x sin 21 0
应力状态的概念
t xy 10MPa
600
600
n
s
40 (20) 2
40 (20) cos(1200 ) (10) sin(1200 ) 2
13.67MPa
t
40 (20) sin(1200 ) (10) cos(1200 ) 21MPa 2
20MPa
10MPa
300
40MPa
300
xn
解: s x 20MPa
P
A
P sx
sx
A
y
B
C z
P
sx B sx
Mx
tzx
txz
课堂练习
t yx
t C
xy
用单元体表达圆轴受扭时,轴表面任一点旳应力状态。
用单元体表达矩形截面梁横力弯曲时,梁顶、梁底及其他各
点旳应力状态。
七、主平面、主应力:
sy
y
主平面(Principal Plane): 剪应力为零旳截面。
sx
sz
z
1 2 3
体积应变与应力分量间旳关系:
1 2
E
(s 1
s2
s3)
例5 已知一受力构件自由表面上某一点处于表面内旳主应变分别
为:1=24010-6, 3=–16010-6,弹性模量E=210GPa,泊松比 为 =0.3, 试求该点处旳主应力及另一主应变。
1 E
s
z
s
x s
y
xy
t
xy
G
yz
t
yz
G
zx
t zx
G
上式称为广义胡克定律
主应力 --- 主应变关系
s1 s3
1
1 E
第九章应力状态(3,4,5)
s
3
e3
1 E
s
3
s 1
s 2
例 9-17
边长a =0.1 m的铜质立方体,置于刚性很大的 钢块中的凹坑内(图a),钢块与凹坑之间无间隙。 试求当铜块受均匀分布于顶面的竖向荷载F =300 kN时,铜块内的主应力,最大切应力,以及铜块 的体应变。已知铜的弹性模量E =100 GPa,泊松比
1 2
E
sx sy sz
思考: 各向同性材料制成的构件内一点处,
三个主应力为s1=30 MPa,s2=10 MPa,s3=-40
MPa。现从该点处以平行于主应力的截面取出边 长均为a的单元体,试问:(1) 变形后该单元体的 体积有无变化?(2) 变形后该单元体的三个边长之 比有无变化?
弹性,小变形条件下可以
应用叠加原理,故知x方 向的线应变与正应力之
间的关系为
e x
sx
E
sy
E
sz
E
1 E
sx
sy
sz
同理有
e y
1 E
s
y
s x
s z ,e z
1 E
sz
sx
s
最一般表现形式的空间应力状态中有9个应力
分量,但根据切应力互等定理有txy=tyx,tyz=tzy , txz=tzx,因而独立的应力分量为6个,即sx、sy、sz、 tyx、tzy、tzx。
当空间应力状态的三个主应
力s1、s2、s3已知时(图a),与
任何一个主平面垂直的那些斜截
面(即平行于该主平面上主应力
13-1应力状态理论-材料力学
• (3)式中两式相减与(4)式比较:
max min
max
22
my in
maxx2
y
2
2 xy
• (3)式中两式相加:
mmmmianiaxnx
maxx2mx yi2nyx2
x
2
2. 应力圆作法
y
yx
B
xy
A x
x y
2
a (x ,xy)
fc
o
Re
b (y ,yx)
•在- 坐标中,取对应于单元体A、B面的点a、b; • a、b两点连线交轴于c点; •以c为圆心ac为半径作圆。
x y
2
a (x ,xy)
fc
o
Re
b (y ,yx)
9、单向应力状态:三个主应力中只有一个主应力不等于零的 应力状态叫单向应力状态。例如:拉压杆 叫单向应力状态,纯弯曲状态。
■原始单元体的画法(各侧面应力已知的单元体)
P
P
1、截取无限小六面体作为单元体;
1)截取横截面; 2)在横截面上平行于边缘截取小矩形; 3)从横截面开始沿边缘截取小立方体;
2、分析单元体各个面的含义,分清哪个面是横截面;
杆
轴
I p梁
M y
Iz
x
x
QS
z
Izb
z
z
zx zy
xz yz
y
xy
yx
y
3、原始单元体:各侧面应力已知的单元体
M y
Iz
QSz
梁
Izb
第10章应力状态概述
sx 三个互相垂直的主平面.
主应力:
sz
主平面上的正应力。
z
x 主应力排列规定:按代数值大小,
s2
s 1s 2 s 3
s1 主应力单元体:
由主平面构成的单元体。
s3
六.应力状态的分类: 三向应力状态: 三个主应力都不为零的应力状态。 二向应力状态:一个主应力为零的应力状态。
单向应力状态:一个主应力不为零的应力状态。
s1 17°
x
(e)
解析法:
s max s min
1 2
(s
x
s
y)
1 2
(s x
s y )2
4t
2 x
46.1MPa
26.1MPa
0
1 tg 1 2t x 2 sx sy
16.85o
s 1 46.1MPa, s 2 29MPa, s 3 26.1MPa
t max
s1
s3
2
36.1MPa
t
(c)
s 2 20MPa s 3 26MPa
t
(d)
B
D2
D2
max t
OC
A
s
OC
A
s
D1
s3
s1
D1
s3
s2 s1
最后依据三个主应力值可绘出三个应力圆,如图d。
最大剪应力对应于B点的纵坐标,即
tmax BC 36MPa
作用面与s2平行而与s1成45°角,如图e所示。
s3
tmax s2
s2
s1
t
s3
s2
s3
s1
s3
s2
s2
s1
s3
《应力状态理论》课件
VS
地质工程
在地质工程领域,应力状态理论对于研究 地壳应力分布、地震成因及岩土工程稳定 性等方面具有重要意义。通过将应力状态 理论与地质工程实践相结合,可以更好地 防范地质灾害和提高工程安全性。
感谢您的观看
THANKS
应力状态的重要性
工程应用
应力状态理论在工程领域中具有广泛应用,如结构分析、材料力学、岩石力学等,是解决实际工程问题的重要 基础。
学科发展
应力状态理论的发展推动了相关学科的进步,如断裂力学、损伤力学等,为解决复杂工程问题提供了更全面的 理论支持。
应力状态的历史与发展
早期研究
早期的应力状态研究主要集中在静力学领域,如弹性力学和塑性力学等,主要研究物体在受力作用下的平衡问题 。
多物理场耦合研究
在实际应用中,应力状态往往与温度、磁场等其他物理场存在耦合效应。未来研究应关注多物理场耦 合对应力状态的影响,建立更为完善的理论体系。
应力状态理论在其他领域的应用拓展
生物医学工程
在生物医学工程领域,应力状态理论在 骨骼、牙齿、血管等生物组织的生长、 修复和疾病防治等方面具有重要应用价 值。通过研究生物组织的应力状态,可 以为生物医学工程提供新的设计思路和 治疗方案。
应力的基本性质
应力的基本性质包括对称性、反对称性和转轴性。这 些性质反映了应力分布的内在规律,对于理解物体受 力状态和变形机制具有重要意义。
应力的基本性质包括对称性、反对称性和转轴性。对 称性是指对于任何点,其对称点的应力状态是相同的 ;反对称性则是指对于任何点,其对称点的应力状态 是相反的;转轴性则是指当坐标系旋转时,应力分量 的值会发生变化,但各向同性和各向异性状态不变。 这些性质反映了应力分布的内在规律,对于理解物体 受力状态和变形机制具有重要意义。
第五章 应力状态分析 强度理论 组合变形.ppt
2. 求应力:
min
N A
M WZ
130103 0.18h
6 106 0.18h2
6
0
h 276.9mm,取h 280mm
min
N M A WZ
130103 6106 180 280 180 28026Βιβλιοθήκη 0.029MPa28
2 xy
min
x
y
2
x y
2
2
2 xy
主应力按代数值排序:σ1 σ2 σ3
17
§5.2 平面应力状态分析——解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MPa xy 30MPa, y 40MPa, 30。
2
2
xy
cos 2
15
§5.2 平面应力状态分析——解析法
2. 主平面和主应力
确定正应力极值
( x
y )
2
( x
y ) cos 2
2
xy
sin
2
d d
2
(
x
y ) sin
2
2
xy cos 2
0
(σx
σy
) s
x 2 xy
y
1
1
2
max min
x
2
y
2
2 xy
23
平面应力状态重要公式
max min
min
N A
M WZ
130103 0.18h
6 106 0.18h2
6
0
h 276.9mm,取h 280mm
min
N M A WZ
130103 6106 180 280 180 28026Βιβλιοθήκη 0.029MPa28
2 xy
min
x
y
2
x y
2
2
2 xy
主应力按代数值排序:σ1 σ2 σ3
17
§5.2 平面应力状态分析——解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MPa xy 30MPa, y 40MPa, 30。
2
2
xy
cos 2
15
§5.2 平面应力状态分析——解析法
2. 主平面和主应力
确定正应力极值
( x
y )
2
( x
y ) cos 2
2
xy
sin
2
d d
2
(
x
y ) sin
2
2
xy cos 2
0
(σx
σy
) s
x 2 xy
y
1
1
2
max min
x
2
y
2
2 xy
23
平面应力状态重要公式
max min
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这正是低碳钢试样拉伸至屈服时表面出现滑移线的方向。
因此,可以认为屈服是由最大切应力引起的。
2、分析圆轴扭转时最大切应力的作用面,说明铸铁 圆试样扭转破坏的主要原因。
y'
圆轴扭转时,其上任意一点的
yx
应力状态为纯剪应力状态。
x'
平面应力状态任意斜截面上的
正应力和切应力公式
xy
x
y
2
x
y
2
cos2
σZ
σx σy
火车车轮与钢轨的接触点处于几向应力状态?
§7-3 平面应力状态分析-——解析法 本节主要任务
1、方向角与应力分量的正负号约定;
2、微元的局部平衡;
3、平面应力状态中任意方向面上的正应力 与切应力;
4、主应力、主平面,最大切应力;
1、方向角与应力分量的正负号约定
正应力符号约定
x
x
x
拉为正
二、为什么要研究应力状态?
请看下列实验现象:
低碳钢和铸铁的拉伸实验 低碳钢和铸铁的扭转实验
两种材料的拉伸试验
铸铁拉伸
低碳钢拉伸
塑性材料拉伸时为什么会出现滑移线?
两种材料的扭转试验
低碳钢扭转
铸铁扭转
为什么脆性材料扭转时沿45º螺旋面断开?
为什么要研究应力状态 试件的破坏不只在横截面,
有时也沿斜截面发生破坏;
L
p
轴线方向的应力
x
x
pD
t
p
D
x
pπD2 4
Fx 0
xpDt
p
pD 2
4
x
pD 4t
横向应力 p×D×l
p
y
y
2t l y
Fy 0
y 2t l p D l 0
y
pD 2t
x y
承受内压圆柱型薄壁容 器任意点的应力状态:
y x
二向不等值拉伸应力状态
3、三向应力状态实例 滚珠轴承中,滚珠与外圈接触点的应力状态
xysin2
x
y
2
sin2
xycos2
用 p 斜截面截取,此截面上的应力为
2
x
x
y
2
x
y
2
cos 2
xy sin 2
x
y
2
sin 2
xy
cos 2
yx
y
xy
x y
即单元体两个相互垂直面上 的正应力之和是一个常数。
x
yx
y
xy
即又一次证明了切应力的互等定理。
约定:
1 2 3
应力状态
空间(三向)应力状态: 三个主应力均不为零; 平面(二向)应力状态: 两个主应力不为零; 单向应力状态:一个主应力不为零;
3 2
1
1 提取拉压变形杆件一点的应力状态
x
F A
单向应力状态
2 提取拉压变形杆件一点的应力状态-斜截面上
cos2
2
sin 2
3 提取扭转变形杆件一点的应力状态
y y
一般平面(二向)应力状态
σy
τyx
τ xy
x
σx
yx xy
y
一般单向应力状态或纯剪切应力状态
y
x
x
y
yx
xy
x
单向应力状态
纯剪应力状态
一点的应力状态
三
平
向
面
应
应
力
力
状 特例 状
态
态
单向应力状态
特例
纯剪应力状态
常用术语 主单元体 主平面
x1
x1
主应力 单元体的某个面上切应力等于零时的正应力;
T
IP
T
Wt
纯剪切应力状态
4 提取横力弯曲变形杆件下边缘一点的应力状态
M
Wz
单向应力状态
5 提取横力弯曲变形杆件任意一点的应力状态
My
Iz
Fs
S
* z
bI z
平面应力状态
6 提取工字形截面梁上一点的应力状态
FP S平面
l/2
l/2
5
FQ
FP 2
S平面
5
4
4
3
3
Mz
FPl 4
2
2
1
1
x1
1
2
x2
3
3 3
2 2
2 2
4
x2
x1
5
8 同一点的应力状态可以有各种各样的描述方式. S平面
F
F
1
F
A
1
S平面
n
F
1
F
1
90
§7-2 二向和三向应力状态实例
一、承受内压圆柱型薄壁容器任意点的应力状态
圆柱型薄壁容器任意点的应力状态 (壁厚为t,内直径为D,t<<D,内压为p)
1、分析轴向拉伸杆件的最大剪应力的作用面,说 明低碳钢拉伸时发生屈服的主要原因。
杆件承受轴向拉伸时,
y'
其上任意一点均为单向应力
状态。
x' 平面应力状态任意斜截面上 的正应力和切应力公式
x
x
x
y
2
x
y
2
cos2
xysin2
x
y
2
sin2
xycos2
y'
x
y
2
x
y
2
cos2
xysin2
x'
α
平衡对象
xy
——用α 斜截面截取的微元局部 x
参加平衡的量
——力 应力乘以其作用的面积;
yx
平衡方程
x´
y
Fx' 0
Fy' 0
平衡方程
Fx 0
dA
x
(dAcos) cos
xy(dAcos) sin
yx (dAsin) cos y (dAsin) sin 0
x
x´
xy dA
x
y
2
sin2
xycos2
x
x
y=0,yx=0。
xcos2
x
2
sin2
y'
xcos2
x
2
sin2
x'
当α=45º时,斜截面上既有正
α
应力又有剪应力,其值分别为
x
x
45
x
2
45
x
2
在所有的方向面中,45º斜截面上的正应力不是最大值, 而切应力却是最大值。
表明:
轴向拉伸时最大切应力发生在与轴线夹45º角的斜面上;
yx
y
平衡方程
Fy 0
dA x (dAcos) sin
xy (dAcos) cos yx (dAsin) sin
y (dAsin) cos 0
y
x
xy dA
yx
y
3 平面应力状态中任意方向面上的正应力与切应力
平面应力状态中任意方向面上正应力与切应力的表达式:
x
y
2
x
y
2
cos2
应力状态的基本概念
§7-1 应力状态的基本概念 一、什么是力状态? 二、为什么要研究应力状态? 三、如何描述一点的应力状态?
一、什么是应力状态?
应力的点的概念: ——同一截面上不同点的应力 各不相同;
应力的点的概念与面的概念
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
应力状态:
——过同一点不同方向面上应力的集合,称 为这一点的应力状态;
x
压为负
切应力符号约定
使微元或其局部顺时针方向转 动为正;反之为负。
方向角的符号约定
由 x正向逆时针转到截面外法 线x‘正向为正;
反之为负。
x' y'
xy
yx y' y
x'
x
2 微元的局部平衡
y
yx
x
xy
x
y
截取微元体
截取微元体
y
x
yx xy
x
y
xy
x
x´
yx y
微元体平衡
不仅要研究横截面上的应力, 而且也要研究斜截面上的应力。
三、如何描述一点的应力状态
微元
微元及其各面上的应力来描 述一点的应力状态。
dz
dy
dx
约定:
微元体的体积为无穷小; 相对面上的应力等值、反向、共线;
三个相互垂直面上的应力;
一般三向(空间)应力状态
z
x x
z
zx zy
xz yz
xy
yx