微生物 基因工程菌
基因工程菌培养及其不稳定性
5. 搅拌器转速和通气应适当
6. 空气过滤系统要采用活性碳和玻璃纤维棉材料
7. 培养液要经化学处理或热处理后才可排放
8. 发酵罐的排气口须有蒸汽灭菌或微孔滤器除菌后才将废气放出。
9. 轴封可采用磁力搅拌或双端面密封
42
中,大量乙酸在透析器中透过半透膜,降低培养基中的乙酸浓度,并
可通过在透析液中补充养分而维持较合适的基质浓度,从而获得高密
度菌体。
膜的种类、孔径、面积,发酵液和透析液的比例,透析液的组成
循环流速,开始透析的时间、透析培养的持续时间段都对产物的产率
有影响。
27
一、基因工程菌的培养方式
5. 固定化培养
基因工程菌培养的一大难题是如何维持质粒的稳定性。 有人将固定化技术应用到这一领域,发现基因工程菌经固定化 后,质粒的稳定性大大提高,便于进行连续培养,特别对分泌型菌 更为有利。 由于这一优点,基因工程菌固定化培养研究已得到迅速开展。
提高发酵罐的供氧能力。
有些含质粒的菌对发酵环境的改变比不含质粒的菌反应慢,因
而采用间隙改变培养条件的方法以改变这两种菌的比生长速率,从
而改善质粒的稳定性。通过间隙供氧的方法和通过改变稀释速率的
方法都可提高质粒的稳定性。
17
提高基因工程菌稳定性的方法
5. 控制培养条件
pH pH 影响重组菌的稳定性。
5. 控制培养条件
限制性基质
一般培养基中各成分并不是完全平衡的,经过一段时间的培养, 微生物的生长通常会受到一种或几种物质的限制。
限制性基质的种类对重组菌有不同的影响
16
提高基因工程菌稳定性的方法
5. 控制培养条件
溶解氧
在基因重组菌的高密度培养时,为了ห้องสมุดไป่ตู้持所需的溶氧水平,除
基因工程菌EGs2产β-葡聚糖酶条件优化及产酶特性
农业生物技术学报 Journal of Agricultural Biotechnology 2007,15(4):708~712*基金项目: 国家自然科学基金 (No.20276064) 资助。
**通讯作者。
Author for correspondence.教授, 博导, 主要从事食品微生物相关的研究。
Email:<gqhe@>. 收稿日期:20061225 接受日期: 20070316 ·研究论文· 基因工程菌 产 茁 葡聚糖酶条件优化及产酶特性 *李青青 1 , 陈启和 1 , 蒋孝燕 1, 张秀艳 2 , 李 婷 1 , 何国庆 1 ** (1.浙江大学食品科学与营养系, 杭州 310029; 2.华中农业大学食品安全与微生物学系, 武汉 430070)摘要: 用乳清粉作为主要培养基组成, 采用正交试验对大肠杆菌 ( ) 重组菌 的发酵条件进行了优化,并 对粗酶液的酶学性质进行了研究。
重组菌 的最佳发酵条件为: 摇床转速 170r/min , 接种量 1%, 发酵培养基初始 pH 6.0,种龄12h 。
重组菌茁 葡聚糖酶的表达与菌体生长呈正相关, 发酵 14h 后, 菌体生物量最高可达1.71g/L , 茁 葡聚糖酶活力最高可达 321.56U/mL 。
所得粗酶液的最适反应温度 60 ℃,pH 6.0, 在 70 ℃以下保温20min 后, 残余酶活力均在 80%以上。
在pH 5.0~9.0放置48h 后仍能保持均90%以上的残余酶活力。
关键词: 茁 葡聚糖酶;重组菌 EGs2; 发酵条件; 酶学性质 中图分类号: S182 文献标识码:A 文章编号:10061304(2007)04070805Optimization of Recombinant Fermentation ConditionAffecting 茁glucanase Production and Its Characteristics of Enzyme LI Qingqing 1 ,CHEN Qihe 1 ,JIANG Xiaoyan 1 ,ZHANG Xiuyan 2 ,LI Ting 1 ,HE Guoqing 1**The fermentation conditions of mutant obtained from directed evolution for thermostable 茁glucanase for 茁glucanase production were investigated by orthogonal experiment.Fermentation was conducted in 250mL flask,each containing 30mL of medium contained whey 10g/L,yeast extract 5g/L,NaCl 10g/L,the temperature was 37 ℃.The optima culture conditions were as following:initial pH 6.0,shaking speed 170r/min,inoculation volume 1%and inoculation time 12h. 茁 glucanase production by mutantwas associated with cell growth and biomass. 茁glucanase activity was increased significantly when cells entered growth phase.The bacterium began the stable phase after cultured for 14h with the highest biomass 1.71g/L and 茁glucanase activity 321.56U/mL.When 茁 glucanase was used as a substrate,the optimum temperature and pH were 60 ℃ and 6.0,respectively. After 20min incubation at 40,50,55,60,65and 70 ℃ respectively,the residual activity remained at least 80%.After 48h conserva tion at pH 5.0~9.0,the residual activity remained at least 90%.The enzyme was stable below 70 ℃ and at pH 5.0~9.0.茁glucanase;mutant ;fermentation condition;enzyme characteristic茁1,31,4 葡聚糖酶是重要的工业用酶。
工程菌的知识
工程菌的知识基因工程大肠杆菌发酵的研究摘要:基因工程菌的发酵工艺研究在生物高技术产业化的发展中具有重要的意义。
研究结果表明,每10L发酵液可得1~2kg湿菌体,发酵时间从一般的24~30h缩短到6~8h,5L、15L、150L发酵罐都可得重复性的结果。
这项发酵工艺研究不仅适用于E.coli各种不同类型的表达启动子的工程菌,也适用于野生菌株疫苗等的生产,将对我国基因工程产业化起重要作用。
关键词基因工程菌,高密度发酵,人干扰素α22b ,鲑鱼降钙素,鱼生长激素, K88K99 基因工程疫苗作者:巫爱珍. 孙玉昆.刊名:生物工程学报讨论:含PL 启动子的E. coli 工程菌的表达及温度敏感株活菌疫苗的生产。
要求细菌在较低的温度(30 ℃) 发酵增殖,在一定时间内提高菌体密度,然后迅速提高温度诱导目的产物的表达。
这类菌表达产物的表达量取决于二个因素:一是在30 ℃发酵过程中尽可能提高菌体密度,二是快速升温诱导,要同时解决这二个问题是较困难的,目前不少基因工程研究室或生产厂对于这类菌的发酵均遇到上述同类的问题,即菌体密度不高和表达量低,他们为了得到足量菌体只好采用扩大发酵体积,显然不是良策,因为含PL 启动子的工程菌在发酵过程中发酵体积越大(500~1000L) ,其表达效率愈低,并大大增加了抽提分离表达产物的工作量、设备投资、运转费及污水处理量。
而本文报道的高密度发酵技术能同时解决以上的问题,发酵时间短(约8h) ,菌体密度及表达效率高,生产车间小型化,能节省大量后处理的设备投资、人力、能源、废物废水处理量少,符合发展现代化生产的要求。
对于不需温度诱导表达,在30 ℃发酵的工程菌或野生菌应用我们的工艺技术发酵,当发酵持续6 小时,菌体仍在直线增殖的情况下,如果延长发酵时间,菌体将继续增加。
E. coli 的不同工程菌或野生菌具有不同的特性,在发酵过程中我们随之对发酵条件作了相应的改变,均取得高密度的发酵结果。
医学微生物学-重点总结
医学微生物学总结一、绪论微生物:是一类体积微小、结构简单、肉眼直接看不见,必须用光学显微镜或者电子显微镜放大才能观察到的微小生物的总称。
分类:(按照微生物的结构特点、遗传特性及分化组成)原核细胞型微生物:细菌、螺旋体、支原体、衣原体、立克次体、放线菌真核细胞型微生物:真菌、藻类、原生动物非细胞型微生物:病毒(结构最简单的微生物)最常用的基因工程菌:酵母菌、大肠埃希菌德国医生郭霍创立了:细菌染色方法、固体培养试验、动物感染实验第一个被发现的病毒是:烟草花叶病毒现代微生物学常用的诊断方法:免疫荧光技术、酶联免疫吸附试验、酶联聚合反应(PCR)、核酸杂交技术。
朊粒:比病毒更简单的没有基因结构的致病因子。
二、细菌(一)细菌的基本结构细菌的基本结构:细胞壁(由肽聚糖组成呈L型细菌)、细胞膜(中介体)、细胞质(核质、质粒、异染颗粒)细菌的特殊结构:荚膜(功能:抗吞噬,与致病性有关;抗干燥,渗透屏障;黏附作用)、鞭毛(有助于细菌运动,有的与其致病性有关)、菌毛(黏附作用,与治病性有关;还可以经接合转移遗传物质)、芽孢(有强抵抗力,是灭菌指标;用于鉴别特殊细菌;可是某些外源性感染的传染源)细菌的生长繁殖方式:二分裂方式进行无性繁殖。
生长曲线:迟缓期、对数期、稳定期、衰亡期。
(意义:用于细菌鉴定、研究工作和生产实践)中介体:是细菌细胞膜的特有结构,是部分细胞膜内陷、折叠、卷曲而成的囊状物,多见于革兰氏阳性菌。
位于菌体的侧面或中间部,可有一个或者多个。
细菌的形态和大小:(测量单位:um)细菌的形态特征代表菌球菌双球菌在一个平面上分裂,分裂后有两个菌体成对排列脑膜炎奈瑟菌链球菌球菌在一个平面上分裂,分裂后多个菌体无规则地粘连成链状乙型溶血性链球菌葡萄球菌在多个不规则的平面上分裂,分裂后无规则的粘连在一起金黄色葡萄球菌杆菌直杆菌大、中、小炭疽芽孢杆菌、大肠埃希菌、布鲁菌分枝杆菌呈分枝状生长结核杆菌棒状杆菌菌体末端膨大呈棒状百喉杆菌梭杆菌菌体两端尖细呈梭状坏死梭杆菌螺形菌弧菌菌体只有一个弯曲,呈逗点状或弧状霍乱弧菌螺菌菌体有数个弯曲鼠咬热螺菌螺杆菌菌体细长呈弯曲型s型或海鸥型幽门螺旋杆菌(二)、细菌的鉴别及基本培养基常用于肠道杆菌的鉴别的生化反应合成为IMViC:I指吲哚实验、M指甲基红实验、Vi指VP实验、C指据元酸钠试验。
生化工程-基因工程菌培养
基因工程菌在生产过程中可能产生变异或逃逸,对环境和人体健康造成潜在威胁。因此,需要加强安全 监管和风险评估。
生物农药
生物农药
基因工程菌可用于生产生物农药,如杀虫剂、杀菌剂等。通过基因工程技术改良微生物, 使其产生具有杀虫、杀菌作用的代谢产物,实现对病虫害的有效防治。
生物农药的优势
生物农药具有环保、安全、可持续等优点,能够减少化学农药的使用,降低对环境的污 染和对人体的危害。
生物农药的挑战
生物农药的作用机制和效果可能受到环境因素的影响,如温度、湿度等,因此在实际应 用中需要加强效果评估和监测。
生物肥料
生物肥料
基因工程菌可用于生产生物肥料,通过改良微生物的代谢 途径,使其产生具有营养价值的代谢产物,如氮、磷、钾 等矿物质元素,为植物提供养分。
生物肥料的优势
生物肥料具有环保、安全、高效等优点,能够提高土壤肥 力和植物生长效率,减少化肥的使用和环境污染。
3
加强下游处理技术的研究
针对基因工程菌产生的难分离纯化的产物,未来 将加强下游处理技术的研究,提高产物的纯度和 收率。
感谢您的观看
THANKS
基因工程菌能够高效降解有毒有 害物质或重金属离子,降低对环 境的污染和对生态系统的破坏。
生物环保的挑战
基因工程菌在降解过程中可能产 生变异或逃逸,对环境和人体健 康造成潜在威胁。因此,需要加 强安全监管和风险评估。
04
基因工程菌培养的挑战与前 景
基因工程菌培养的挑战
பைடு நூலகம்
基因工程菌种稳定性问题
培养基优化需求
基因表达技术
基因表达技术是指将重组后的目的基因导入宿主细胞中,并在宿主细胞中进行表达,产生相应的蛋白 质或代谢产物。
基因工程菌发酵
基因工程菌发酵、表达与纯化
一、原理
基因工程菌是利用基因重组技术构建的生物工程菌,带外源基因的重组载体,通过生物工程菌的发酵获得大量的外源基因产物,并尽可能减少宿主细胞本身蛋白的污染,所以需要对影响外源基因表达的因素进行分析,探索出一套适于外源基因高效表达的发酵、表达和纯化工艺。
二、仪器
发酵罐、SDS-PAGE电泳仪
三、试剂
LB培养基(包括Yeast Extract、Polypeptone等)、琼脂、甘油
四、实验步骤
1. 在LB 培养基中加入细菌培养用琼脂(15 g/L ) 铺平皿, 用接种环划线接种甘油管基因工程菌菌种, 30℃培养过夜;
2. 挑取单菌落接种于含5 m l LB (含50ug/mL Amp ) 的试管中, 30℃、120 rpm摇菌培养到OD600 为0.2-0.8;
3. 取1 mL于另一试管中42℃培养3 小时, 离心收集菌体;
4. 以10%的接种量上发酵罐发酵培养;
5. 接种LB培养液诱导表达,采用SDS-PAGE电泳分析其表达量;
6. 据基因工程菌表达产物的不同采用不同的分离纯化方法,如盐析、层析、萃取等。
五、注意事项
在基因工程菌的发酵过程中,培养基的种类、pH值、培养的温度及接种量和发酵时间都会对其发酵效果及表达产物的分离纯化产生不同的影响,所以应多次试验进行全方面的优化。
【微生物工程】第八章_基因工程菌的培养
基因工程菌培养方式
连续培养 连续培养是将种子接入发酵反应器中,搅拌培养至菌体浓度达到一定程
度后,开动进料和出料蠕动泵,以一定稀释率进行不间断培养。 连续培养可以为微生物提供恒定的生活环境,控制其比生长速率,为研
究基因工程菌的发酵动力学、生理生化特性、环境因素对基因表达的影响等 创造了良好的条件。
但是由于基因工程菌的不稳定性,连续培养比较困难。为了解决这一问 题,人们将工程菌的生长阶段和基因表达阶段分开,进行两阶段连续培养。 在这样的系统中关键的控制参数是诱导水平、稀释率和细胞比生长速率。优 化这三个参数以保证在第一阶段培养时质粒稳定,菌体进入第二阶段后可获 得最高表达水平或最大产率。
基因工程菌的稳定性
基因工程菌的遗传不稳定性的的产生机制
受体细胞中的限制修饰系统对外源重组 DNA 分子的降解 外源基因的高效表达严重干扰受体细胞正常的生长代谢
能量、物质的匮乏和外源基因表达产物的毒性诱导受体细胞产生 应激反应:关闭合成途径,启动降解程序 重组质粒在受体细胞分裂时的不均匀分配 这是元件促进重组分子的缺失重排
提高质粒稳定性的方法
提高基因工程菌稳定性的策略
施加选择压力 根据载体上的抗药性标记,向培养系统中添加相应的抗生素 药物和食品生产时禁止使用抗生素 加入大量的抗生素会使生产成本增加 添加一些容易被水解失活的抗生素,只能维持一定时间 添加抗生素选择压力对质粒结构不稳定无能为力 载体上的营养缺陷型标记,向培养系统中添加相应的营养组份 培养基复杂,成本较高
r1质粒上的parb基因引入表达型载体中其表达产物可以选择性地杀死由于分配不均匀所产生的无质粒细胞基因工程菌的稳定性基因工程菌的稳定性提高基因工程菌稳定性的策略施加选择压力根据载体上的抗药性标记向培养系统中添加相应的抗生素药物和食品生产时禁止使用抗生素加入大量的抗生素会使生产成本增加添加一些容易被水解失活的抗生素只能维持一定时间添加抗生素选择压力对质粒结构不稳定无能为力载体上的营养缺陷型标记向培养系统中添加相应的营养组份培养基复杂成本较高提高质粒稳定性的方法提高质粒稳定性的方法提高基因工程菌稳定性的策略分阶段控制培养因外源基因表达造成质粒不稳定时可以考虑将发酵过程分阶段控制在生长阶段使外源基因处于阻遏状态避免因表达造成不稳定性问题的发生
基因工程菌的大规模培养及高密度发酵技术
生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术创建人:时间:2013-04-17 【点击数:482】实验一:基因工程菌的大规模培养及高密度发酵技术1.实验目的(1)掌握工程菌大规模培养及高密度发酵技术的原理。
(2)学习工程菌高密度发酵的技术方法。
2.实验原理重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。
重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。
发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。
工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。
目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。
另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。
当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。
补料的流加方式直接影响着发酵的效果。
分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。
但是在补料流加过程中既不能加入得过快,也不能加入得过慢。
过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。
重组工程菌的培养
二、基因工程菌的培养工艺
5. 诱导时机的影响
一般在对数生长期或对数生长后期进行升温诱导表达。
二、基因工程菌的培养工艺
6. 诱导表达程序的影响
二、基因工程菌的培养工艺
7. pH的影响
如采用两段培养工艺,培养前期着重于优化工程菌的最佳 生长条件,培养后期着重于优化外源蛋白的表达条件。
细胞生长期的最佳pH为6.8~7.4, 外源蛋白表达的最佳pH为6.0~6.5。
一、基因工程菌的培养方式
5. 固定化培养
基因工程菌培养的一大难题是如何维持质粒的稳定性。 有人将固定化技术应用到这一领域,发现基因工程菌经固定化 后,质粒的稳定性大大提高,便于进行连续培养,特别对分泌型菌 更为有利。 由于这一优点,基因工程菌固定化培养研究已得到迅速开展。
二、基因工程菌的培养工艺
第八节 基因工程菌的培养
本节讲解的三个重点内容 1. 基因工程菌的培养方式 2. 基因工程菌的培养工艺 3. 基因工程菌的培养设备
一、基因工程菌的培养方式
1. 分批培养
分批培养操作简单,但因不能控制生长,获得的菌体 密度也有限。
一、基因工程菌的培养方式
2. 补料分批培养
补料分批培养是将种子接入发酵反应器中进行培养,经过一段时 间,间歇或连续地补加新鲜培养基,使菌体进一步生长的培养方法。
二、基因工程菌的培养工艺
3. 温度的影响
温度对基因表达的调控作用可发生在复制、转录、翻译或小分子的合成 水平上。
二、基因工程菌的培养工艺
4. 溶解氧的影响
溶解氧是发酵培养中影响菌体代谢的一个重要参数,对菌体的生长和产 物的生成影响很大。
维持较高水平的DO2 值(>40%)有利于重组质粒细胞的生长及外源蛋 白产物的形成。
基因工程菌名词解释
基因工程菌名词解释
基因工程菌:
基因工程菌是指通过改变物种的基因组配置,来改变它们的性状和行为的细菌。
基因工程菌通常可以被用来生产蛋白质,诊断和治疗疾病,催化化学反应,检测物质以及进行环境修复等。
合成生物学:
合成生物学是一门研究将生物技术应用于生物设计,建构和控制的跨学科领域。
它将传统的生物学与过程控制,信息和通信技术,计算机科学和系统工程等综合科学结合起来,共同实现和设计新的生物系统。
它开发和优化复合生物系统,以达到创造性,可控制而有效的测量和监测应用。
转基因:
转基因是基因工程技术中的一种,是指将一个物种的基因片段引入到另一个物种体内,以赋予其特定性状的过程。
转基因技术可以让人们获得更多的营养,同时也有可能会带来环境问题(例如,会影响另一个物种的生态平衡)。
这是因为转基因会改变物种的基因组配置,从而导致这些基因的表现。
- 1 -。
微生物基因工程菌
具有高效性、可操作性和可预测 性,能够实现快速、准确地对微 生物进行定向改造。
微生物基因工程菌的应用领域
01
02
03
生物医药领域
生产重组蛋白药物、抗体 药物、疫苗等,提高药物 质量和产量。
工业领域
生产高值化学品、生物燃 料、生物塑料等,提高生 产效率和降低成本。
环境治理领域
修复污染环境、降解有机 污染物等,改善环境质量 。
微生物基因工程菌
汇报人: 202X-12-21
目 录
• 微生物基因工程菌概述 • 微生物基因工程菌的构建与优化 • 微生物基因工程菌的发酵工艺研究 • 微生物基因工程菌的应用研究 • 微生物基因工程菌的未来发展趋势与挑战
01
微生物基因工程菌概述
定义与特点
定义
微生物基因工程菌是指通过基因 工程技术对微生物进行改造和优 化,以获得具有特定性状的工程 菌。
通过选择合适的培养基、控制 培养条件、优化基因型等方法 提高基因工程菌的稳定性和可
重复性。
03
微生物基因工程菌的发 酵工艺研究
发酵工艺流程及影响因素
菌种选育
选择适合表达目标产物 的菌种,进行遗传改良
和筛选。
种子制备
通过培养基优化、接种 量、接种时间等因素,
制备活力强的种子。
发酵培养基
选择适合菌种生长和目 标产物表达的培养基, 包括碳源、氮源、无机
在农业领域的应用
1 2
生物肥料研发
通过基因工程技术改造微生物,生产具有固氮、 解磷、解钾等功能的生物肥料,提高土壤肥力和 农作物产量。
植物生长调节剂研发
利用微生物基因工程菌生产植物生长调节剂,促 进植物生长和发育,提高农作物产量和品质。
基因工程大肠杆菌发酵的研究
讨论
• 含PL启动子的 启动子的E.coli工程菌的表达及温度敏感株 启动子的 工程菌的表达及温度敏感株 活菌疫苗的生产要求细菌在较低的温度( ℃ 活菌疫苗的生产要求细菌在较低的温度(30℃) 发酵增殖,在一定时间内提高菌体密度, 发酵增殖,在一定时间内提高菌体密度,然后迅 速提高温度诱导目的产物的表达。 速提高温度诱导目的产物的表达。 • 这类菌表达产物的表达量取决于两个因素:一是 这类菌表达产物的表达量取决于两个因素: 在30℃发酵过程中尽可能提高菌体密度;二是快 ℃发酵过程中尽可能提高菌体密度; 速升温诱导。 速升温诱导。
• 科学家们把人的胰岛素基 因送到大肠杆菌的细胞里, 因送到大肠杆菌的细胞里, 让胰岛素基因和大肠杆菌 的遗传物质相结合。 的遗传物质相结合。人的 胰岛素基因在大肠杆菌的 细胞里指挥着大肠杆菌生 产出了人的胰岛素。 产出了人的胰岛素。并随 着它的繁殖, 着它的繁殖,胰岛素基因 也一代代的传了下去, 也一代代的传了下去,后 代的大肠杆菌也能生产胰 岛素了。 岛素了。这种带上了人工 给予的新的遗传性状的细 被称为基因工程菌。 菌,被称为基因工程菌。
• 二、生物工程下游技术的必要性 近年来,不少基因工程药物、疫苗、 近年来,不少基因工程药物、疫苗、 酶制剂及某些检测试剂,如人( 酶制剂及某些检测试剂,如人(牛、猪) 生长激素、 ( , )干扰素、链激酶、 生长激素、α-(β-,γ-)干扰素、链激酶、 凝乳酶、葡激酶、白细胞介素、人胰岛素、 凝乳酶、葡激酶、白细胞介素、人胰岛素、 肿瘤坏死因子、表皮生长因子、心房肽、 肿瘤坏死因子、表皮生长因子、心房肽、 降钙素、仔猪腹泻疫苗、 型肝炎检测试 降钙素、仔猪腹泻疫苗、C-型肝炎检测试 剂等都是应用基因工程大肠苗菌进行生产 的。
基因工程产业化除上游构建工程菌之外, 基因工程产业化除上游构建工程菌之外,下 游必须建立生产规模的发酵工艺、离心、 游必须建立生产规模的发酵工艺、离心、细胞破 目的产物的分离、纯化、 碎、目的产物的分离、纯化、恢复表达产物的天 然结构使之具有生物活性, 然结构使之具有生物活性,有的表达产物还需进 一步加工修饰, 一步加工修饰,如人胰岛素原的化学切断与酶切 降钙素C-末端的酰胺化修饰 末端的酰胺化修饰, 断,降钙素 末端的酰胺化修饰,以及质量控制 等,没有这些下游技术的建立就没有基因工程产 品。
一种基因工程菌及其制备方法和应用与流程
一种基因工程菌及其制备方法和应用与流程基因工程菌是一种被广泛应用于生物技术领域的微生物。
它们通过基因工程技术的手段,对其自身的基因进行改造和调控,以实现特定的生物合成功能。
本文将介绍基因工程菌的制备方法和应用,并展示其在生物技术流程中的重要作用。
一、基因工程菌的制备方法基因工程菌的制备方法主要包括基因克隆、质粒构建、转化和筛选等步骤。
1. 基因克隆:首先,从目标物种中提取所需基因的DNA序列。
然后,利用聚合酶链式反应(PCR)技术扩增目标基因。
接下来,将扩增得到的基因片段与载体DNA进行连接,形成重组质粒。
2. 质粒构建:将重组质粒导入到宿主菌中,通过细菌培养和质粒提取等步骤,得到含有目标基因的质粒。
3. 转化:将质粒导入到目标菌株中,使其拥有目标基因。
转化方法有多种,如电穿孔法、化学法和冷冻复苏法等。
4. 筛选:利用适当的筛选标记,如抗生素抗性基因,筛选出带有目标基因的转化菌株。
同时,可以利用聚合酶链式反应(PCR)技术对转化菌株进行检测和确认。
二、基因工程菌的应用与流程基因工程菌在生物技术领域有着广泛的应用,涉及到药物生产、生物燃料生产、环境修复等多个领域。
1. 药物生产:基因工程菌可以被用于合成药物原料。
通过引入相应的基因,使宿主菌株具备合成目标化合物的能力。
例如,利用基因工程菌可以合成抗生素、抗癌药物等。
2. 生物燃料生产:基因工程菌可以通过代谢途径的改造,使其能够高效地合成生物燃料。
例如,利用基因工程菌可以将废弃物转化为乙醇、丁醇等可燃烧的化合物。
3. 环境修复:基因工程菌可以被用于环境修复,以清除有毒或有害物质。
通过引入特定的基因,使基因工程菌具备降解有害物质的能力。
例如,利用基因工程菌可以降解石油污染物、农药等。
基因工程菌的应用流程一般包括以下几个步骤:1. 基因选择:根据目标产物的要求,选择合适的基因进行克隆。
2. 基因克隆:将目标基因克隆到适当的载体上,构建重组质粒。
3. 转化:将重组质粒导入到宿主菌中,使其拥有目标基因。
工程菌
发酵时,随DO浓度的下降,细 胞生长减慢。 外源基因的高效表达需要大量 的能量,促进细胞的呼吸作用,提 高对氧的需求。 维持较高的DO值,才能提高工 程菌的生长,利于外源蛋白产物的 形成。
采用调节搅拌转速的方法, 可改变培养过程中的氧供给,提高 活菌产量。
⒌ 热诱导时机的影响
一般在对数生长期或对数生长后期升温诱 导表达。 要求在2min内让罐升温达到42 。 升温时间太长,会降低外源蛋白表达量, 也给提取纯化增加困难。
微生物发酵目的是为了获得初级或次 级代谢产物,细胞生长并非主要目标 应用发酵罐大规模培养基因工程菌是 为了获得最大量的基因表达产物。
发酵罐的组成有:
发酵罐体
保证高传质作用的搅拌器 精细的温度控制和灭菌系统 空气无菌过滤装置 残留气体处理装置 参数测量与控制系统 培养液配制和连续操作系统。
发酵罐要求: 提供菌体生长最适生长条件, 培养过程不得污染, 保证纯菌培养, 培养及消毒过程不得游离异物, 不能干扰细菌代谢活动等。
表达产物不稳定:
人干扰素工程菌在表达干扰素时,随着培养时间的
延长,干扰素活性反而下降。
影响工程菌稳定性的因素: (1)质粒结构:质粒稳定区受到影响,重组质粒上
有重复序列等。
(2)宿主 :宿主中重组基因的完整性、重组时有关
基因的变异等。
(3)环境因素 :高温、去垢剂、某些药物(如利福
平)、染料及胸腺嘧啶饥饿、紫外线辐射等都会引起质粒的 丢失。
b 抗生素依赖变异法
诱变使宿主成为某抗生素的依赖性突变株,而重组 质粒上含有该抗生素的非依赖性基因。发酵生产时,不向
培养基中加抗生素就能起到消除重组质粒不稳定的影响。
c 、营养缺陷型法
诱变使宿主成为营养缺陷型,将相关基因插入到重
基因工程菌发酵
频率; ⑵这两种菌比数率差异的大小。
对同一工程菌控制不同的比生长 数率可改变质粒的拷贝数:
低拷贝质粒工程菌产生不含质粒 子代菌频率高如增加工程菌质粒拷 贝数可提高稳定性;
高拷贝质粒工程菌产生不含质粒 子代菌频率低但对稳定性不利。
菌体生长数率对质粒拷贝数和质粒稳定性 有一影响。高生长数率时质粒拷贝数下降, 但稳定性增加。
工艺要求:外源基因既高效表达, 又有利于产品分离纯化。对发酵 影响较大的几个因素有: ⒈培养基的影响 ⒉接种量的影响 ⒊温度的影响 ⒋溶解氧的影响 ⒌诱导时机的影响 ⒍pH的影响
⒈培养基的影响
培养基的组成既要提高工程菌的 生长速率,又要保持工程菌的稳定性, 使外源基因高效表达。常用的碳源有: 葡萄糖、甘油、乳糖、甘露糖、果糖 等。常用的氮源有:酵母提取液、蛋 白胨、酪蛋白水解物、玉米浆、氨水、 硫酸铵、氯化铵等。还有无机盐、维 生素等。
控制菌体的生长对提高质粒的稳 定性、减少代谢副产物积累、提高外 源蛋白产率有重要意义。
大肠杆菌的蛋白/菌体量的比 值是基本恒定的,因而菌体的生长 速度反映了蛋白质的合成速度。
培养条件的改变,都会改变菌 体的能量代谢和小分子前体的供应, 影响生物大分子的和成和菌体的生 长。
一、菌体的生长与能量的关系
为了提高质粒稳定性,工程菌培 养采用两阶段培养法:
⑴先使菌体生长至一定密度; ⑵再诱导外源基因的表达
由于第一阶段外源基因未表达, 减小了重组菌与质粒丢失菌的生长速 率的差别,增加了质粒稳定性。
在培养基中加入抗菌素抑制质粒 丢失菌的生长,提高质粒稳定性。
调控环境参数如温度、pH、培养 基组分和溶解氧浓度
温度还影响蛋白质的活性和包 含体的形成。
⒋ 溶解氧的影响
生物技术概论论文-酵母基因工程菌的构建过程及其在食品领域中的应用
酵母基因工程菌的构建过程及其在食品领域中的应用随着科技的发展,食品生物技术在食品工业发展中的地位和作用越来越大,已经渗透到食品工业的方方面面,特别是基因工程技术等技术在21世纪的食品工业中充当重要的角色。
而工程菌就是用基因工程的方法,使外源基因得到高效表达的菌类细胞株系,是采用现代生物工程技术加工出来的新型微生物,具有多功能、高效和适应性强等特点。
主要应用于治理海洋石油泄漏,生产基因工程药物,酵母基因工程中等方面。
而酵母基因工程中,酵母基因工程菌就是菌类细胞株系用的是酵母菌,能够发挥着一定的功能,可以提高发酵的效率。
酵母基因工程的优点:1.是真核生物,大多具有价高的安全性。
2.繁殖速度快,能大规模生产,具有降低基因工程产品成本的潜力。
3.将原核生物中已知的分子和基因操作技术与真核生物中复杂的转运后修饰能力相结合,能方便外缘基因的操作。
4.采用高表达启动子,可高效表达目的基因,而且可诱导调控。
5.提供了翻译后加工和分泌的环境,使得产物和天然蛋白质一样或类似。
6.酵母菌可表达外源蛋白与末端前导肽融合,指导新生肽分泌,同时在分泌过程中可对表达的蛋白进行糖基化修饰。
7.不会形成不溶性的包涵体,易于分离提纯8.移去起始甲硫氨酸,避免了在作为药物中使用中引起免疫反应的问题。
9.酵母菌(主要是酿酒酵母)已完成全基因组测序,他具有比大肠杆菌更完备的基因表达控制机制和对表达产物的加工修饰和分泌能力。
10.酵母可进行蛋白的N-乙酰化,C-甲基化,对定向到膜的胞内表达蛋白具有重要意义。
构建基因工程菌是一个复杂、繁琐的过程,因此构建酵母基因要注意:1、结构简单,易于研究2、繁殖能力强,数目多3、成本低,易于培养、4易于观察。
一.酵母基因工程菌的构建过程:1.目的基因的获取:获取目的基因是实施基因工程的第一步,有三种方法提取目的基因。
(1)从自然界中已有的物种中分离出来:.从基因文库中获取目的基因(俗称:鸟枪法):将含有某种生物的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物不同的基因,称为基因文库。
基因工程菌介绍汇报
基因工程菌的构建方法
原
生
质
体
融
这些编码酶的基因有时也会存在于染色体中而并不全部存在于质粒上
合 技
。还有的菌中的染色体和质粒会编码具有降解同一化合物但是途径不 相同的酶,并且几种酶相互补充共同产生作用。原生质体融合技术是 将多个细胞的优势部分转入到同一个细胞中,主要利用了微生物细胞
术
共生或互生作用原理,原生质体融合技术因具有育种效率高、致育性
01 基因工程菌的基本原理 02 基因工程菌的构建方法 03 基因工程菌在环境治理中的应用 04 基因工程菌的构建与应用展望
PART ONE
01 基因工程菌的 基本原理
基因工程菌的基本原理
基因工程菌是指利用基因工程 ,将目的基因导入细菌体内使 其表达,产生所需要的蛋白的 细菌。
通过基因工程可以将来自任何 一种生物的基因放置到与其毫 无亲缘关系的寄生生物中,因 此可按人类的医院改造或创造 出新的生物特性或生物类型。
谢谢各位聆听
Davison等研究发现sdsA和sdsB两个基因决定了假单胞菌是否能降解十二烷基 硫酸钠(SDS)。Jovcic等进一步研究了十二烷基硫酸钠(SDS)降解菌 Pseudomonas sp.ATCC19151基因表达时,发现基因sdsA使该菌能利用SDS 为唯一碳源,基因sdsB能调控基因sdsA的转录。
农药类污染物降解基因工程菌
农药是一类有毒化学物质,是较难处理的环境污染物之一。有机农药的结构复 杂和降解这些农药的代谢途径差异性大,导致了单一微生物种群降解效率不高 。所以构建高效降解多种农药的多功能工程菌则成为目前研究的前沿和热点。
Song等分离到一株以1,2,4-三氯苯为唯一碳源的施氏假单胞菌THSL-1,并将施 氏假单胞菌THSL-1 的质粒,用Ca2+诱导大肠杆菌转化法,转化到E.coli JM109 中,得到转化子能以1,2,4-三氯苯为唯一碳源生长,且对1,2,4-三氯苯有降解作 用,但有待进一步检验质粒遗传的稳定性。
一种基因工程菌及其制备方法和应用与流程
一种基因工程菌及其制备方法和应用与流程基因工程菌是指经过基因工程技术改造的微生物菌株,广泛应用于生物工程、医学和农业等领域。
本文将介绍一种基因工程菌及其制备方法和应用与流程。
一、基因工程菌的制备方法基因工程菌的制备方法主要包括以下几个步骤:1. 选择宿主菌株:根据所需的功能和目标,选择合适的菌株作为宿主,常见的宿主菌株有大肠杆菌、酵母菌等。
2. 提取目标基因:从源菌株中提取所需的目标基因,可以通过PCR 扩增、限制性内切酶切割等方法获取目标基因片段。
3. 载体构建:将目标基因片段与合适的载体进行连接,构建重组载体。
常用的载体有质粒、噬菌体等。
4. 转化:将重组载体导入宿主菌株中,使目标基因能够稳定表达。
5. 筛选和鉴定:经过转化的菌株进行筛选和鉴定,常用的方法有抗性筛选和PCR鉴定等。
6. 培养和扩大:经过筛选和鉴定的基因工程菌株进行培养和扩大,得到足够的菌体。
二、基因工程菌的应用与流程基因工程菌在生物工程、医学和农业等领域有广泛的应用。
下面以生物工程领域为例,介绍基因工程菌的应用与流程。
1. 目标基因的克隆与表达从源菌株中提取目标基因,并通过PCR扩增获取目标基因片段。
然后将目标基因片段与适当的载体连接,构建重组载体。
接下来,将重组载体导入宿主菌株中,经过筛选和鉴定,获得含有目标基因的基因工程菌株。
最后,通过培养和表达优化等步骤,使目标基因在基因工程菌中稳定表达,并获得足够的目标蛋白产物。
2. 代谢工程与合成生物学基因工程菌在代谢工程和合成生物学中起到重要作用。
通过基因工程技术,可以改造菌株的代谢途径,使其具有特定的代谢功能。
例如,通过引入外源基因,可以使菌株具备合成特定化合物的能力,如生物染料、药物等。
通过调控代谢途径中的关键基因表达水平,还可以实现代谢产物的高效合成。
3. 蛋白质工程与酶工程基因工程菌在蛋白质工程和酶工程中也有广泛应用。
通过基因工程技术,可以改变蛋白质的结构和功能,实现蛋白质的改良和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统 内源性蛋白酶降解空间构象不正确 的异源蛋白 细胞周质内含有种类繁多的内霉素
阅读框架 繁殖迅速、培养简单、操作方便、 遗传稳定 被美国FDA批准为安全的基因工程 受体生物
4
工程菌高密度发酵工艺
自重组DNA技术产生以来,许多在临床上具有重要治疗价值的蛋白药物通过携带有目的基因的大肠杆菌成功地在实验 室和工厂得以生产。利用基因重组技术构建的基因工程菌的发酵工艺不同于传统的发酵工艺,生物工程菌发酵的目的 是希望能狄得大量的外源基因产物,尽可能减少宿主细胞本身蛋白的污染。外源基因的高水平表达不仅涉及宿主、载 体和目的基因二者之间的相互关系,而且与其所处环境条件息息相关,因此仅按传统的发酵工艺生产生物制品是远远 不够的,需要对影响外源基因表达的因素进行分析,探索出适合外源基因表达的发酵工艺。高密度、高产率和高浓度 培养是近几年发酵工业的目标和方向。对于大肠杆菌,尤其是重组大肠杆菌的发酵来讲,实现高密度发酵,可相应的 缩小生物反应器的体积和降低生物量的分离费用,从而降低生产成本,达到提高生产效率的目的。通过对基因工程菌 (RRhPI-pQE40 E.coli M15)发酵条件的优化,可以看出摇床转速与补料方式对发酵结果影响最大.摇床转速与发酵过程 中氧气的供给有很大的关系。大肠杆菌的生长代谢需要氧气的参与,溶解氧浓度对菌体的生长及重组产物的影响很大, 溶解氧的浓度过高或过低都会影响大肠杆菌的代谢,使后期生长变得极为缓慢,而且会降低重组蛋白的表达量.菌体在 进行大量的增殖过程中,消耗氧进行氧化分解代谢,因而饱和氧的及时供给非常重要。随着发酵的进行菌体的细胞密 度迅速增加,溶解氧的浓度因不断被菌体消耗而降低,细胞的生长开始减慢,ST值下降,尤其在发酵后期,下降幅度 更大。在高密度发酵后期,由于菌体密度的扩增,耗氧量极大,发酵罐的各项物理参数均不能满足对氧的供给,结果 导致外源蛋白的表达量很低。所以维持较高水平的溶氧浓度能提高带有重组质粒的大肠杆菌的生长繁殖,有利于外源 基因的重组蛋白的表达。一般的高密度发酵的通风速度达到18L/min ( 20L发酵罐),搅拌速度达到500rpm以上,往往还 需要供给纯氧,需保持60%以上的溶氧饱和度,这样才能提高带有重组质粒细胞的生长,利于外源蛋白产物的形成。 需要注意的是,要考虑通风速度和搅拌速度的增加对泡沫的产生和发酵液粘稠度的影响,需要在培养基中加入适宜的 消泡剂。
基因工程菌
大肠杆菌
2
被选为基因工程菌的原因
常见易得,易于培养
质粒为常用运载体 代谢迅速,
基因工程菌的通性
经济高效
3
作为表达外源基因受体菌的优劣比较
劣势
缺乏对真核生物蛋白质的复性功能 缺乏对真核生物蛋白质的修饰加工
优势
基因克隆表达系统完善 全基因组测序,共有4405个开放型
24
目的基因的构建
1. 2. 3.
利用病原真菌的毒力基因,例:真菌孢子附着基因,穿透体壁基 因等 利用外源毒力基因,例:蝎毒素基因、苏云金芽胞杆菌毒素基因 等 利用人工设计并合成基因
技术瓶颈
如何加快鉴定杀虫真菌毒力基因, 获得安全、高效的目的基
因 缺乏多基因多毒素表达系统 如何建立安全的转化子筛选系统, 克服工程菌株的潜在安全 性风险 如何克服真菌类生物农药杀虫慢、成本高的缺陷
2016/11/1
酵母表面展示与酶技术
酶的固定化是指借助物理或者化学方法将酶固定于特殊的相, 使得酶与整体流体分开,但是仍然能够进行底物和效应物分子 交换并发挥其催化效能的一种技术。与游离酶相比,固定化酶 提高了酶的稳定性,并使酶能够反复回收利用。但是,传统的 固定化方法也会产生一些不利因素,例如由于增加固定化操作, 导致酶固定化过程中的活性收率损失;另外由于固定化操作需 用载体,因而增加了载体成本费和固定化操作费用。
2016/11/1
表面展示与酒精发酵
传统的酒精发酵是以淀粉质谷物或糖蜜为原料。随着燃料酒精 需求的日益增长,以天然纤维素类资源生产酒精的研究也日益 受到人们重视。由于纤维素类物质是自然界中一种潜在的可再 生资源,对解决未来能源问题有着巨大的潜力,因此,天然纤 维素酒精发酵具有重要意义。Fujita 等成功地将三种纤维素水 解酶同时展示在酿酒酵母表面,从而构建了能够增效和按顺序 降解纤维素的全细胞生物催化剂。
2016/11/1
酵母表面展示系统与新药筛选
将未知功能的目的基因产物或特定病理过程相关蛋的 基因产物或病理过程相关产物发生相互作用的物质,有助于对未知基因 功能的研究,并能发现一些药物作用的新靶点,或筛选到治疗疾病的新 药先导化合物。Visintin 等将酵母表面展示技术与酵母双杂交技术相结 合,将抗体的scFv 片断连接到转录因子VP16 的激活结构域( AD) 上, 将抗原连接到LexA的结合结构域( DB) 上,以His3和LacZ 为报告基因, 建立抗原抗体相互作用的展示方法。当抗原- 抗体发生相互作用时,AD 和DB 的结合将启动报告基因的表达,可通过营养缺陷培养基进行检测。 这种方法从scFv 突变体展示库中将有可能筛选到抗原特异的抗体,为疫 苗及抗体类药物的研制提供良好的平台。
2016/11/1
酵母表面展示与酶技术
利用表面展示技术将具有催化活性的酶展示于酵母等微生物细 胞表面就形成了全细胞催化剂,与传统的细胞内酶和外分泌酶 不同,表面展示的酶以共价或非共价方式固定于细胞外表面, 这种独特的空间定位使其相对自由酶而言有许多优良的特性, 如温度、有机溶剂稳定性、可多次重复使用等,这些特点与传 统的固定化酶技术相似,但无需额外的蛋白纯化和固定的操作, 有着良好的应用前景。Katsumi利用α凝集素系统将来源于产黄 菌属的 OPH 展示于酵母细胞表面,细胞荧光强度测量表明每 个细胞表面可以展示 1.4×10 4 个 OPH 分子,酵母展示系统 OPH酶活性较大肠杆菌冰晶核蛋白展示的酶活性更高,为有机 磷化合物的脱毒提供了一种有效的生物催化剂。
2016/11/1
酵母细胞表面展示与生物吸附
环境污染物的生物修复是以酶促降解或生物吸附为基础的,例 如微生物对重金属的吸附就包括两种途径: ( 1) 与细胞表面复 合物结合,( 2) 逐渐吸收在细胞内进行消化。然而通过胞内消 化降解有毒物质必须使细胞内酶,蛋白质或污染物跨越细胞膜 这一屏障,比较缓慢及效率低而且不可重复利用 利用表面展示技术能较好地解决这一问题,吸附蛋白直接展示 在细胞表面,不仅使吸附过程快捷高效还可以利用回复剂如 EDTA 对其进行处理使之不断重复利用。
9
2016/11/1
酵母表面展示系统
2016/11/1
11
酵母表面展示系统的类型
目前,最常见的酵母表面展示表达系统包括: 凝集素展示表达和絮凝素 展示表达。凝集素展示表达系统是将外源基因与酵母编码凝集素C端编 码序列(含GPI锚定信号序列)连接后插入质粒载体的信号肽下游, 融合 蛋白诱导表达后, 信号肽引导嵌合蛋白向细胞外分泌, 由于融合蛋白C 末端存在含GPI锚定信号的凝集素多肽序列,可将蛋白锚定在酵母细胞 壁中,从而将蛋白分子展示表达在酵母细胞表面。絮凝素展示表达系统 利用絮凝素基因与外源蛋白融合,并将融合蛋白展露表达在细胞表面, 此系统又包括两个子系统: GPI锚定系统和絮凝结构域锚定系统。GPI锚 定系统是利用絮凝素Flo1p的C末端含有的GPI信号锚定外源蛋白,此系 统与凝集素展示相似; 絮凝结构域锚定系统是利用Flo1p的中间絮凝功能 结构域与外源蛋白融合,通过絮凝功能结构域识别酵母细胞壁中的甘露 聚糖链并非共价作用诱导细胞粘附、聚集成可逆性絮状物。
2016/11/1
20
天然苏云金芽孢杆菌作为杀虫菌的缺陷
苏云金芽孢杆菌存在的杀虫谱窄、持效期短等缺陷。严重影响 了苏云金芽孢杆菌的实际应用。但与转基因植物相比,基因重 组微生物具有研究快速、生产方便、应用灵活、害虫不易产生 抗性等诸多优点。 从自然界筛选新的苏云金芽孢杆菌菌株 利用分子生物学的技术鉴定和克隆具有新杀虫特性的杀虫晶体 蛋白基因 利用基因重组 结合转移等基因工程的手段构建新的或具有多重杀虫功效的苏 云金芽孢杆菌工程菌
2016/11/1
苏云金芽孢杆菌
苏云金芽孢杆菌杀虫原理
产生芽孢时产生伴孢晶体 由几种晶体蛋白即δ-2内毒素组成 δ-2内毒素分为Cry和Cyt两类:Cry活体条件下只对双翅目幼虫 有毒,离体条件下具广谱性;Cry分为4种,CryI对鳞翅目幼虫有毒, CryII对鳞翅目和双翅目均有毒,CryIII对鞘翅目有毒,CryIV对双 翅目有毒。
2016/11/1
苏云金芽孢杆菌基因改造作物优点
苏云金芽孢杆菌基因改造作物有如下优点: 杀虫毒素释放量大,足以杀灭害虫 植物产生的毒素不会释放到外界,只有植食害虫才会进食死亡 产生毒素可由组织特异性启动子调控 抗虫性是依据孟德尔的遗传规律进行稳定遗传 毒素基因可装载在叶绿体基因中,因此排除了通过花粉传播的途径
2016/11/1
目前国内外对苏云金芽孢杆菌工程菌的改造主要集中在: 扩大杀改善土壤中的活性 提高毒力等
2016/11/1
农药真菌
23
真菌能作为昆虫农药的理论依据
真菌是昆虫病原微生物中最大的一个类群,已发现约有1000 种 自然条件下全部病死昆虫中约60% 因真菌致病而亡 与病毒、细菌通过胃毒杀虫的途径不同, 真菌主要通过昆虫体壁侵染昆虫, 可侵 染刺吸式口器的昆虫和处于非取食期的昆虫卵和蛹等 真菌侵染和致病机制复杂,害虫难以对真菌制剂产生抗性 对病虫害的持续控制作用, 可以形成昆虫间的流行病 对哺乳动物毒性低, 对环境的影响小
传统酵母转化系统
先使纤维素酶基因与表达载体相结合,再将重组体转入酵母细 胞内形成转化子,表达目的基因,从而产生纤维素酶蛋白,这 是传统酵母转化系统。目前有 2种方法可以使酵母细胞摄取外 源 DNA ,即原生质体转化和完整细胞转化。现在采用较多的 是完整细胞转化的方法,该方法是1983年发展起来的。此方法 虽然要用Li离子处理细胞,但和原生质体转化方法相比,则比 较简单,在筛选转化子时,不必进行细胞壁再生,而且Li离子 处理完整酵母细胞的转化率比原生质体的高。但必须用聚乙二 醇处理转化细胞,否则转化率会大幅度下降。