浙教版八年级上册数学第2章单元测试卷
第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)
第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,图形的对称轴的条数是()A.1条B.2条C.3条D.无数条2、如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=12,BD=16,则OE的长为()A.8B.9C.10D.123、下列图形中是轴对称图形的是()A. B. C. D.4、如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6B.2C.3D.5、下列各组线段中,不能够形成直角三角形的是()A.3,4,5B.6,8,10C. ,2,D.5, 12, 136、在△ABC中,AB=13,BC=10,BC边上的中线AD=12,则AC=( )A.10B.11C.12D.137、如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3B.C.5D.8、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.9、如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD 的周长为 ( )A.6cmB.8cmC.10cmD.12cm10、如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.2011、如图,在△ABC中,AB=BC=2,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,则BD′为()A. B. C.3 D.412、如图所示,直线与两坐标轴分别交于、两点,点是的中点,、分别是直线,轴上的动点,则周长的最小值是()A. B. C. D.13、如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.3B.4C.5D.614、如图1,在中,于点.动点从点出发,沿折线方向运动,运动到点停止.设点的运动路程为的面积为与的函数图象如图2,则的长为()A.3B.6C.8D.915、在直线l上依次摆放着七个正方形(如图所示)。
浙教版八年级数学上第2章特殊三角形单元测试含答案
单元测试(二 )特别三角形题号一二(时间: 90 分钟三满分: 120 分 )总分合分人复分人得分一.选择题 (每题 3 分,共 30 分 )1.( 泰安中考 )以下四个图形:此中是轴对称图形,且对称轴的条数为 2 的图形的个数是( C )A.1B.2C.3D.42.( 荆门中考A.8 或)已知一个等腰三角形的两边长分别10 B.82 和4,则该等腰三角形的周长为( C )C.10D.6或123.以下说法中,正确的选项是 ( A )A. 每个命题都有抗命题B.假命题的抗命题必定是假命题C.每个定理都有逆定理D.假命题没有抗命题4.如图,字母 B 所代表的正方形的面积是( C )A.12B.13C.144D.194第4题图第5题图第7题图5.( 内江中考 )如图,在△ ABC 中, AB= AC, BD 均分∠ ABC 交 AC 于点的延长线于点E,若∠ E=35°,则∠ BAC 的度数为 ( A )第8题图D ,AE∥ BD 交CBA.40 °B.45°C.60°D.70 °6.以下说法中,正确的个数是( C )①斜边和向来角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.47.( 萧山区期中 ) 如图,已知△ ABC 是等边三角形,点 D. E 分别在 AC.BC 边上,且AE 与 BD 交于点 F,则∠ AFD 的度数为 ( A )A.60 °B.45°C.75°D.70 °8.如图,在△ ABC 中,∠ ACB= 90°, AC= 40,CB =9,点 M, N 在 AB 上,且BN= BC,则 MN 的长为 ( C )AD= CE,AM = AC,A.6B.7C.8D.99.如,在△ ABC 中,∠ B=∠ C,点 D 在 BC 上,∠ BAD= 50°,AD = AE,∠ EDC 的度数(B)A.15 °B.25°C.30°D.50°第9第1010.(下城区校期中 )如,∠ BAC=∠ DAF = 90°,AB= AC,AD =AF,点 D. E BC 上的两点,且∠ DAE = 45°, EF .BF ,以下:①△ AED≌△ AEF;②△ AED 等腰三角形;③ BE+ DC> DE ;④ BE2+ DC 2= DE 2,此中正确的有 ( B )A.4 个B.3 个C.2 个二.填空 (每小 4 分,共 24 分 )11.若等腰三角形的角50°,它的一个底角12.若直角三角形两直角之比3∶ 4,斜D.1 个65° .20,它的面96.13.如,已知∠ BAC= 130°, AB= AC, AC 的垂直均分交BC 于点 D ,∠ ADB= 50° .14.小明想量教课楼的高度 .他用一根子从楼垂下,子垂到地面后多了 2 m,当他把子的下端拉开 6 m 后,子下端好接触地面,教课楼的高 8m.15.(山区期中 )如,∠ BOC= 9°,点 A 在 OB 上,且 OA= 1,按以下要求画:以A 心,1 半径向右画弧交 OC 于点 A1,得第 1 条段 AA1;再以 A1心,1 半径向右画弧交 OB 于点 A2,得第 2 条段 A1 A2;再以 A2心,1 半径向右画弧交 OC 于点 A3,得第 3 条段 A2A3;⋯画下去,直到得第 n 条段,以后就不可以再画出吻合要求的段了, n= 9.16.做以下操作:在等腰△ABC 中, AB= AC, AD 均分∠ BAC ,交 BC 于点 D.将△ ABD 作关于直 AD 的称,所得的像与△ACD 重合 .于以下:①在同一个三角形中,等角等;②在同一个三角形中,等等角;③等腰三角形的角均分.底上的中和高相互重合.由上述操作可得出的是②③(将正确的序号都填上).三.解答 (共 66 分 )17.(6 分 )如,思虑怎把每个三角形片只剪一次,将它分成两个等腰三角形,一,在中画出裁剪的印迹.(1)(2)解: (1)如所示:或(2)如所示:18.(8 分)( 杭州中考 )如图,在△ ABC 中, AB= AC,点 E, F 分别在 AB, AC 上, AE= AF,BF 与 CE 订交于点 P.求证: PB =PC .并直接写出图中其余相等的线段 .证明:在△ ABF 和△ ACE 中,AB =AC ,∠BAF =∠ CAE ,AF=AE ,∴△ ABF ≌△ ACE(SAS).∴∠ ABF =∠ ACE.∵AB= AC,∴∠ ABC=∠ ACB .∴∠ ABC-∠ ABF =∠ ACB-∠ ACE,即∠ PBC=∠ PCB.∴PB= PC.图中相等的线段还有:PE= PF, BF= CE, BE=CF .19.(8 分 )( 丽水中考 )如图,已知△ ABC,∠ C= 90°, AC<BC, D 为 BC 上一点,且到 A, B 两点的距离相等 .(1)用直尺和圆规,作出点D的地点(不写作法,保留作图印迹);(2)连结 AD,若∠ B= 37°,求∠ CAD 的度数 .解: (1)点 D 的地点以以下图(D 为 AB 中垂线与BC 的交点 ).(2)∵在 Rt△ ABC 中,∠ B= 37°,∴∠ CAB= 53° .∵AD= BD ,∴∠ BAD =∠ B= 37° .∴∠ CAD= 53°- 37°= 16° .20.(10 分 )如图,在等边△ ABC 中,点 P 在△ ABC 内,点 Q 在△ ABC 外, B, P,Q 三点在一条直线上,且∠ ABP =∠ ACQ,BP =CQ,问△ APQ 是什么形状的三角形?试证明你的结论.解:△ APQ 是等边三角形 .证明:∵△ ABC 为等边三角形,∴AB= AC.又∵∠ ABP=∠ ACQ, BP= CQ,∴△ ABP≌△ ACQ (SAS).∴AP= AQ,∠BAP=∠ CAQ.∵∠ BAC=∠ BAP+∠ PAC= 60°,∴∠ PAQ=∠ CAQ+∠ PAC=∠ BAP+∠ PAC=∠ BAC= 60° .∴△ APQ 是等边三角形.21.(10 分 )如图, AB=AC ,∠ BAC= 90°, BD⊥ AE 于 D, CE⊥ AE 于 E,且 BD >CE.求证:BD =EC+ ED.证明:∵∠ BAC =90°, CE⊥AE, BD ⊥AE,∴∠ ABD+∠ BAD = 90°,∠ BAD +∠ EAC= 90°,∠ BDA =∠ E=90° .∴∠ ABD=∠ EAC .在△ ABD 和△ CAE 中,∠ABD =∠ EAC ,∠BDA =∠ E,AB =AC ,∴△ ABD≌△ CAE (AAS).∴BD= AE, AD =EC.∵AE=AD+DE,∴ BD= EC+ED .22.(12 分 )如图 1 所示为一上边无盖的正方体纸盒,现将其剪睁开成平面图,如图2所示.已知睁开图中每个正方形的边长为 1.(1)求在该睁开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中∠ BAC 与平面睁开图中∠ B′ A′ C′的大小关系?解:(1) 在平面睁开图中可画出最长的线段长为10.如图 2 中的 A′C′,在 Rt△ A′C′ D′中,∵ C′D′= 1, A′D′= 3,由勾股定理得 A′C′=2210.这样的线C′D′+ A′D′= 1+ 9=段可画 4 条.(2)∵立体图中∠ BAC 为等腰直角三角形的一锐角,∴∠ BAC = 45° .在平面睁开图中,连结 B′C′,由勾股定理可得 A′B′=5, B′ C′= 5.222又∵ A′B′+ B′C′= A′ C′,由勾股定理的逆定理可得△A′B′C′为直角三角形 .又∵ A′B′= B′C′,∴△ A′ B′ C′为等腰直角三角形.∴∠ B′ A′ C′= 45° .∴∠ BAC 与∠ B′A′C′相等 .23.(12 分 )在△ ABC 中,AB =AC,点 D 是直线 BC 上一点 (不与 B,C 重合 ) ,以 AD 为一边在 AD 的右边作△ ADE ,AD =AE,∠ DAE =∠ BAC,连结 CE.(1)如图 1,当点 D 在线段 BC 上时,若∠ BAC= 90°,则∠ BCE= 90° .(2)设∠ BAC=α,∠BCE =β.①如图 2,当点 D 在线段 BC 上挪动时,α,β之间有如何的数目关系?请说明原由.②当点 D 在直线 BC 上挪动时,α,β之间有如何的数目关系?请直接写出你的结论.图1图2解: (2)① α+β=180° .原由:∵∠ BAC=∠ DAE,∴∠ BAC-∠ DAC =∠ DAE -∠ DAC ,即∠ BAD =∠ CAE.又∵ AB= AC,AD =AE,∴△ ABD≌△ ACE .∴∠ B=∠ ACE.∴∠ B+∠ ACB=∠ ACE +∠ ACB=∠ BCE=β.∵α+∠B+∠ACB=180°,∴α+β=180°.②当点 D 在射线 BC 上时,α+β=180°;当点 D 在 CB 延长线上时,α=β.。
浙教版2019-2020年八年级数学上学期: 第2章 特殊三角形(A卷)含解析版答案
第2章特殊三角形单元测试卷(A卷基础篇)【浙教版】学校:___________姓名:___________班级:___________考号:___________满分:120分考试时间:100分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,每小题3分,共30分)1.(3分)(2019春•商河县期末)下列图形中不是轴对称图形的是()A.B.C.D.2.(3分)(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°3. (3分)(2019春•甘井子区期末)已知直角三角形的两条直角边长分别为1和4,则斜边长为()A.3 B.C.D.54.(3分)(2019春•长沙县期末)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.B.﹣C.D.﹣5.(3分)(2019春•即墨区期末)等腰三角形的周长为11m,其中一边长为2cm,则该等腰三角形的腰长为()A.4.5cm B.2cm C.2cm或4.5cm D.5.5cm6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+27. (3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm28.(3分)(2019春•南岸区校级期中)如图,在△ABC中,AB=AC=BD,∠DAC=∠DCA,则∠DAC=()A.30°B.36°C.40°D.45°9.(3分)(2019春•兰山区期中)如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1,S2,S3,S4和S分别代表相应的正方形的面积,且S1=4,S2=9,S3=8,S4=10,则S等于()A.25 B.31 C.32 D.4010.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.第Ⅱ卷(非选择题)二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019春•郁南县期末)如图的直角三角形中未知边的长x=________.12.(4分)如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= 度.13.(4分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠,∠C=∠.14.(4分)(2019春•萧山区月考)已知△ABC为等腰三角形,它的一个外角为100°,则∠B的度数是.15.(4分)(2019春•南岗区校级月考)如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为.16.(4分)(2018秋•抚宁区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三.解答题(共7小题,共66分)17.(6分)(2018秋•北仑区期末)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.18.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?为什么?19.(8分)(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.20.(10分)(2019春•海淀区校级月考)在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小21.(10分)(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,22.(12分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.23.(12分)如图,等腰直角△ACB,∠ACB=90°,CA=CB.操作:如图1,过点A任作一条直线(不经过点C和点B)交BC所在直线于点D,过点B作BF⊥AD交AD 于点F,交AC所在直线于点E,连接DE.(1)猜想△CDE的形状;(2)请你利用图2、图3作与上述位置不同的直线,然后按上述方法操作.画出相应的图形;(3)在经历(2)之后,若你认为(1)中的结论是成立的,请你利用图2加以证明;若你认为不成立,请你利用其中一图说明理由.第2章特殊三角形单元测试卷(A卷基础篇)【浙教版】参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2019春•商河县期末)下列图形中不是轴对称图形的是()A.B.C.D.【思路点拨】根据轴对称图形的定义判断即可.【答案】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:A.【点睛】本题考查轴对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.2.(3分)(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【思路点拨】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【答案】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.【点睛】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.3. (3分)(2019春•甘井子区期末)已知直角三角形的两条直角边长分别为1和4,则斜边长为()A.3 B.C.D.5【思路点拨】根据在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方进行计算即可.【答案】解:斜边长为:=,故选:C.【点睛】此题主要考查了勾股定理,关键是掌握勾股定理内容.4.(3分)(2019春•长沙县期末)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.B.﹣C.D.﹣【思路点拨】首先根据勾股定理计算出AC的长,进而得到AD的长,再根据A点表示0,可得D点表示的数.【答案】解:AC===,则AD=,∵A点表示0,∴D点表示的数为:﹣,故选:B.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.5.(3分)(2019春•即墨区期末)等腰三角形的周长为11m,其中一边长为2cm,则该等腰三角形的腰长为()A.4.5cm B.2cm C.2cm或4.5cm D.5.5cm【思路点拨】根据等腰三角形的性质分为两种情况解答:当边长2cm为腰或者2cm底边时.【答案】解:分情况考虑:当2cm是腰时,则底边长是11﹣2×2=7cm,此时2cm,2cm,7cm不能组成三角形,应舍去;当2cm是底边时,腰长是(11﹣2)×=4.5cm,2cm,4.5cm,4.5cm能够组成三角形.此时腰长是4.5cm.故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2【思路点拨】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【答案】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选:C.【点睛】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7. (3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【思路点拨】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【答案】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.【点睛】这里不要去分别求a,b的值,熟练运用完全平方公式的变形和勾股定理.8.(3分)(2019春•南岸区校级期中)如图,在△ABC中,AB=AC=BD,∠DAC=∠DCA,则∠DAC=()A.30°B.36°C.40°D.45°【思路点拨】设∠DAC=x°,根据∠DAC=∠DCA得到∠DAC=∠DCA=x°,然后利用等腰三角形的性质表示出相关的角的度数,利用三角形内角和定理求得x即可求得答案.【答案】解:设∠DAC=x°,∵∠DAC=∠DCA,∴∠DAC=∠DCA=x°,∴∠ADB=2x°,∵AB=AC=BD,∴∠B=∠C=x°,∠BAD=∠BDA=2x°,∴x+2x+2x=180,∴x=36°,故选:B.【点睛】考查了等腰三角形的性质,了解等腰三角形中等边对等角是解答本题的关键,难度不大.9.(3分)(2019春•兰山区期中)如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1,S2,S3,S4和S分别代表相应的正方形的面积,且S1=4,S2=9,S3=8,S4=10,则S等于()A.25 B.31 C.32 D.40【思路点拨】如图,根据勾股定理分别求出AB2、AC2,进而得到BC2,即可解决问题.【答案】解:如图,由题意得:AB2=S1+S2=13,AC2=S3+S4=18,∴BC2=AB2+AC2=31,∴S=BC2=31.故选:B.【点睛】主要考查了正方形的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握勾股定理等几何知识点.10.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.【思路点拨】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【答案】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.【点睛】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019春•郁南县期末)如图的直角三角形中未知边的长x=.【思路点拨】根据勾股定理计算即可.【答案】解:由勾股定理得,x==,故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.(4分)如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= 36 度.【思路点拨】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求解.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°.故答案为:36.【点睛】本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.13.(4分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠DAC,∠C=∠BAD.【思路点拨】先根据直角三角形两锐角互余得出∠B+∠C=90°,再由三角形的高的定义得出∠ADB=∠ADC=90°,那么根据直角三角形两锐角互余得出∠DAC+∠C=90°,∠B+∠BAD=90°,然后根据同角的余角相等即可得到∠B=∠DAC,∠C=∠BAD.【答案】解:∵在△ABC中,∠BAC=90°,∴∠B+∠C=90°,∵AD⊥BC于点D,∴∠ADB=∠ADC=90°,∴∠DAC+∠C=90°,∠B+∠BAD=90°,∴∠B=∠DAC,∠C=∠BAD.故答案为DAC,BAD.【点睛】本题考查了直角三角形的性质,余角的性质,三角形的高,掌握直角三角形中,两个锐角互余是解题的关键.14.(4分)(2019春•萧山区月考)已知△ABC为等腰三角形,它的一个外角为100°,则∠B的度数是20°或50°或80°.【思路点拨】没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【答案】解:∵一个外角为100°,∴与其相邻的内角为80°,如果80°为顶角,当∠B为顶角,∴∠B=80°,当∠B为底角,∴∠B=50°,如果80°为底角,当∠B为顶角,∴∠B=20°,当∠B为底角,∴∠B=80°,综上所述,∠B的度数是20°或50°或80°,故答案为:20°或50°或80°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.(4分)(2019春•南岗区校级月考)如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为1+.【思路点拨】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理得到△ACD为直角三角形,根据三角形的面积公式计算,得到答案.【答案】解:连接AC,在Rt△ABC中,AC==,AC2+CD2=5+1=6,AD2=6,则AC2+CD2=AD2,∴△ACD为直角三角形,∴四边形ABCD的面积=×1×2+×1×=1+,故答案为:1+.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16.(4分)(2018秋•抚宁区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【思路点拨】首先求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【答案】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了等腰三角形的性质、全等三角形的判定的应用;熟练掌握等腰三角形的性质,根据题意得出方程是解决问题的关键.三.解答题(共7小题,共66分)17.(6分)(2018秋•北仑区期末)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.【思路点拨】根据轴对称图形的概念求解可得.【答案】解:如图所示:【点睛】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称图形的概念.18.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?为什么?【思路点拨】根据等腰三角形的性质可知,∠1=∠2,∠B=∠C,由三角形外角平分线的性质可知∠3=∠C,AE∥BC,由平行线的性质可知AE⊥AD.【答案】证明:∵AB=AC,CD=BD,∴∠1=∠2,∠B=∠C,AD⊥BC,又∵AE是△ABC的外角平分线,∴∠3=∠4=(∠B+∠C)=∠C,∴AE∥BC,∠DAE+∠ADB=180°,又∵AD⊥BC,∴∠DAE=∠ADC=90°.∴AE⊥AD.【点睛】本题考查的是角平分线、等腰三角形及平行线的性质;由已知证得AE∥BC,AD⊥BC是解答本题的关键.19.(8分)(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【思路点拨】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【答案】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=90°,∴∠B=90°.∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)【点睛】本题考查了直角三角形全等的判定及性质;主要利用了直角三角形全等的判定方法HL,也利用了等腰三角形的性质:等角对等边,做题时要综合利用这些知识.20.(10分)(2019春•海淀区校级月考)在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小【思路点拨】根据等腰三角形的性质得到∠ABM=90°,∠BAM=∠CAM,根据角平分线的定义得到∠ABC =2∠EBM=52°,于是得到结论.【答案】解:∵AB=AC,M是边BC的中点,∴∠AMB=90°,∠BAM=∠CAM,∵∠BEM=∠AED=64°,∴∠EBM=26°,∵BD平分∠ABC,∴∠ABC=2∠EBM=52°,∴∠BAM=90°﹣∠ABM=38°,∴∠BAC=2∠BAM=76°.【点睛】本题考查了等腰三角形的性质,角平分线定义,正确的识别图形是解题的关键.21.(10分)(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,【思路点拨】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【答案】解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.22.(12分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【思路点拨】(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.【答案】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.23.(12分)如图,等腰直角△ACB,∠ACB=90°,CA=CB.操作:如图1,过点A任作一条直线(不经过点C和点B)交BC所在直线于点D,过点B作BF⊥AD交AD 于点F,交AC所在直线于点E,连接DE.(1)猜想△CDE的形状;(2)请你利用图2、图3作与上述位置不同的直线,然后按上述方法操作.画出相应的图形;(3)在经历(2)之后,若你认为(1)中的结论是成立的,请你利用图2加以证明;若你认为不成立,请你利用其中一图说明理由.【思路点拨】(1)猜想△CDE是等腰直角三角形;(2)据要求画出图形;(3)只要证得△ACD≌△BEC,可得到CD=CE,即可得到结论;【答案】解:(1)由AC=BC,∠ACD=∠BCE,容易猜想到△ACD≌△BEC,那么CD=CE,则△CDE是等腰直角三角形;(2)据要求画出图形如下:(3)结论成立;证明:∵∠ACB=90°,AF⊥BE,∴∠FDB+∠FBD=90°,∠EBC+∠CEB=90°,∴∠FDB=∠CEB;又∵∠FDB=∠ADC,∴∠ADC=∠CEB;∵在三角形ACD和三角形BCE中,∴△ACD≌△BEC;∴CD=CE,∴△CDE是等腰直角三角形.即猜想△CDE是等腰直角三角形结论成立.【点睛】此题主要考查直角三角形全等的判定,要利用已知条件寻找缺少的条件判定三角形全等,解题关键在于证明两腰相等.。
【浙教版】八年级数学上:第二章-特殊三角形单元测试题(含答案)
第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
2020年秋浙教版八年级上册数学第2章特殊三角形单元提高测试卷
2020 年秋浙教版八年级数学上册第 2 章特殊三角形单元提高测试卷一、选择题(共 10 题;共 30 分)1.永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教 育.下列安全图标不是轴对称的是()A. C. D.2.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°或 70°,55°C. 70°,40°D. 55°,55°或 70°,40° 3.如图, ΔABC 中, 垂直平分 ,垂足为 D ,交 于 E ,若 ∠B = 32° , ,则AC = CEDE AB BC ∠C 的度数是( )A. °B. ° 55C. °D. ° 52 60 65 4.以下命题:(1)如果 a <0, b >0 ,那么 a + b <0;(2)相等的角是对顶角;(3)同角的补角 相等;(4)如果两条直线被第三条直线所截,那么同位角相等.其中真命题的个数是( ) A. 0B. 1C. 2D. 35.在△ABC 中,∠A 、∠B 、∠C 的对边分别为 a 、b 、c ,下列条件中不能说明△ABC 是直角三角形的 是( )A. a =3 , b =4 , c =5 22 2 B. a =9,b =12,c =15 C. ∠A :∠B :∠C =5:2:3D. ∠C ﹣∠B =∠A6.如图,在 Rt△ABC 中,∠ACB =90°,AC =6,BC =8,AE 平分∠BAC ,ED⊥AB ,则 ED 的长 ( )A. 3B. 4C. 5D. 67.如图,三角形纸片 ABC ,点 D 是 BC 边上一点,连接 AD ,把△ABD 沿着 AD 翻折,得到△AED , DE 与 AC 交于点 G ,连接 BE 交 AD 于点 F.若 DG =GE ,AF =3,BF =2,△ADG 的面积为 2,则点 F 到 BC 的距离为( )A. B. C. D. , √552√554√554√338.如图,将长方形 折叠,使点 C 和点 A 重合,折痕为 与 交于点 O 若 ,AE = 5ABC D EF EF AC ,则 的长为()BF = 3 A O A. B. C. D. 4√53 √5√5 2√529.如图,在 中, ∠ACB = 90° ,点 H 、E 、F 分别是边 的值为( )CH、 、 的中点,若 CARt △ ABC AB BC ,则EF + CH = 8 A. 3 B. 4 C. 5 D. 610.如图,在 Rt△ABC 中,∠ACB=90°,CD 为中线,延长 CB 至点 E ,使 BE=BC ,连结 DE ,F 为 DE 中点,连结 BF.若 AC=8,BC=6,则 BF 的长为( )A. 2B. 2.5C. 3D. 4二、填空题(共 8 题;共 24 分)△11.在等腰ABC 中,AB=AC,∠B=50°,则∠A的大小为________.12.如图,在△ABC中,AB=AC,∠BAC的平分线 AD 交 BC 于点 D,E 为 AB 的中点,若 BC=12,AD=8,则 DE 的长为________.13.在中,∠C=90°,若,则的长是________.Rt△ABC AB−AC=2,BC=8AB△△14.如图,ABC 中,AB=AC=4,以 AC 为斜边作 Rt ADC,使∠ADC=90°,∠CAD=∠CAB =30°,E、F 分别是 BC、AC 的中点,则 ED=________.OB15.如图,以原点 O 为圆心,为半径画弧与数轴交于点A,则点 A 在数轴上表示的数为________.16.如图所示,△ABC为等边三角形,AQ=PQ,PR⊥AB于点 R,PS⊥AC于点 S,PR=PS,有下列四个结论:①点 P 在∠BAC的平分线上;②AS=AR;③QP∥AB;④△BRP≌△CSP.其中,正确的有________(填序号即可).17.如图,在 Rt△ABC 中,∠C=90°,AC=10,BC=5,线段 PQ=AB , P , Q 两点分别在 AC 和过点 A 且垂直于 AC 的射线 AO 上运动,当 AP=________时,△ABC 和△PQA 全等.18.如图, ΔABC 中,点在边 上, , ∠ ∠ , 垂直于 的延长线 E 于点BEAC EB = EA 的长为________.BCA = 2 CBE CD D , ,AC = 11,则边BD = 8 三、解答题(共 6 题;共 46 分)19.如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD 是直角吗?说明理由.20.如图,在笔直的铁路上 两点相距 , 为两村庄, , ,CB = 14kmA, B 20km C, D DA = 8km 于 , 于 . 现要在 上建一个中转站 ,使得 , 两村到 站的距离DA ⊥ AB A CB ⊥ AB B AB E C D E 相等,求 的长.AE 21.如图,在△ABC 中,∠ABC>60°,∠BAC<60°,以 AB 为边作等边△ABD(点 C 、D 在边 AB 的 同侧),连接 CD ,(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC 的度数; (Ⅱ)当∠BAC=2∠BDC 时,请判断△ABC 的形状并说明理由; (Ⅲ)当∠BCD 等于多少度时,∠BAC=2∠BDC 恒成立。
八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)
八年级上册数学单元测试卷-第2章特殊三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,B C′交AD于E,AD=8,AB=4,则DE的长为A.3B.4C.5D.62、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是().A.7B.9C.10D.113、如图,在等腰三角形ABC中,AC=BC=5cm, AB=6cm,则等腰△ABC的面积为()A.12B.11C.10D.134、如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为( )A.3cmB.4cmC.1cmD.2cm5、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个6、如图,在中,,、、分别是、、上的点,且,,若,则的度数是()A. B. C. D.7、下列都是同学们喜欢的商标,其中是轴对称图形的是()A. B. C. D.8、如图,正方形ABCD的边长为4,点E在对角线BD上,且,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.9、如图,,是的直径,,是的弦,且,与交于点,连接,若,则的度数是()A.20°B.30°C.40°D.50°10、如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED=()A. B. C. D.11、如图,,,三点在正方形网格线的交点处,若将绕点逆时针旋转得到,则点的坐标为()A. B. C. D.12、如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C′处,若长方体的长AB=4cm,宽BC=3cm,高BB′=2cm,则蚂蚁爬行的最短路径是()A. cmB. cmC. cmD.7cm13、如图,将Rt△ABC(∠ACB=90°,∠ABC=30°)沿直线AD折叠,使点B落在E处,E 在AC的延长线上,则∠AEB的度数为()A.30°B.40°C.60°D.55°14、如图所示,为等腰直角三角形,,正方形DEFG边长也为2,且AC与DE在同一直线上,从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为与正方形DEFG重合部分图中阴影部分的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.15、下列图形中,不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求:(1)AB的长为________(2)S△ABC=________17、在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。
(浙教版)八年级上《第2章特殊三角形》单元试卷有答案(数学)
【解】∵△DEF是△DEA沿直线DE翻折变换而来的,
∴DF=AD.
∵D是AB的中点,∴AD=BD.∴BD=DF.
∴∠B=∠BFD.
∵∠B=65°,
∴∠BDF=180°-∠B-∠BFD=180°-65°-65°=5B,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果
对等角.其中逆命题是真命题的有(B)
A.1个B.2个C.3个D.4个
4.如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是(C)
A.20°B.35°
C.40°D.70°
(第4题)
(第5题)
5.如图,已知D为△ABC的边AB的中点,点E在AC上,将△ABC沿着DE折叠,使点A落在BC上
的点F处.若∠B=65°,则∠BDF等于(B)
M是OP的中点,那么DM的长是(C)
A.2B.2
C.3D.23
7.如图,所有的三角形都是直角三角形,所有的四边形都是正方形,已知S1=4,S2=9,S3=8,
S4=10,则S=(B)
第2章
一、选择题(每小题3分,共30分)
1.下列图形中,是轴对称图形的是(A)
2.下列四组线段能构成直角三角形的是(D)
A.a=1,b=2,c=3B.a=2,b=3,c=4
C.a=2,b=4,c=5D.a=3,b=4,c=5
3.有下列命题:①同位角相等,两直线平行;②全等三角形的周长相等;③直角都相等;④等边
浙教版数学八年级上册 第 2章特殊三角形单元测试有答案
浙教版数学八上 2章特殊三角形单元测试含答案 班级__________ 姓名__________ 分数__________一、选择题1. 下列四个图形中,不是轴对称图形的是( )2. 在直角坐标系中有A ,B 两点,要在y 轴上找一点C ,使得它到A ,B 的距离之和最小,现有如下四种方案,其中正确的是( )A .B .C .D .3. 下列定理有逆定理的是( )A .全等三角形的对应角相等B .如果两个角都是45°,那么这两个角相等C .两直线平行,同位角相等D .对顶角相等4. 下列图形中只有一条对称轴的是( )5. 如图,是一台球桌面示意图,图中小正方形的边长均相等.黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A .①B .②C .⑤D .⑥6. 已知:一等腰三角形的两边长x 、y 满足方程组⎩⎨⎧2x -y =33x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或47. 已知下列命题:①如果a >b ,那么a 2>b 2;②如果a >1,那么(a -1)0=1; ③两个全等的三角形的面积相等;④等边三角形的三条边都相等.其中原命题与逆命题均为真命题的有( )A .4个B .3个C .2个D .1个8. 如图,CE 平分∠ACB 且CE ⊥DB 于E ,∠DAB =∠DBA ,又知AC =18 cm ,△CDB 的周长为28 cm ,则DB 的长为( )A .7 cmB .8 cmC .9 cmD .10 cm9. 若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为( )A .75°或15°B .36°或60°C .75°D .30°10.如图所示△ABC 中,DM 与EN 分别是边AB ,AC 的垂直平分线,MD 与NE 的延长线交于点G ,连结AD ,AE ,已知∠DAE =x °,则①AD =BD ,AE =CE ;②∠B +∠C =⎝⎛⎭⎫180-x 2°;③∠BAC =⎝⎛⎭⎫180+x 2°;④∠DGE =∠B +∠C四个结论中,正确的有( )个A .1B .2C .3D .4二、填空题11.如图所示,在△ABC 中,AB =AC ,∠BAC =130°,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连结AF ,则∠F AC =__________.第11题图第13题图第14题12.有一个等腰三角形,三边分别是3x -2,4x -3,6-2x ,则该等腰三角形的周长为__________.13.如图,已知∠AOB =α,在射线OA ,OB 上分别取点A 1,B 1,使OA 1=OB 1,连结A 1B 1,在B 1A 1,B 1B 上分别取点A 2,B 2,使B 1A 2= B 1B 2,连结A 2B 2……按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3= θ2,…,∠A n + 1 B n B n + 1 = θn ,则:(1)θ1=__________;(2)θn =__________.14.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为__________.15.电子跳蚤游戏盘是如图所示的△ABC ,AB =AC =BC =6.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1= CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2= AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3= BP 2;…;跳蚤按照上述规则一直跳下去,第N 次落点为P N (N 为正整数),则点P 2009与点P 2010之间的距离为__________.第15题图第16题图16.将正方形纸片ABCD 按下图所示折叠,那么图中∠HAB 的度数是__________.17.如图,在△ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,CD =3BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC .若△ABC 的面积为16,则△ACF 与△BDE 的面积之和为__________.18.在△ABC 中,AB =AC =12cm ,BC =6cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动.设运动时间为t 秒,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t 的值为__________.三、解答题19.如图所示,P 是∠AOB 内任一点,以OA ,OB 为对称轴分别画出点P 经轴对称变换后的点P 1,P 2,连结P 1P 2,分别与OA ,OB 相交于点C ,D .若P 1P 2=8 cm ,求△PCD 的周长.GNMED CBA20.如图所示,在△ABC中,AB=AC,D是AC上一点,AD=BD=BC,则图中有几个等腰三角形?分别指出它们的顶角、底角、腰和底边.21.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分.求这个等腰三角形的底边长.22.如图所示,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=12∠A.23.如图①,在△BCD中,∠BCD=90°,BC=DC,P是∠BCD的角平分线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:PE=PD;(2)求证:∠DPE+∠BCD=180°;(3)如图②把题中“∠BCD=90°”条件删去,其他条件不变,结论(2):∠DPE+∠BCD=180°还成立吗?说明理由.(4)如图①,若BC=DC=4,点P在AC上移动,△PBE面积的最大值为:__________.(直接写出结果)24.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB延长线上一点,由B向CB延长线方向运动(Q不与B重合),连结PQ交AB于D.若两点同时出发,以相同的速度每秒1个单位运动,运动时间为t.(1)当∠PQC=30°时,求t的值;(2)过P作PE⊥AB于E,过Q作QF⊥AB,交AB的延长线于F,请找出图中在运动过程中的一对全等三角形,并加以证明;(3)在(2)的条件下,当P,Q在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化,请说明理由.参考答案一、选择题二、填空题11.105° 12.8.5或913.180°+α2 (2n -1)·180°+α2n14.615.216.15°17.418.7秒或17秒三、解答题19.解:根据轴对称变换的性质,可知PC=P1C,PD=P2D,∴△PCD的周长为PC+CD+PD=P1C+CD+P2D=P1P2=8cm.20.解:有三个等腰三角形,它们分别是△ABC,△DAB,△BCD.在△ABC中,AB和AC是腰,BC是底边,∠A是顶角,∠ABC和∠ACB是底角;在△DAB中,AD和BD是腰,AB是底边,∠ADB是顶角,∠DAB和∠ABD是底角;在△BCD中,BC和BD是腰,CD是底边,∠CBD是顶角,∠BCD和∠BDC是底角.21.解:设这个等腰三角形的底边长为x,腰长为y.x+y2=12,y+y2=21或x+y2=21,y+y2=12.∵x=5,y=14或x=17,y=8.因为三角形两边之和必然大于第三边,则必须满足2y>x,所以x=17,y=8,不合题意舍去.所以这个等腰三角形的底边长为5cm.22.证明:过点A作AE⊥BC于点E,交CD于点F,如图.∴∠BAE+∠B=90°.∵AB=AC,∴∠BAE=12∠BAC.又∵CD⊥AB,∴∠BCD+∠B=90°.∴∠BAE=∠BCD.∴∠BCD=12∠A.23.解:(1)∵AC是∠BCD的角平分线,∴∠BCA=∠DCA.∵PC=PC,BC=DC,∴△BCP≌△DCP(SAS),∴PB=PD.∵PB=PE,∴PD=PE.(2)在图①中由(1)知∠PBC=∠PDC∵PB=PE,∴∠PBC=∠E,∴∠PDC=∠E.∵∠PFD=∠EFC,∴∠DPE=∠DCE.∵∠BCD+∠DCE=180°,∴∠BCD+∠DPE=180°.(3)在图②中,由△BCP≌△DCP得∠PBC=∠PDC,∵PB=PE∴∠PBC=∠E,∴∠PDC=∠E.∵∠PFD=∠EFC,∴∠DPE=∠DCE.∵∠BCD+∠DCE=180°,∴∠BCD+∠DPE=180°.(4)424.解:(1)t=2.(2)△APE≌△QBF或△EPD≌△FQD,证明略.(3)ED的长度不变,ED=3。
2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)
2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直角三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个2.观察下面A,B,C,D四幅图,其中与如图成轴对称的是()A.B.C.D.3.如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠P AQ 的大小是()A.70°B.55°C.40°D.30°4.如图案分别表示“福”“禄”“寿”“喜”,其中不是轴对称图形的是()A.B.C.D.5.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是()A.25°B.40°C.50°D.65°8.已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE ⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20°B.35°C.55°D.70°9.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD=20°;④当∠BAD =30°时,BD=CE.其中正确的结论的个数是()A.1B.2C.3D.410.如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC二.填空题(共6小题,满分24分)11.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有对.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=3,点D是BC上一动点(点D与点B不重合),连接AD,作B关于直线AD的对称点E,当点E在BC的下方时,连接BE、CE,则CE的取值范围是;△BEC面积的最大值为.13.如图,△APT与△CPT关于直线PT对称,∠A=∠APT,延长AT交PC于点F,当∠A =°时,∠FTC=∠C.14.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个格点三角形与△ABC成轴对称.16.如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+BE有最小值时,则△BDE的面积为.三.解答题(共7小题,满分56分)17.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.18.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D 重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.19.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.20.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.21.如图,△ABC在正方形网格中,已知网格的单位长度为1,点A,B,C均在格点上,按要求回答下列问题:(1)分别写出点A,B,C的坐标;(2)求△ABC的面积;(3)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称.22.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.23.如图,在△ABC中,AB=AC,∠A=2∠ABD,当△BDC是等腰三角形时,求:∠DBC 的度数.参考答案一.选择题(共10小题,满分40分)1.解:(1)全等三角形对应边上的中线相等.正确;(2)有两条边对应相等的等腰直角三角形一定全等.正确;(3)一条斜边对应相等的两个直角三角形不一定全等.错误;(4)两边及其一边上的高也对应相等的两个三角形一定全等.错误;故选:B.2.解:与已知图形成轴对称的图形是选项C:.故选:C.3.解:∵∠BAC=110°,∴∠B+∠C=70°,∵A,B关于直线MP对称,A,C关于直线NQ对称,又∵MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠P AQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:C.4.解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选:A.5.解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE=S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.6.解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.解:∵AB=AC,∠A=50°,∴∠ACB=(180°﹣50°)÷2=65°,由题意可知,BC=BE,∴∠BEC=∠ACB=65°,∴∠CBE=180°﹣65°×2=50°,∴∠CBD=∠CBE=25°.故选:A.8.解:连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.9.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,或∵△ADE为等腰三角形,∴AD=DE,∴∠DAE=∠AED=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=30°,故③错误,④∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故④正确;故选:C.10.解:A.∵AB=AC,∴∠B=∠C,故A不符合题意;B.∵AB=AC,点D是BC边中点,∴AD⊥BC,故B不符合题意;C.∵AB=AC,点D是BC边中点,∴∠BAD=∠CAD,故C不符合题意;所以排除A,B,C,故选:D.二.填空题(共6小题,满分24分)11.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS),综上所述,共有6对全等的直角三角形.故答案是:6.12.解:∵B、E关于AD对称,∴AE=AB=4,则可知E点在以A点为圆心、AE为半径的圆上,如图,在Rt△ABC中,AB=4,AC=3,则BC=5,当E点与B点重合时,有CE最长,即为5;又∵B、E不重合,∴CE<5,当E点移动到F点时,使得A、C、F三点共线,此时CF最短,且为CF=AF﹣AC=4﹣3=l,即CE最短为l,即CE的取值范围为:1≤CE<5;当点E移动到使得AE⊥BC时,A点到BC的距离最短,则E点到BC的距离最大,则此时△BCE的面积最大,设AE交BC于点G点,利用面积可知AB×AC=BC×AG,∴AG=2.4,∵AE=AB=4,∴EG=4﹣2.4=1.6,∴△BCE的面积最大值为:1.6×5×=4,∴△BCE的面积的最大值为4;故答案为:1≤CE<5;4.13.解:∵△APT与△CPT关于直线PT对称,∴∠A=∠C,TA=TC,∠APT=∠CPT,∵∠A=∠APT,∴∠A=∠C=∠APT=∠CPT,∵∠FTC=∠C,∴∠AFP=∠C+∠FTC=2∠C=2∠A,∵∠A+∠APF+∠AFP=180°,∴5∠A=180°,∴∠A=36°,故答案为:36°.14.解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.15.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.16.解:过点B作BE⊥CF于点N,∵∠A=∠C=90°,且AB=AC=4,∴四边形ACNB是正方形,∴AC=CN,∵AD=CE,∴CD=NE△BEN≌△NDC,∴BE=DN,延长BA到M.使得AM=AB,则B,M关于AC对称,∴BD=MD,∴BD+BE=MD+DN,最小时,M,N,D三点共线,此时D为AC的中点,△BDE的面积为:0.5×(2+4)×4﹣0.5×4×2﹣0.5×2×2=6.故答案为:6.三.解答题(共7小题,满分56分)17.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.18.(1)证明:连接AE.∵点E关于直线AB,AD的对称点分别为P,Q,∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ,∵AB⊥l2,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,∴P,A,Q三点在同一条直线上,∴点A是PQ的中点.(2)解:结论QN=BD,理由如下:连接PB.∵点E关于直线AB,AD的对称点分别为P,Q,∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8,∵l1∥l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10,又∵AB⊥l2,DC⊥l2,∴AB∥CD,∴∠6=∠9,∴∠5+∠6=∠9+∠10,即∠OBP=∠ODN,∵O是线段BD的中点,∴OB=OD,又∠BOP=∠DON,在△BOP和△DON中,∴△BOP≌△DON(AAS),∴BP=DN,∴BE=DN,∴QN=DQ+DN=DE+BE=BD.19.解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)(1)中结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.20.解:如下图所示:(答案不唯一).21.解:(1)由图知,A(0,3)、B(﹣4,4)、C(﹣2,1);(2)△ABC的面积为3×4﹣×2×2﹣×1×4﹣×2×3=5,答:△ABC的面积为5;(3)如图所示,△A1B1C1即为所求.22.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.23.解:∵AB=AC,∴∠ABC=∠C.①当BD=CD时,∠C=∠CBD<∠ABC,故不成立;②当BD=BC时,∠C=∠BDC=∠A+∠ABD,∵∠A+∠ABC+∠C=180°,∴∠A+∠A+∠ABD+∠A+∠ABD=180°,∴3∠A+2∠ABD=180°,4∠A=180°,∴∠A=45°,∴∠ABD=22.5°,∴∠ABC=(180°﹣45°)=67.5°,∴∠DBC=∠ABC﹣∠ACD=45°;③当CB=CD时,∠CBD=∠CDB=∠A+∠ABD,设∠ABD=x,∴∠A=2x,∴∠CBD=∠CDB=3x,∴∠ABC=∠C=4x,∵∠A+∠ABC+∠C=180°,∴2x+4x+4x=180°,∴x=18°,∴∠DBC=54°;综上所述:∠DBC的度数为54°或45°.。
[精品]浙教版八年级上《第2章特殊三角形》单元测试(有答案)(数学)
第2章特殊三角形一、选择题1.下列各图中,∠1大于∠2的是()A.B. C.D.2.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.193.若等腰三角形的顶角为80°,则它的底角度数为()A.80°B.50° C.40° D.20°4.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.65.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.56.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16 B.20或16 C.20 D.127.如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55° C.50° D.40°8.如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48°B.∠AED=66°C.∠A=84° D.∠B+∠C=96°9.一个等腰三角形的两边长分别为4,8,则它的周长为( )A .12B .16C .20D .16或2010.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .1811.等腰三角形的一个角是80°,则它顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°12.如图,△ABC 中,AB=AC ,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°13.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是( )A .1cm <AB <4cm B .5cm <AB <10cmC .4cm <AB <8cmD .4cm <AB <10cm14.若等腰三角形的一个内角为40°,则另外两个内角分别是( )A .40°,100°B .70°,70°C .40°,100°或70°,70°D .以上答案都不对15.已知△ABC 的周长为13,且各边长均为整数,那么这样的等腰△ABC 有( )A .5个B .4个C .3个D .2个16.如图,在△ABC 中,AB=AC ,且D 为BC 上一点,CD=AD ,AB=BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°17.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°18.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或1019.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.18二、填空题20.等腰三角形的周长为16,其一边长为6,则另两边为.21.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .22.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.23.等腰三角形的两边长分别为1和2,其周长为.24.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.25.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.26.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.27.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是°.28.如图,在等腰△ABC中,AB=AC,AD⊥BC,若∠BAD=20°,则∠BAC= 度.29.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= .30.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).第2章特殊三角形参考答案与试题解析一、选择题1.下列各图中,∠1大于∠2的是()A.B. C.D.【考点】等腰三角形的性质;对顶角、邻补角;平行公理及推论;平行线的性质.【分析】根据等边对等角,对顶角相等,平行线的性质,三角形的一个外角大于任何一个与它不相邻的内角对各选项分析判断后利用排除法求解.【解答】解:A、∵AB=AC,∴∠1=∠2,故本选项错误;B、∠1=∠2(对顶角相等),故本选项错误;C、根据对顶角相等,∠1=∠3,∵a∥b,∴∠2=∠3,∴∠1=∠2,故本选项错误;D、根据三角形的外角性质,∠1>∠2,故本选项正确.故选D.【点评】本题考查了等边对等角,对顶角相等,平行线的性质,三角形的一个外角大于任何一个与它不相邻的内角的性质,熟记各性质是解题的关键.2.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.19【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;②当6为腰时,其它两边为6和13,∵6+6<13,∴不能构成三角形,故舍去,∴答案只有32.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.若等腰三角形的顶角为80°,则它的底角度数为()A.80°B.50° C.40° D.20°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵等腰三角形的顶角为80°,∴它的底角度数为(180°﹣80°)=50°.故选B.【点评】本题考查了等腰三角形两底角相等的性质,是基础题.4.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.6【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为3和1两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去,当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.5【考点】等腰三角形的性质.【分析】根据等腰三角形的性质可得AB=AC,继而得出AC的长.【解答】解:∵∠B=∠C,∴AB=AC=5.故选D.【点评】本题考查了等腰三角形的性质,解答本题的关键是掌握等腰三角形的两腰相等,底边上的两底角相等.6.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16 B.20或16 C.20 D.12【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为4和8两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去,∴答案只有20.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55° C.50° D.40°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵AB=AC,∠B=70°,∴∠A=180°﹣2∠B=180°﹣2×70°=40°.故选D.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.8.如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48°B.∠AED=66°C.∠A=84° D.∠B+∠C=96°【考点】等腰三角形的性质;平行线的性质.【分析】根据等腰三角形两底角相等,两直线平行,同位角相等分别求出各角的度数即可进行选择.【解答】解:A、∵DE∥BC,∠ADE=48°,∴∠B=∠ADE=48°故A选项正确,但不符合题意;B、∵AB=AC,∴∠C=∠B=48°,∵DE∥BC,∴∠AED=∠C=48°,故B选项错误,符合题意;C、∠A=180°﹣∠B﹣∠C=180°﹣48°﹣48°=84°,故C选项正确,但不符合题意;D、∠B+∠C=48°+48°=96°,故D选项正确,但不符合题意.故选:B.【点评】本题考查了等腰三角形的性质,平行线的性质,是基础题,熟记性质是解题的关键.9.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.10.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.18【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【点评】本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.12.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24° C.30° D.36°【考点】等腰三角形的性质.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.13.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm【考点】等腰三角形的性质;解一元一次不等式组;三角形三边关系.【分析】设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.【解答】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选:B.【点评】本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.14.若等腰三角形的一个内角为40°,则另外两个内角分别是()A.40°,100° B.70°,70°C.40°,100°或70°,70°D.以上答案都不对【考点】等腰三角形的性质.【专题】分类讨论.【分析】根据等腰三角形的性质,分两种情况讨论:(1)另外两个内角有一个内角是40°;(2)另外两个内角都不是40°;根据三角形的内角和是180°,求出另外两个内角分别是多少度即可.【解答】解:(1)另外两个内角有一个内角是40°时,另一个内角的度数是:180°﹣40°﹣40°=100°,∴另外两个内角分别是:40°,100°;(2)另外两个内角都不是40°时,另外两个内角的度数相等,都是:(180°﹣40°)÷2=140°÷2=70°∴另外两个内角分别是:70°,70°.综上,可得另外两个内角分别是:40°,100°或70°,70°.故选:C.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了三角形的内角和定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.15.已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC有()A.5个B.4个C.3个D.2个【考点】等腰三角形的性质;三角形三边关系.【分析】由已知条件,根据三角形三边的关系,任意两边之和大于第三边,任意两边之差小于第三边,结合边长是整数进行分析.【解答】解:周长为13,边长为整数的等腰三角形的边长只能为:3,5,5;或4,4,5;或6,6,1,共3个.故选:C .【点评】本题考查了等腰三角形的判定;所构成的等腰三角形的三边必须满足任意两边之和大于第三边,任意两边之差小于第三边.解答本题时要进行多次的尝试验证.16.如图,在△ABC 中,AB=AC ,且D 为BC 上一点,CD=AD ,AB=BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C 的关系,利用三角形的内角和是180°,求∠B ,【解答】解:∵AB=AC ,∴∠B=∠C ,∵AB=BD ,∴∠BAD=∠BDA ,∵CD=AD ,∴∠C=∠CAD ,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B .【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C 关系.17.如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A .()n •75°B .()n ﹣1•65°C .()n ﹣1•75°D .()n •85°【考点】等腰三角形的性质.【专题】规律型. 【分析】先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个三角形中以A n 为顶点的内角度数.【解答】解:∵在△CBA 1中,∠B=30°,A 1B=CB ,∴∠BA 1C==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=∠BA 1C=×75°;同理可得,∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°,∴第n 个三角形中以A n 为顶点的内角度数是()n ﹣1×75°.故选:C .【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.18.已知等腰三角形的两边长分別为a 、b ,且a 、b 满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为( )A .7或8B .6或1OC .6或7D .7或10 【考点】等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.【分析】先根据非负数的性质求出a ,b 的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b ﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.19.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.18【考点】等腰三角形的性质;一元二次方程的解.【专题】分类讨论.【分析】由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.【解答】解:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32﹣12×3+k=0,解得k=27.将k=27代入原方程,得x2﹣12x+27=0,解得x=3或9.3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,则其他两条边相等,即△=0,此时144﹣4k=0,解得k=36.将k=36代入原方程,得x2﹣12x+36=0,解得x=6.3,6,6能够组成三角形,符合题意.故k的值为36.故选:B.【点评】本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.二、填空题20.等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5 .【考点】等腰三角形的性质;三角形三边关系.【分析】此题分为两种情况:6是等腰三角形的腰或6是等腰三角形的底边.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另两边为:6,4或5,5.故答案为:6,4或5,5.【点评】本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.21.(2013•滨州)在等腰△ABC中,AB=AC,∠A=50°,则∠B= 65°.【考点】等腰三角形的性质.【分析】根据等腰三角形性质即可直接得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B=(180°﹣50°)÷2=65°.故答案为:65°.【点评】本题考查学生对等腰三角形的性质的理解和掌握,此题难度不大,属于基础题.22.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.23.等腰三角形的两边长分别为1和2,其周长为 5 .【考点】等腰三角形的性质;三角形三边关系.【分析】根据题意,要分情况讨论:①1是腰;②1是底.必须符合三角形三边的关系,任意两边之和大于第三边.【解答】解:①若1是腰,则另一腰也是1,底是2,但是1+1=2,故不能构成三角形,舍去.②若1是底,则腰是2,2.1,2,2能够组成三角形,符合条件.成立.故周长为:1+2+2=5.故答案为:5.【点评】本题考查的是等腰三角形的性质和三边关系,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.24.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20 .【考点】等腰三角形的性质.【专题】几何图形问题.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.【点评】本题主要考查等腰三角形的性质,一定要熟练掌握等腰三角形中的三线合一.25.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110 °.【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.【解答】解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.【点评】此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.26.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= 15 °.【考点】等腰三角形的性质;翻折变换(折叠问题).【分析】由AB=AC,∠A=50°,根据等边对等角及三角形内角和定理,可求得∠ABC的度数,又由折叠的性质,求得∠ABE的度数,继而求得∠CBE的度数.【解答】解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=(180°﹣50°)=65°,∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°,∴∠CBE=∠ABC﹣∠AB E=65°﹣50°=15°.故答案为:15.【点评】此题考查了折叠的性质、等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.27.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是30 °.【考点】等腰三角形的性质.【专题】几何图形问题.【分析】根据等腰三角形两底角相等求出∠ABC=∠C,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD代入数据计算即可得解.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)=70°,∵BD=BC,∴∠CBD=180°﹣70°×2=40°,∴∠ABD=∠ABC﹣∠CBD=70°﹣40°=30°.故答案为:30.【点评】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.28.如图,在等腰△ABC中,AB=AC,AD⊥BC,若∠BAD=20°,则∠BAC= 40 度.【考点】等腰三角形的性质.【分析】等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,依此即可求解.【解答】解:∵在△ABC中,AB=AC、AD⊥BC、∴AD是△ABC的角平分线,∵∠BAD=20°,∴∠BAC=2∠BAD=40°.故答案为:40;【点评】考查了等腰三角形三线合一的性质,题目难度不大,属于定理的直接应用.29.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= 18°.【考点】等腰三角形的性质.【专题】几何图形问题.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.30.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).【考点】等腰三角形的性质.【专题】几何图形问题.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.21。
2020年秋浙教版八年级上册数学第2章特殊三角形单元提高测试卷
2020年秋浙教版八年级数学上册第2章特殊三角形单元提高测试卷一、选择题(共10题;共30分)1.永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A. B. C. D.2.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55°,55°B. 70°,40°或70°,55°C. 70°,40°D. 55°,55°或70°,40°3.如图,ΔABC中,DE垂直平分AB,垂足为D,交BC于E,若∠B=32°,AC=CE,则∠C的度数是()A. 52°B. 55°C. 60°D. 65°4.以下命题:(1)如果a<0,b>0 ,那么a + b<0;(2)相等的角是对顶角;(3)同角的补角相等;(4)如果两条直线被第三条直线所截,那么同位角相等.其中真命题的个数是()A. 0B. 1C. 2D. 35.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A. a=32,b=42,c=52B. a=9,b=12,c=15C. ∠A:∠B:∠C=5:2:3D. ∠C﹣∠B=∠A6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠BAC,ED⊥AB,则ED的长()A. 3B. 4C. 5D. 67.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F.若DG =GE ,AF =3,BF =2,△ADG 的面积为2,则点F 到BC 的距离为( )A. √55B. 2√55C. 4√55D. 4√338.如图,将长方形 ABCD 折叠,使点C 和点A 重合,折痕为 EF , EF 与 AC 交于点O 若 AE =5 , BF =3 ,则 AO 的长为( )A. √5B. 32√5C. 2√5D. 4√59.如图,在 Rt △ABC 中, ∠ACB =90° ,点H 、E 、F 分别是边 AB 、 BC 、 CA 的中点,若 EF +CH =8 ,则 CH 的值为( )A. 3B. 4C. 5D. 610.如图,在Rt △ABC 中,∠ACB=90°,CD 为中线,延长CB 至点E ,使BE=BC ,连结DE ,F 为DE 中点,连结BF.若AC=8,BC=6,则BF 的长为( )A. 2B. 2.5C. 3D. 4二、填空题(共8题;共24分)11.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为________.12.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为________.13.在Rt△ABC中,∠C=90°,若AB−AC=2,BC=8,则AB的长是________.14.如图,△ABC中,AB=AC=4,以AC为斜边作Rt △ADC,使∠ADC=90°,∠CAD=∠CAB =30°,E、F分别是BC、AC的中点,则ED=________.15.如图,以原点O为圆心,OB为半径画弧与数轴交于点A,则点A在数轴上表示的数为________.16.如图所示,△ABC为等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,有下列四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AB;④△BRP≌△CSP.其中,正确的有________(填序号即可).17.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB ,P ,Q两点分别在AC 和过点A且垂直于AC的射线AO上运动,当AP=________时,△ABC和△PQA全等.18.如图,ΔABC中,点在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线E于点D,BD=8,AC=11,则边BC的长为________.三、解答题(共6题;共46分)19.如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.20.如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B .现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.21.如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C、D在边AB的同侧),连接CD,(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立。
八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)
八年级上册数学单元测试卷-第2章特殊三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,已知△ABC的三个顶点均在正方形网格的格点上,则tanA的值为()A. B. C. D.2、如图,长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC 于点O,若AO=5cm,则AB的长为()A.6cmB.7cmC.8cmD.9cm3、已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A. B. C.5 D. 或54、如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种5、使两个直角三角形全等的条件是()A.两条边分别相等B.一条直角边和一个锐角分别相等C.一条斜边和一个锐角分别相等D.两个锐角分别相等6、已知∠AOB=45°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1、O、P2三点构成的三角形是 ( )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7、如图,P为△ABC的边AB、AC的中垂线的交点,∠A=50°,则∠BPC的度数为()A.100°B.80°C.60°D.75°8、如果等腰三角形的一个外角等于100度,那么它的顶角等于()A.100°B.80°C.80°或40°D.80°或20°9、如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是()A. B. C. D.10、如图,在菱形ABCD中,DE⊥AB,cosA= ,AE=6,则tan∠BDE的值是( )A. B. C. D.11、把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC()A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确12、如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点,则PA+PB的最小值为()A. B. C.1 D.213、如图,牧童在A处放牛,其家在B处,A,B到海岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750 米B.1500米C.500 米D.1000米14、面积为2的正方形对角线的长是()A.整数B.分数C.小数D.无理数15、如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是()A.1个B.3个C.D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0),过A作AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;则A2A3=________;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2017的纵坐标为________.17、一个直角三角形的两条直角边边长分别为10和24,则第三边长是________.18、在菱形ABCD中,对角线AC=2,BD=4,则菱形ABCD的周长是________.19、某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=________海里.20、如图,已知直线AB与⊙O相交于A、B两点,∠OAB=30°,半径OA=2,那么弦AB=________.21、等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=________22、矩形的两邻边长的差为2,对角线长为4,则矩形的面积为________.23、如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是________.24、如图7,已知P、Q是△ABC的边BC上的两点,且BP=QC=PQ=AP=AQ,则∠BAC=________25、如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。
【浙教版】八年级数学上册:第2章单元检测题(含答案)
第2章单元检测题(时间:100分钟满分:120分)一.选择题(每小题3分,共30分)1.下列图案属于对称图形是( A )A. B. C. D.2.下列命题逆命题正确是( C )A.全等三角形面积相等B.全等三角形周长相等C.等腰三角形两个底角相等D.直角都相等3.以下列各组数为边长三角形中,能组成直角三角形是( B )A.3,4,6B.15,20,25C.5,12,15D.10,16,254.等腰三角形两条边长是3和6,则它周长是( B )A.12B.15C.12或15D.15或185.若等腰三角形有一个角为40°,则它顶角为( C )A.40°B.100°C.40°或100°D.无法确定6.如图,在Rt△ABC中,∠C=90°,∠ABC平分线BD交AC于点D.若BC=4 cm,BD=5 cm,则点D到AB距离为( C )A.5 cmB.4 cmC.3 cmD.2 cm,第6题图) ,第7题图),第8题图)7.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=1,则△A 6B 6A 7边长为( C )A.6B.12C.32D.648.如图①是一个直角三角形纸片,∠C =90°,AB =13 cm ,BC =5 cm ,将其折叠,使点C 落在斜边上点C′处,折痕为BD(如图②),则DC 长为( A ) A.103 cm B.83 cm C.52 cm D. 5 cm9.用4个全等直角三角形与1个小正方形拼成正方形图案如图所示,已知大正方形面积为49,小正方形面积为9,若用x,y 表示直角三角形两直角边(x>y),请观察图案,指出以下关系式中不正确是( D )A.x 2+y 2=49B.x -y =3C.2xy +9=49D.x +y =1310.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,连结CE 交AD 于点F,连结BD 交CE 于点G,连结BE.下列结论:①CE =BD ;②△ADC 是等腰直角三角形;③∠ADB =∠AEB ;④S 四边形BCDE =12BD·C E ;⑤BC 2+DE 2=BE 2+CD 2.其中正确结论有( C )A.1个B.2个C.3个D.4个,第10题图) ,第14题图),第15题图) ,第16题图)二.填空题(每小题4分,共24分)11.命题“等腰三角形两腰上高相等”逆命题是__两边上高相等三角形是等腰三角形__,这个逆命题是__真__命题.12.在△ABC中,AB=AC,AD是中线,若∠B=60°,则∠BAD=__30°__.13.在Rt△ABC中,AB=5,BC=3,则斜边上中线长为__2.5或342__.14.如图,在△ABC中,CD⊥AB于点D,E是AC中点.若AD=6,DE=5,则CD长等于__8__.15.如图,BD,CE分别是△ABC两个外角角平分线,DE过点A且DE∥BC.若DE=14,BC=7,则△ABC周长为__21__.16.如图,已知D为等边三角形ABC内一点,DB=DA,BF=AB,∠1=∠2,则∠BFD=__30°__.点拨:证△BCD≌△ACD得∠BCD=30°,再证△BFD≌△BCD得∠BFD =∠BCD=30°三.解答题(共66分)17.(7分)如图,在Rt△ABC中,∠B=90°,分别以点A,C为圆心,大于12AC为半径画弧,两弧相交于点M,N,连结MN,与AC,BC分别交于点D,E,连结AE.(1)求∠ADE度数;(直接写出结果)(2)当AB=3,AC=5时,求△ABE周长.解:(1)由题意可知MN是线段AC垂直平分线,∴∠ADE=90°(2)由勾股定理可求BC=4,∵MN是线段AC垂直平分线,∴AE=CE,∴△ABE周长=AB+(AE+BE)=AB+BC=718.(8分)如图,AD=BC,AC=BD.求证:△EAB是等腰三角形.证明:易证△ABD≌△BAC(SSS),∴∠ABD=∠BAC,∴AE=BE,即△EAB 是等腰三角形19.(8分)在等腰三角形ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2,求BC长.解:BC=620.(8分)如图,在△ABC中,点D是BC边上一点,且BA=BD,∠DAC=1∠B,∠C=50°,求∠BAC度数.2解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+x°.∵∠B+∠BAD+∠BDA=180°,∴2x+50+x+50+x=180,解得x=20,∴∠BAD=∠BDA=70°,∠BAC=∠BAD+∠DAC=90°21.(8分)如图,AD⊥BC于点D,∠B=∠DAC,点E在BC上,△EAC是以EC为底等腰三角形,AB=4,AE=3.(1)判断△ABC形状,并说明理由;(2)求△ABC面积.解:(1)△ABC是直角三角形.理由:∵AD⊥BC,∴∠DAC+∠C=90°,∵∠B=∠DAC,∴∠B+∠C=90°,∴△ABC是直角三角形(2)S△ABC=622.(8分)一牧童在A处牧马,牧童家在B处,A,B处距河岸距离分别是AC=500 m,BD=700 m,且C,D两地间距离也为500 m,天黑前牧童从点A将马牵到河边去饮水,再赶回家,为了使所走路程最短.(1)牧童应将马赶到河边什么地点?请你在图中画出来;(2)问:他至少要走多少路?解:(1)如图①,作点A关于河岸对称点A′,连结BA′交河岸于点P,则PB+PA=PB+PA′=BA′最短,故牧童应将马赶到河边点P处(2)如图②,过点A′作A′B′⊥BD交BD延长线于点B′,∴B′A′=CD=500 m,B′D=A′C=AC=500 m.在Rt△BB′A′中,BB′=BD+DB′=1200 m,A′B′=500 m,∴BA′=12002+5002=1300(m),即他至少要走1300 m路23.(9分)如图,△ABC和△CDE均为等边三角形,且点B,C,D在同一直线上,连结AD,BE,分别交CE和AC于点G,H,连结GH.(1)请说出AD=BE理由;(2)试说出△BCH≌△ACG理由;(3)试猜想△CGH是什么特殊三角形,并加以证明.解:(1)∵△ABC和△CDE均为等边三角形,∴AC=BC,EC=DC,∠ACB =∠ECD=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE(2)∵△ACD≌△BCE,∴∠CBH=∠CAG.∵∠ACB=∠ECD=60°,点B,C,D在同一条直线上,∴∠ACB=∠ECD=∠ACG=60°.又∵AC=BC,∴△BCH≌△ACG(ASA) (3)△CGH是等边三角形,理由:∵△ACG≌△BCH,∴CG=CH,又∵∠ACG=60°,∴△CGH是等边三角形24.(10分)(1)如图①,在正方形ABCD中,△AEF顶点E,F分别在BC,CD边上,高线AG与正方形边长相等,求∠EAF度数;(2)如图②,在Rt△BAD中,∠BAD=90°,AB=AD,点M,N是BD边上任意两点,且∠MAN=45°.将△ABM绕点A逆时针旋转90°至△ADH位置,连结NH,试判断MN,ND,DH之间数量关系,并说明理由.解:(1)易证Rt△ABE≌Rt△AGE(HL),Rt△AGF≌Rt△ADF(HL),∴∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAD=90°,∠EAF=12∠BAD=45°(2)MN2=ND2+DH2.理由:可证△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=∠ABD +∠ADB=90°,∴HN2=ND2+DH2.∴MN2=ND2+DH2。
浙教版八年级上册数学第二章特殊三角形单元测试卷(含答案解析)
浙教版八年级上册数学第二章特殊三角形单元测试卷第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形是轴对称图形的是( )A. B. C. D.2.威宁草海是国家级自然保护区,享有“高原明珠”等美誉.以下四个字中,是轴对称图形的是( )A. B. C. D.3.一个三角形中有两条边相等,则这个三角形是.( )A. 不等边三角形B. 等边三角形C. 直角三角形D. 等腰三角形4.若△ABC的三边a,b,c满足关系式(a−b)2+(b−c)2=0,则△ABC是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 锐角三角形5.如图,在四边形ABCD中,AB=CD,连接BD,且BD=AB.若∠ABC=130°,∠C=30°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°6.如图,Rt△ABC中,∠C=90°,∠A<∠B,且∠A≠30°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点P在△ABC的其他边上,则可以画出不同的点P的个数为( )A. 4B. 5C. 6D. 77.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF//BC,交AC于点F.以下结论:①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.其中结论正确的是( )A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤8.“对顶角相等”的逆命题是( )A. 如果两个角是对顶角,那么这两个角相等B. 如果两个角相等,那么这两个角是对顶角C. 如果两个角不是对顶角,那么这两个角不相等D. 如果两个角不相等,那么这两个角不是对顶角9.已知命题:如果a=b,那么|a|=|b|,则该命题的逆命题是( )A. 如果a=b,那么|a|=|b|B. 如果|a|=|b|,那么a=bC. 如果a≠b,那么|a|≠|b|D. 如果|a|≠|b|,那么a≠b10.如图,在Rt△ABC中,∠A=90°,∠C=30°,BC的垂直平分线交AC于点D,并交BC于点E,若ED=3,则AC的长为( )A. 3√3B. 3C. 6D. 911.下列条件:①∠A:∠B:∠C=1:2:3;②AB=√41,BC=4,AC=5;③∠A=90°−∠B;④∠A+∠B=∠C.其中能判定△ABC是直角三角形的有( )A. 4个B. 3个C. 2个D. 1个12.下列命题是假命题的是( )A. 两条直角边分别相等的两个直角三角形全等B. 斜边及一锐角分别相等的两个直角三角形全等C. 两个锐角分别相等的两个直角三角形全等D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图所示,在△ABC中,AB=3,AC=4,EF垂直平分BC,交AC于点D,交BC于点G,点P为直线EF上一动点,则△ABP周长的最小值是______.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=________.15.已知a、b、c是一个三角形的三边长,如果满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是______.16.如图,在Rt△ABC中,∠BCA=90°,AC=10,BC=24,分别以它的三边为直径作三个半圆,则阴影部分面积为______.三、解答题(本大题共9小题,共72分。
【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)
【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)第2章三角形检测题(本次考试满分:100分,时间:90分钟)一、(每小题3分,共24分)1.(2022长沙)如果三角形的两条边的长度分别为2和4,则第三条边的长度可能为()a.2b.4c.6d.82.(2022年向阳)如图所示△, 点是延长线上的一个点,=40°,=120°,那么它等于()a.60°b.70°c.80°d.90°3.如图所示,已知以下条件可使△≌△ 是的()a.b.c.d.三个答案都是如果△ 那么图中的温度是36度△ 在(=2024)方面a.18°b.24°c、30°d.36°5.(2021新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()a、 12b。
十五c.12或15d.186.(2022年湘潭)如图所示△, 该点位于上方并连接。
如果只添加了一个条件,则添加的条件不能是()a.b.c.d.图6、图7、图87.(2021遂宁)如图,在△中,=90°,=30°,以点为圆心,任意长为半径画弧分别交于点和,再分别以点为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,则下列说法中正确的个数是()① 是的,平分线;②=60°;③ 该点位于该点的垂直线上;④=1∶3.a、 1b。
2c。
3d。
四8.(2021威海)如图,在△中,=36°的垂直平分线交于点交于点连接.下列结论错误的是()a、 =2b。
平分c.d.点为线段的黄金分割点二、问题(每个子问题3分,共24分)9.如图所示,△的高相交于点.请你添加一对相等的线段或一对相等的角作您添加的条件是10.(2021威海)将一副直角三角板如图摆放,点在上,ac经过点d.已知∠a=∠ EDF=90°,ab=AC,∠ e=30°,以及∠ BCE=40°,则∠ CDF=11.(2021上海)当三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.12.(2022雅安)如果+=0,等腰三角形的周长为13.(2021乌鲁木齐)如图,在△abc中,ad是中线,ae是角平分线,cf⊥ae于点f,ab=5,ac=2,则df的长对于14.如图所示,ad是△abc的角平分线,de⊥ab于点e,df⊥ AC在点F处,连接EF和相交ad在点G处,则ad和EF之间的位置关系为15.如图所示,∠e=∠f=90°,∠b=∠c,ae=af.给出下列结论:①∠1=∠2;②be=cf;③△acn≌△ab④ CD=DN。
八年级上册数学单元测试卷-第2章 特殊三角形-浙教版(含答案)
八年级上册数学单元测试卷-第2章特殊三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、下列的平面几何图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.五角星C.线段D.平行四边形2、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB 长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A.50 mB.100 mC.150 mD.200 m3、如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=().A.6B.8C.10D.124、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC·BC;③OE∶AC=∶6;④S△OCF=2S△OEF.成立的个数有()A.1个B.2个C.3个D.4个5、下列标志中,不是轴对称图形的是()A. B. C. D.6、以下列各组数作为三角形的三边长,其中不能构成直角三角形的是()A.1,1,B.12,16,20C.1,,D.1,2,27、如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是( )A. B.1 C. D.8、甲骨文是我国古代的一种文字,是汉字的早期形式,反映了我国悠久的历史文化,体现了我国古代劳动人民的智慧,下列甲骨文中,不是轴对称图形的是()A. B. C. D.9、如图,等腰△ ABC 的周长为 21,底边 BC=5,AB 的垂直平分线 DE 交 AB 于点 D,交AC于点 E,则△BEC 的周长为( )A.13B.14C.15D.1610、剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A. B. C. D.11、如图,在三角形ABC和三角形ABD中,∠ABC=∠ADB=90°,则边AC,AB,CB,AD中最长的是()A. B. C. D.12、如图,正方形ABCD中,点E在BC上,且CE= BC,点F是CD的中点,延长AF与BC 的延长线交于点M.以下论:①AB=CM;②AE=AB+CE;③S△AEF= S四边形ABCF;④∠AFE=90°.其中正确结论的个数有()A.1个B.2个C.3个D.4个13、如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是()A. B. C. D.14、如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6C.8D.815、如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条二、填空题(共10题,共计30分)16、三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是________.17、木工师傅可以用角尺测量并计算出圆的半径r,用角尺的较短边紧靠⊙O,并使较长边与⊙O相切于点C,假设角尺的较长边足够长,角尺的顶点为B,较短边AB=8cm,若读得BC长为acm,则用含a的代数式表示r为________.18、已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=________度.19、如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=________度.20、等腰三角形的一个外角等于,则它的顶角是________.21、如图是一正方体的表面展开图,若AB=5,则该正方体上A、B两点间的距离为________.22、如图,在边长为4的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________.23、一个等腰三角形的周长为,且一腰长是,则它的底边是________.24、下列命题中逆命题是真命题的是________.(写序号)( 1 )直角三角形两条直角边的平方和等于斜边的平方;( 2 )等腰三角形两腰上的高线相等;( 3 )若三条线段是三角形的三边,则这三条线段满足;( 4 )角的内部,到角两边距离相等的点在这个角的平分线上.( 5 )全等三角形的面积相等.25、如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1, P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,在等腰三角形. ,点D为边上的中点,于点E,于点F,则与相等吗?请说明理由.28、已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:PA平分∠MAN.29、如图,△ABC中,AB=AC,∠BAC=90°,D是BC边上任意一点,求证:BD2+CD2=2AD2 .30、如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得,,,,又已知,求这块土地的面积.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、D6、D7、D8、D9、A10、D11、A12、C13、A14、B15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC 的度数是( )A.18° B.24° C.30° D.36°(第2题) (第4题) (第8题)3.在直角三角形ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3344.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC ≌Rt△ABD,以下给出的条件合适的是( )A.AC=AD B.BC=ADC.∠ABC=∠ABD D.∠BAC=∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( )A.20° B.120° C.20°或120° D.36°6.在△ABC中,AB2=(a+b)2,AC2=(a-b)2,BC2=4ab,且a>b>0,则下列结论中正确的是( )A.∠A=90° B.∠B=90°C.∠C=90° D.△ABC不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是( ) A.5 B.6 C.6.5 D.128.如图,在△ABC中,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是( )A.20° B.35° C.40° D.70°9.如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S1,S2,S3,S4,则S1+S2+S3+S4等于( )A.3 B.4 C.5 D.6(第9题) (第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题) (第16题) (第17题) (第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分) 19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 交AB 于E ,F 在AC 上,BD =DF .求证: (1)CF =EB ; (2)AB =AF +2EB .(第23题)24.如图,等腰直角三角形DBC 中,∠BDC =90°, BF 平分∠DBC ,与CD 相交于点F ,延长BD 到A ,使DA =DF ,连结AC . (1)求证:△FBD ≌△ACD ;(2)如图,延长BF 交AC 于点E ,且BE ⊥AC ,求证:CE =12BF .(3)在(2)的条件下,H 是BC 边的中点,连结DH ,与BE 相交于点G .试探索CE ,GE ,BG 之间的数量关系,并证明你的结论.(第24题)答案一、1.D 2.A3.A :利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可.4.A 5.C6.C :由题意可得,AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B :因为△ABC 是等腰三角形,AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B :本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D :∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎪⎨⎪⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA), ∴BP =BQ .又∵∠DBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 :△OPE ≌△OPF ,△OPA ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.322 :在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322.17.318.100° :连结OB ,OC .易得△AOB ≌△AOC (SAS). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°.∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°.∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E ,CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF=CE .在△ACE 和△ABF 中,⎩⎪⎨⎪⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线,∴∠GEF=12∠BEF,∠GFE=12∠DFE,∴∠GEF+∠GFE=12(∠BEF+∠DFE)=12×180°=90°,∴△EGF是直角三角形.22.解:(1)△BDF和△CEF.∵BF平分∠ABC,∴∠ABF=∠FBC,∵DF∥BC,∴∠FBC=∠DFB,∴∠DFB=∠DBF,∴DB=DF,∴△BDF是等腰三角形.同理,△CEF也是等腰三角形.(2)BD=DE+CE.由(1)知△CEF是等腰三角形,且EC=EF,∵BD=DF=DE+EF,∴BD=DE+CE.:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB.(2)由(1)可知DE=DC,又∵AD=AD,∴Rt△ADC≌Rt△ADE.∴AC=AE.∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离等于点D到AC的距离,即CD=DE,再根据Rt△CDF ≌Rt△EDB,得CF=EB.(2)利用(1)中结论证明Rt△ADC≌Rt△ADE,∴AC=AE,再将线段AB进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎪⎨⎪⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC , ∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE , 又∵BE =BE ,∴△ABE ≌△CBE (ASA), ∴AE =CE .∴CE =12AC .由(1)知△FBD ≌△ACD , ∴BF =AC ,∴CE =12BF .(3)解:BG 2=GE 2+CE 2. 证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2. :本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.。