2019年5月2019届高三第三次全国大联考(新课标Ⅰ卷)-文科数学(考试版)

合集下载

2019年全国III卷文科数学高考试卷(原卷 答案)

2019年全国III卷文科数学高考试卷(原卷 答案)

绝密★启用前2019年普通高等学校招生全国统一考试(全国III 卷)(适用地区:云南、广西、贵州、四川、西藏)文科数学本试卷共23题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x =−=≤,,则A B =A .{}1,0,1−B .{}0,1C .{}1,1−D .{}0,1,22.若(1i)2i z +=,则z = A .1i −− B .1+i − C .1i − D .1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16 B .14 C .13 D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7 D .0.8 5.函数()2sin sin2f x x x =−在[0,2π]的零点个数为A .2B .3C .4D .5 6.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16 B .8 C .4 D .2 7.已知曲线e ln x y a x x =+在点(1,ae )处的切线方程为y =2x +b ,则A .a =e ,b =–1B .a =e ,b =1C .a =e –1,b =1D .a =e –1,1b =−8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122−B. 5122−C. 6122−D. 7122−10.已知F 是双曲线C :22145x y −=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +≥⎧⎨−≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+≥;命题:(,),212q x y D x y ∀∈+≤.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝ ④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322−)>f (232−)B .f (log 314)>f (232−)>f (322−)C .f (322−)>f (232−)>f (log 314) D .f (232−)>f (322−)>f (log 314)二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【后附:极详细的解析、分析、考点、答案解释等】

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【后附:极详细的解析、分析、考点、答案解释等】

【后附:极详细的解析、分析、考点、答案解释等】2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1. 已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2. 若z(1+i)=2i,则z=()A.−1−iB.−1+iC.1−iD.1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.1 6B.14C.13D.124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.85. 函数f(x)=2sinx−sin2x在[0,2π]的零点个数为()A.2B.3C.4D.56. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3= ()A.16B.8C.4D.27. 已知曲线y=ae x+xlnx在点(1, ae)处的切线方程为y=2x+b,则()A.a=e,b=−1B.a=e,b=1C.a=e−1,b=1D.a=e−1,b=−18. 如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则()A.BM=EN,且直线BM, EN是相交直线B.BM≠EN,且直线BM, EN是相交直线C.BM=EN,且直线BM, EN是异面直线D.BM≠EN,且直线BM, EN是异面直线9. 执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于()A.2−124B.2−125C.2−126D.2−12710. 已知F是双曲线C:x24−y25=1的一个焦点,点P在C上,O为坐标原点,若|OP|= |OF|,则△OPF的面积为()A.32B.52C.72D.9211. 记不等式组{x+y≥6,2x−y≥0表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④12. 设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log314)>f(2−32)>f(2−23)B.f(log314)>f(2−23)>f(2−32)C.f(2−32)>f(2−23)>f(log314)D.f(2−23)>f(2−32)>f(log314)二、填空题已知向量a→=(2,2),b→=(−8,6),则cos<a→,b→>=________.记S n为等差数列{a n}的前n项和,若a3=5,a7=13,则S10=________.设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限,若△MF1F2为等腰三角形,则M的坐标为________.学生到工厂劳动实践,利用3D打印技术制作模型. 如图,该模型为长方体ABCD−A1B1C1D1挖去四棱锥O−EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm3. 不考虑打印损耗,制作该模型所需原料的质量为________g.三、解答题为了了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服用甲离子溶液,B组小鼠给服用乙离子溶液,每只小鼠给服的溶液体积相同,摩尔浓度相同,经过一段时间后,用某种科学方法测算出残留在小鼠体内的离子百分比,根据试验数据分析得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).△ABC的内角A,B,C的对边分别为a,b,c.已知asin A+C2=bsinA.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE= BF=2,∠FBC=60∘,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.已知函数f(x)=2x3−ax2+2.(1)讨论f(x)的单调性.(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M−m的取值范围.已知曲线C:y=x22,D为直线y=−12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.如图,在极坐标系Ox中,A(2, 0),B(√2, π4),C(√2, 3π4),D(2, π),弧AB^,BC^,CD^所在圆的圆心分别是(1, 0),(1, π2),(1, π),曲线M1是弧AB^,曲线M2是弧BC^,曲线M3是弧CD^.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=√3,求P的极坐标.设x,y,z∈R,且x+y+z=1.(1)求(x−1)2+(y+1)2+(z+1)2的最小值;(2)若(x−2)2+(y−1)2+(z−a)2≥13成立,证明:a≤−3或a≥−1.参考答案与试题解析2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:因为B={x|x2≤1},所以B={x|−1≤x≤1},又因为A={−1,0,1,2},所以A∩B={−1,0,1}.故选A.2.【答案】D【考点】复数的运算复数的基本概念【解析】此题暂无解析【解答】解:由z(1+i)=2i得,z=2i 1+i=2i(1−i) (1+i)(1−i)=1+i.故选D.3.【答案】D【考点】排列、组合的应用古典概型及其概率计算公式【解析】此题暂无解析【解答】解:根据题意,两位男同学和两位女同学随机排成一列,共有A44=4×3×2×1=24种方式,两位女同学相邻有2×A33=2×3×2×1=12种方式,所以两位女同学相邻的概率是1224=12,故选D.4.【答案】C【考点】容斥原理古典概型及其概率计算公式【解析】此题暂无解析【解答】解:分析如图,∴70100=0.7.故选C.5.【答案】B【考点】二倍角的正弦公式函数的零点【解析】此题暂无解析【解答】解:由题意得,f(x)=2sinx−sin2x=2sinx−2sinxcosx=2sinx(1−cosx),令f(x)=0,因为x在区间[0,2π]内,所以当sinx=0时,x可以取0,π,2π,当1−cosx=0时,x取0,2π,综上可得零点有3个.故选B.6.【答案】C【考点】等比数列的前n项和【解析】此题暂无解析【解答】解:由a5=3a3+4a1以及等比数列的基本性质,得q4−3q2−4=0,解得q2=4,又各项均为正数的等比数列,故q=2.根据S4=a1+a2+a3+a4=15,解得a1=1,故a3=a1q2=4.故选C.7.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:由题意得,y′=ae x+lnx+1,所以ae+1=2,解得,a=e−1,又2+b=ae,所以b=−1,故选D. 8.【答案】B【考点】空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:建立如图所示坐标系,连接BE,BD,设四边形ABCD边长为2,由图可知,B(0,2,0), E(1,0,√3), N(1,1,0), M(32,0,√32),所以|BM→|=√(32−0)2+(0−2)2+(√32−0)2=√94+4+34=√7,|EN→|=√(1−1)2+(1−0)2+(0−√3)2=√0+1+3=2,∴ EN≠BM,∴BM→=(32,−2,√32),BN→=(1,−1,0),BE→=(1,−2,√3).∵BM→=12BE→+BN→,由平面向量基本定理可知,点B , M , E ,N四点共面,∴BM与EN相交.故选B.9.【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:模拟执行程序,可得:x=1,s=0,不满足条件x<ε,执行循环体,x=12,s=1;不满足条件x<ε,执行循环体,x=14,s=1+12;不满足条件x<ε,执行循环体,x=18,s=1+12+14;不满足条件x<ε,执行循环体,x=116,s=1+12+14+18;不满足条件x<ε,执行循环体,x=132,s=1+12+14+18+116;不满足条件x<ε,执行循环体,x=164,s=1+12+14+18+116+132;不满足条件x<ε,执行循环体,x=1128,s=1+12+14+18+116+132+164;满足条件x<ε,退出循环,输出s=1+12+14+18+116+132+164=1×(1−127)1−12=2−12.故选C.10.【答案】B【考点】双曲线的应用【解析】此题暂无解析【解答】解:由题意得,c=3,因为点P在双曲线C上,所以可设P(−√20+4y25, y),因为|OP|=|OF|,所以(−√20+4y25)2+y2=32,解得,|y|=53,所以△OPF的面积为=12×3×53=52,故选B.11.【答案】A【考点】逻辑联结词“或”“且”“非”简单线性规划【解析】此题暂无解析【解答】解:由题意可作出可行域D,如图所示,可求得交点坐标为(2, 4),而2x+y≥9经过可行域,故命题p为真命题,而2x+y≤12经过可行域但并不是所有点都满足条件,故命题q为假命题,①p∨q为真命题;¬p为假命题,故②¬p∨q为假命题;¬q为真命题,故③p∧¬q为真命题;④¬p∧¬q为假命题,故为真命题的是①③,故选A.12.【答案】C【考点】指数函数与对数函数的关系偶函数函数单调性的性质【解析】此题暂无解析【解答】解:由偶函数的性质得,f (log 314)=f (−log 34)=f (log 34),又∵ log 34>1,1>2−23>2−32>0, ∴ log 34>2−23>2−32>0,∵ f(x)在(0,+∞)上单调递减, ∴ f (2−32)>f (2−23)>f (log 314). 故选C .二、填空题【答案】−√210【考点】平面向量的夹角 【解析】 此题暂无解析 【解答】解:由题意得, cos <a →,b →>=a →⋅b→|a →|⋅|b →|=−√210.故答案为:−√210.【答案】100【考点】等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:根据等差数列的基本性质,由a 3=5,a 7=13,可得a 1=1,d =2, 由S n =na 1+n(n−1)2d,n ∈N ∗,可得S 10=100,故答案为:100.【答案】(3, √15)【考点】椭圆中的平面几何问题 【解析】 此题暂无解析 【解答】解:由题意得,F 1(−4, 0),F 2(4, 0), M 为C 上一点且在第一象限, 所以可设M(t, √180−5t 29)(t >0),又因为△MF 1F 2为等腰三角形, 所以|MF 1|=|F 1F 2|, 所以(t +4)2+180−5t 29=64,解得,t =3或t =−21(舍去), 所以M 的坐标为(3, √15). 故答案为:(3, √15). 【答案】 118.8【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:由题意得,挖去的四棱锥的底面GHEF 是一个菱形, 面积S =12HF ×GE =12cm 2,所以四棱锥的体积V =13Sℎ=13×12×3=12cm 3,所以该模型的体积为V 剩余=6×6×4−12=132cm 3,又因为原料密度为0.9gcm 3,所以该模型所用原料质量为132×0.9=118.8g . 故答案为:118.8. 三、解答题【答案】解:(1)由已知得:0.70=a +0.20+0.15, 故a =0.35,所以b=1−0.05−0.15−0.70=0.10.故a=0.35,b=0.10.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【考点】众数、中位数、平均数频率分布直方图【解析】此题暂无解析【解答】解:(1)由已知得:0.70=a+0.20+0.15,故a=0.35,所以b=1−0.05−0.15−0.70=0.10.故a=0.35,b=0.10.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【答案】解:(1)由题设及正弦定理得,sinAsin A+C2=sinBsinA,因为sinA≠0,所以sin A+C2=sinB,由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2,因为cos B2≠0,故sin B2=12,因此B=60∘.(2)由题设及(1)知△ABC的面积S△ABC=√34a,由正弦定理得,a=csinAsinC=sin(120∘−C)sinC=√32tanC+12,由于△ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,所以30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32,因此,△ABC的面积的取值范围是(√38, √32).【考点】三角恒等变换综合应用正弦定理运用诱导公式化简求值【解析】此题暂无解析【解答】解:(1)由题设及正弦定理得,sinAsin A+C2=sinBsinA,因为sinA≠0,所以sin A+C2=sinB,由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2,因为cos B2≠0,故sin B2=12,因此B=60∘.(2)由题设及(1)知△ABC的面积S△ABC=√34a,由正弦定理得,a=csinA sinC=sin(120∘−C)sinC=√32tanC +12,由于△ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,所以30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32,因此,△ABC的面积的取值范围是(√38, √3 2).【答案】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一个平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM,如图所示,因为AB//DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG. 由已知,四边形BCGE是菱形,且∠EBC=60∘,得EM⊥CG,故CG⊥平面DEM,因此DM⊥CG在Rt△DEM中,DE=1,EM=√3,故DM=2,所以四边形ACGD的面积为4.【考点】直线与平面垂直平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一个平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM,如图所示,因为AB//DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60∘,得EM⊥CG,故CG⊥平面DEM,因此DM⊥CG,在Rt△DEM中,DE=1,EM=√3,故DM=2,所以四边形ACGD的面积为4.【答案】解:(1)f′(x)=6x2−2ax=2x(3x−a)令f′(x)=0,得x=0或x=a3,若a >0,当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0, 当x ∈(0,a3)时,f ′(x)<0,故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减, 若a =0,f(x)在(−∞,+∞)上单调递增,若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0,故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)当0<a <3时,由(1)知,在(0,a3)单调递减,在(a3,1)单调递增,所以f(x)在[0,1]的最小值为f (a3)=−a 327+2, 最大值为f(0)=2或f(1)=4−a ,于是 m =−a 327+2,M ={4−a,0<a <22,2≤a <3,所以M −m ={2−a +a 327,0<a <2a 327,2≤a <3,当0<a <2时,可知2−a +a 327单调递减,所以M −m 的取值范围是(827,2), 当2≤a <3时,a 327单调递增,所以M −m 的取值范围是[827,1), 综上,M −m 的取值范围是[827,2).【考点】利用导数研究函数的最值利用导数研究函数的单调性 【解析】 此题暂无解析【解答】解:(1)f ′(x)=6x 2−2ax =2x(3x −a) 令f ′(x)=0,得x =0或x =a3,若a >0,当x ∈(−∞,0)∪(a 3,+∞)时,f ′(x)>0, 当x ∈(0,a3)时,f ′(x)<0,故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减, 若a =0,f(x)在(−∞,+∞)上单调递增,若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0,故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)当0<a <3时,由(1)知,在(0,a3)单调递减,在(a3,1)单调递增, 所以f(x)在[0,1]的最小值为f (a3)=−a 327+2,最大值为f(0)=2或f(1)=4−a ,于是 m =−a 327+2,M ={4−a,0<a <22,2≤a <3,所以M −m ={2−a +a 327,0<a <2a 327,2≤a <3,当0<a <2时,可知2−a +a 327单调递减,所以M −m 的取值范围是(827,2), 当2≤a <3时,a 327单调递增,所以M −m 的取值范围是[827,1), 综上,M −m 的取值范围是[827,2).【答案】(1)证明:设D(t,−12), A(x 1,y 1),则x 12=2y 1,由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1, 整理得2tx 1−2y 1+1=0,设B(x 2,y 2),同理可得2tx 2−2y 2+1=0, 故直线AB 的方程为2tx −2y +1=0, 所以直线AB 过定点(0,12).(2)解:由(1)得直线AB 的方程为y =tx +12, 由{y =tx +12,y =x 22可得x 2−2tx −1=0, 于是x 1+x 2=2t,y 1+y 2=t(x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M(t,t 2+12),由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0,解得t =0或t =±1, 当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4;当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.【考点】直线恒过定点利用导数研究曲线上某点切线方程 平行向量的性质 点与圆的位置关系 中点坐标公式 斜率的计算公式 【解析】 此题暂无解析 【解答】(1)证明:设D(t,−12), A(x 1,y 1),则x 12=2y 1,由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1, 整理得2tx 1−2y 1+1=0,设B(x 2,y 2),同理可得2tx 2−2y 2+1=0, 故直线AB 的方程为2tx −2y +1=0, 所以直线AB 过定点(0,12).(2)解:由(1)得直线AB 的方程为y =tx +12, 由{y =tx +12,y =x22可得x 2−2tx −1=0, 于是x 1+x 2=2t,y 1+y 2=t(x 1+x 2)+1=2t 2+1, 设M 为线段AB 的中点,则M(t,t 2+12),由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0,解得t =0或t =±1,当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4; 当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.【答案】解:(1)由题设可得,弧AB^,BC ^,CD ^所在圆的极坐标方程分别为 ρ=2cosθ,ρ=2sinθ,ρ=−2cosθ.所以M 1的极坐标方程为ρ=2cosθ(0≤θ≤π4), M 2的极坐标方程为ρ=2sinθ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cosθ(3π4≤θ≤π). (2)设P(ρ, θ),由题设及(1)知, 若0≤θ≤π4,则2cosθ=√3,解得θ=π6; 若π4≤θ≤3π4,则2sinθ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cosθ=√3,解得θ=5π6.综上,P的极坐标为(√3,π6)或(√3, π3)或(√3, 2π3)或(√3, 5π6).【考点】圆的极坐标方程【解析】此题暂无解析【解答】解:(1)由题设可得,弧AB^,BC^,CD^所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=−2cosθ.所以M1的极坐标方程为ρ=2cosθ(0≤θ≤π4),M2的极坐标方程为ρ=2sinθ(π4≤θ≤3π4),M3的极坐标方程为ρ=−2cosθ(3π4≤θ≤π).(2)设P(ρ, θ),由题设及(1)知,若0≤θ≤π4,则2cosθ=√3,解得θ=π6;若π4≤θ≤3π4,则2sinθ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cosθ=√3,解得θ=5π6.综上,P的极坐标为(√3,π6)或(√3, π3)或(√3, 2π3)或(√3, 5π6).【答案】(1)解:由于[(x−1)+(y+1)+(z+1)]2=(x−1)2+(y+1)2+(z+1)2+2[(x−1)(y+1)+(y+1)(z+1)+(z+1)(x −1)]≤3[(x−1)2+(y+1)2+(z+1)2]故由已知得(x−1)2+(y+1)2+(z+1)2≥43,当且仅当x=53, y=−13, z=−13时等号成立,所以(x−1)2+(y+1)2+(z+1)2的最小值为43.(2)由于[(x−2)+(y−1)+(z−a)]2=(x−2)2+(y−1)2+(z−a)2+2[(x−2)(y−1)+(y−1)(z−a)+(z−a)(x −2)]≤3[(x−2)2+(y−1)2+(z−a)2]故由已知得(x−2)2+(y−1)2+(z−a)2≥(2+a)23,当且仅当x=4−a3,y=1−a3,z=2a−23时等号成立,因此(x−2)2+(y−1)2+(z−a)2的最小值为(2+a)23.由题设知(2+a)23≥13,解得a≤−3或a≥−1.【考点】一般形式的柯西不等式【解析】此题暂无解析【解答】(1)解:由于[(x−1)+(y+1)+(z+1)]2=(x−1)2+(y+1)2+(z+1)2+2[(x−1)(y+1)+(y+1)(z+1)+(z+1)(x −1)]≤3[(x−1)2+(y+1)2+(z+1)2]故由已知得(x−1)2+(y+1)2+(z+1)2≥43,当且仅当x=53, y=−13, z=−13时等号成立,所以(x−1)2+(y+1)2+(z+1)2的最小值为43.(2)由于[(x−2)+(y−1)+(z−a)]2=(x−2)2+(y−1)2+(z−a)2+2[(x−2)(y−1)+(y−1)(z−a)+(z−a)(x −2)]≤3[(x−2)2+(y−1)2+(z−a)2]故由已知得(x−2)2+(y−1)2+(z−a)2≥(2+a)23,当且仅当x=4−a3,y=1−a3,z=2a−23时等号成立,因此(x−2)2+(y−1)2+(z−a)2的最小值为(2+a)23.由题设知(2+a)23≥13,解得a≤−3或a≥−1.。

2019年全国III卷高考数学(文科)试题(带答案)

2019年全国III卷高考数学(文科)试题(带答案)

A
因此DM.LCG.
在Rt6.DEM中 , DE=l. EM=石 ,故DM=2.
所以四边形ACGD的面积为4.
20. (12分)
已知函数/(x)=2x'-ax'+2 .
( 1 )讨论/(x)的单调性;
(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m, 求M-m的取伯范围
解:
(I) f'(x)=6x1 -2ax=2x(3x-a).
l烦率/组距
03. 0•········-·····-·········
�::;�ti::::1· .
0.05
频率/纠距
罚i1··:······
00. 51········
芦Lt 0 2,5 3,5 4.5 5.5 6 5 7.5
甲离子残衔百分比n方图
乙离子残钳Li分比五方图
记C为水件: "乙离千残留在体内的百分比不低千55. ",根据直方图得到P(C )的估计值为0.70
(I)求乙离子残衍百分比直方图中a, b的值;
(2)分别估计甲、乙离子残衍百分比的平均值(同一组中的数据用该组区间的中点值为代表) .
一2 —
蛁:
(I)山已知得0.70=a+0.20+0.15 ,故
a=0.35 .
b=1-0.0 S-O.IS -0.70 =0.IO
(2)甲离子残留百分比的平均值的估计值为
B.
/(log,
一I4)汀(2-,' )汀
_2 (2勺
--2
- -,
l
D. /(2 1)>/(2')>/(log) 一4)
二、填空题:本题共4小题,每小题5分,共20分.

2019年全国卷Ⅲ文科数学试题文档版(含答案)

2019年全国卷Ⅲ文科数学试题文档版(含答案)
f Leabharlann 2 3 ) f (log3
1) 4
B.
f
(log3
1) 4

f
−2
(2 3 )

f
−3
(2 2 )
D.
−2
f (2 3 )
−3
f (2 2 )
f (log3
1) 4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.已知向量 a,b , a = (2, 2) , b = (−8, 6) ,则 cos a,b = __________.
B. a = e,b = 1
C. a = e-1,b = 1
D. a = e-1,b = −1
8. 如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平面 ABCD,M
是线段 ED 的中点,则
A.BM=EN,且直线 BM,EN 是相交直线
B.BM≠EN,且直线 BM,EN 是相交直线
3
故 f (x) 在 (−, 0) , ( a , +) 单调递增,在 (0, a ) 单调递减;
3
3
若 a = 0 , f (x) 在 (−, +) 单调递增;
若 a 0 ,则当 x (−, a) U (0, +) 时, f (x) 0 ;当 x ( a ,0) 时, f (x) 0 .
20.(12 分) 已知 f (x) = 2x3 − ax2 + 2 . (1)讨论 f (x) 的单调性; (2)当 0 a 3 时,记 f (x) 在区间[0,1] 的最大值为 M,最小值为 m,求 M − m 的取值
范围.
21.(12 分)

2019年全国卷3文科数学试题及参考答案

2019年全国卷3文科数学试题及参考答案

.12019 年普通高等学校招生全国统一考试文科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的.1.已知集合 A = {x | x - 1 ≥ 0}, B = {0, 1, 2},则 A I B = ()A . {0}B . { }C . {1, 2}D . {0, 1, 2}【答案】C【解析】 A : x ≥ 1,∴ A I B = {1, 2}【考点】交集2. (1 + i )(2 - i ) = ()A . -3 - iB . -3 + iC . 3 - iD . 3 + i【答案】D【解析】 (1 + i )(2 - i ) = 2 + i - i 2 = 3 + i【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯 眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬 合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.8俯视方向A. B. C. D.【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B答案能看见小长方体的上面和左面,C答案至少能看见小长方体的左面和前面,D答案本身就不对,外围轮廓不可能有缺失【考点】三视图4.若sinα=1,则cos2α=()3778 B.C.-D.-9999【答案】B【解析】cos2α=1-2sin2α=7 9【考点】余弦的二倍角公式5.某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7【答案】B【解析】1-0.45-0.15=0.4【考点】互斥事件的概率6.函数f(x)=tan x1+tan2x的最小正周期为()A.π=(1+tan2x)cos2x=sin x cos x=sin2x x≠+kπ⎪,1+tan x222π⎦⎣⎦4+2sin θ+==22+2sin θ+⎪∈⎡⎣2,32⎤⎦⎭πB.C.πD.2π42【答案】C【解析】f(x)=tan x tan x⨯cos2x1⎛⎫⎝⎭T=2π=π(定义域并没有影响到周期)2【考点】切化弦、二倍角、三角函数周期7.下列函数中,其图像与函数y=ln x的图像关于直线x=1对称的是A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)【答案】B【解析】采用特殊值法,在y=ln x取一点A(3,ln3),则A点关于直线x=1的对称点为A'(-1,ln3)应该在所求函数上,排除A,C,D【考点】函数关于直线对称8.直线x+y+2=0分别与x轴、y轴交于点A,B两点,点P在圆(x-2)2+y2=2上,则∆ABP面积的取值范围是()A.[2,6]B.[4,8]【答案】AC.⎡⎣2,32⎤D.⎡22,32⎤【解析】A(-2,0),B(0,-2),∴AB=22,可设P(2+2cosθ,2sinθ),则dP-AB⎛π⎫⎝4⎪⎛π2⎝4⎭P-A B=2dP-AB∈[2,6]注:dP-AB的范围也可以这样求:设圆心为O,则O(2,0),故dP-AB∈⎡d O-AB+2⎤,而d O-AB=42=22,∴d P-AB∈⎡2,32⎤【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 2018年全国卷3文科数学试题及其参考答案第3页(共13页)⎣-2,dO-AB⎦⎣⎦O1()2⎫f(1)=2,排除A、B;y'=-4x3+2x=2x1-2x2,故函数在 0,2⎪⎭【解析】e==1+2=229.y=-x4+x2+2的图像大致为()y1A.O1xy1B.O1xyC.1D.y 1O1x x【答案】D【解析】⎛⎝⎪单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)10.已知双曲线的C:距离为x2y2-a2b2=1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的A.2B.2C.【答案】D 322D.22c b2a a2=2⇒a=b∴渐近线为x-y=0故d=4【考点】双曲线的离心率、渐近线之间的互相转化11.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C= A.π,而cos C==93⎪⎭BE=AB=23,13.已知向量a=(1,2),b=(2,-2),c=(1,λ).若c//2a+b,则λ=_______.()a2+b2-c24()πππB.C.D.2346【答案】C【解析】S∆ABC1a2+b2-c2a2+b2-c2 =ab s in C=242ab故1absin C=22abcosC1π=abcosC,∴C=424【考点】三角形面积公式、余弦定理12.设A,B,C,D是同一个半径为4的球的球面上四点,∆ABC为等边三角形且其面积为93,则三棱锥D-ABC的体积最大值为()A.123B.183C.243D.543【答案】B【解析】如图,O为球心,F为等边∆ABC的重心,易知OF⊥底面ABC,当D,O,F三点共线,即DF⊥底面ABC时,三棱锥D-ABC的高最大,体积也最大.此时:∆ABC等边⎫⎪⎬⇒AB=6,S∆ABC23在等边∆ABC中,BF=33BODFAEC在Rt∆OFB中,易知OF=2,∴DF=6,故(VD-ABC )max1=⨯93⨯6=1833【考点】外接球、椎体体积最值二、填空题:本大题共4小题,每小题5分,共20分r r r r r r15.若变量 x, y 满足约束条件 ⎨ x - 2 y + 4 ≥ 0 ,则 z = x + y 的最大值是_________.⎪ x - 2 ≤ 0分别代入目标函数得到 - , 3 , - ,故最大值为 3(为了严谨可以将最大值点 (2, 3)代入【答案】12r r【解析】 2a + b = (4, 2 ) ,故 2 = 4λ【考点】向量平行的坐标运算14. 某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评 价,该公司准备进行抽样调查,可供选择的抽样方式有简单随机抽样,分层抽样和系统抽 样,则最适合的抽样方法是______.【答案】分层抽样【解析】题干中说道“不同年龄段客户对其服务的评价有较大差异”,所以应该按照年龄 进行分层抽样【考点】抽样方法的区别⎧2 x + y + 3 ≥ 0⎪ 1 3 ⎩【答案】 3【解析】采用交点法:(1)(2)交点为 (-2, 1),(2)(3)交点为 (2, 3),(1)(3)交点为 (2, - 7 )5 13 3方程(1)检验一下可行域的封闭性)本题也可以用正常的画图去做 【考点】线性规划16. 已知函数 f (x ) = ln【答案】 -2(1 + x2 - x )+ 1 , f (a ) = 4 ,则 f (-a ) = _______.【解析】令 g (x ) = ln( 1 + x 2 - x ),则 g (- x ) = ln ( 1 + x 2 + x )= - g (x ) ,∴ f (a ) = g (a ) + 1 = 4 ,而 f (-a ) = g (-a ) + 1 = - g (a ) + 1 = -2【考点】对数型函数的奇偶性1 ( )1 1 - (-2)m= 63 ,得 -2 三.解答题:共 70 分. 解答应写出文字说明,证明过程或演算步骤.. 第 17~21 题为必考 题,每个试题考生必须作答. 第 22、23 题为选考题,考生根据要求作答.(一)必考题:共 60 分. 17. (12 分)等比数列 {a n}中, a = 1, a = 4a .1 5 3(1)求 {a n}的通项公式;(2)记 S 为 {a n n}的前 n 项和. 若 S = 63,求 m .m【答案】(1) a = 2n -1 或 a = (-2)n -1 ;(2) m = 6nn【解析】(1) a = 4a = a q 2 ,∴q = ±2 ,∴ a = 2n -1 或 a = (-2)n -153 3 n n(2) 当 q = 2 时, S =m1( - (2)m)= 63 ,解得 m = 6-1当 q = -2 时, S =m3( )m= -188 无解综上: m = 6【考点】等比数列通项公式与前 n 项和公式18. (12 分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生 产方式. 为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的 工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8 6 5 5 6 8 997 6 2 7 0 1 2 2 3 4 5 6 6 8 9877 6 5 43 3 2 8 1 44 52 119(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表:超过 m不超过 m第一种生产方式(3)由(2)可知 K 2 = 40 (152 - 52 )2如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 C D 所在的平面垂直, M 是 CD 第二种生产方式(3)根据(2)中的列联表,能否有 99% 的把握认为两种生产方式的效率有差异?附: K 2 =n (ad - bc )2(a + b )(c + d )(a + c )(b + d ) ,P (K 2 ≥ k )0.050 0.0100.001 k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在 80min~90min 之间,故可估计第二组的数据平均 值要小于第一组数据平均值,事实上E = 168 + 72 + 76 + 77 + 79 + 82 + 83 + 83 + 84 + 85 + 86 + 87 + 87 + 88 + 89 + 90 + 90 + 91+ 91+ 9220 = 84同理 E = 74.7,Q E < E ,故第二组生产方式效率更高2 21(2)由茎叶图可知,中位数 m = 79 + 81 2= 80 ,且列联表为:超过 m不超过 m第一种生产方式第二种生产方式15551520 ⨯ 20 ⨯ 20 ⨯ 20 = 10 > 6.635 ,故有 99% 的把握认为两种生产方式的效率有差异【考点】茎叶图、均值及其意义、中位数、独立性检验19.(12 分)» »上异于 C, D 的点.(1)证明:平面 AMD ⊥ 平面 BMC ;(2)在线段 AM 上是否存在点 P ,使得 MC / / 平面 PBD ?说明理由.BC ⊥ CD ⎭ 已知斜率为 k 的直线 l 与椭圆 C : + = 1交于 A, B 两点,线段 AB 的中点为MDCAB【答案】(1)见解析;(2) P 为 AM 中点ABCD ⊥ CDM ⎫ ⎫⎬ ⇒ BC ⊥ DCM ⇒ BC ⊥ DM ⎪ 【解析】(1) ⎬ ⇒ DM ⊥ BMC ⇒ ADN ⊥ BMCMC ⊥ DM ⎪⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)当 P 为 AM 的中点时, MC / / 平面 PBD . 证明如下连接 BD , AC 交于点 O ,易知 O 为 AC 中点,取 AM 中点 P ,连接 PO ,则 PO / / AC , 又 MC ⊄ 平面 PBD , PO ⊂ 平面 PBD ,所以 MC / / 平面 PBDMDPOCAB【考点】面面垂直的判定、线面垂直、存在性问题20. (12 分)x 2 y 24 3M (1, m )(m > 0) .(1)证明: k < - 12;uuur uuur uuur ruuur uuur uuur (2)设 F 为 C 的右焦点, P 为 C 上一点,且 FP + FA + FB = 0 . 证明 2 FP = FA + FB .【答案】(1)见解析;(2)见解析⎪⎪ 4 3x 2 y 2 ⎪ 2 + 2 = 1 ⎩ 1 2 ⋅ 1 2 =- , k ⋅ k = - (此公式可以作为点差法的二级结论在选填题中直接 用),∴m = - ,易知中点 M 在椭圆内, + < 1 ,代入可得 k < - 或 k > ,又 OM AB 联立法:设直线方程为 y = kx + n ,且 A (x , y ), B (x , y ) ,联立 ⎨ 4 可得,⎪⎩ y = kx + n⎪⎪ 1) 4k 2 + 3 6n, y + y = k (x + x ) + 2n =2 +3 x 2+ 8knx + 4n 2-12 = 0 ,则 ⎨⎪ x x = 4n 2- 12 4k 2 + 3⎩⎪⎪ M ∴⎨,两式相除可得 m = - ,后续过程和点差法一样(如果用 ∆ 算的话⎪ y = m = uuur uuur uuur r uuur uuuur r(2) Q FP + FA + FB = 0 ,∴ F P + 2FM = 0 ,即 P (1, - 2m ) ,∴ + = 1 ,∴m = 3( m > 0)∴ k = -1, n = m - k = ,⎩- x ⎪+ - x ⎪ = 2a - (x + x ) = 3 (椭圆的第二定义) a c ⎭ a ⎝ c ⎭2019 年全国卷 3 文科数学试题及参考答案⎧ x 2 y 21 + 1 = 1 【解析】(1) 点差法:设 A (x , y ), B (x , y ) ,则 ⎨ 1 12 2⎪ 43 相减化简可得:y - y y + y 3 3x - x x + x 4 4 1 2 1 23 1 m 2 1 1 4k4 3 2 2m > 0 ,∴k < 0 ,综上 k < - 12⎧ x 2 y 2 ⎪ + = 1 3 1 1 2 2(4k⎧ -8kn 1 2 1 2⎧-4kn x = 1 =4k 2 + 33 3n 4k⎪ M 4k 2 + 3 比较麻烦)1 4m2 4 37 44由(1)得联立后方程为 7x 2 -14x + 1 4= 0 ,uuur uuur ∴ FA + FB =- 1)2 + 3 1 - 1 ⎪ = 2 - 1 代入椭圆方程消掉 y4 ⎭2x x + xc ⎛ a 2 ⎫ c ⎛ a 2⎫ c1 2a 1 2uuur(或者 FA =(x 1- 1)2 + y 2 = (x1 1⎛ x 2 ⎫ x⎝1uuur uuur uuur同理 FB = 2 - 2 ,∴ FA + FB = 4 -12= 3 )22uuur 而 FP =3 22018 年全国卷 3 文科数学试题及其参考答案 第10页(共13页)e x,f'(0)=2 ()在平面直角坐标系xOy中,e O的参数方程为⎨y=sinθ()2019年全国卷3文科数学试题及参考答案uuur uuur uuur∴FA+FB=2FP【考点】点差法、直线与椭圆联立求解、向量的坐标运算、利用椭圆方程消y,y121.(12分)2已知函数f(x)=ax2+x-1e x.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【答案】(1)2x-y-1=0;(2)见解析【解析】(1)f'(x)=-ax2+(2a-1)x+2因此曲线y=f(x)在点(0,-1)处的切线方程为:2x-y-1=0(2)当a≥1时,f(x)+e≥x2+x-1+e x+1e-x(利用不等式消参)令g(x)=x2+x-1+e x+1则g'(x)=2x+1+e x+1,g''(x)=2+e x+1>0,∴g'(x)单调增,又g'(-1)=0,故当x<-1时,g'(x)<0,g(x)单减;当x>-1时,g'(x)>0,g(x)单增;故g(x)≥g(-1)=0因此f(x)+e≥0【考点】切线方程、导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程(10分)⎧x=cosθ⎩(θ为参数),过点0,-2且倾斜角为α的直线l与e O交于A,B两点.(1)求α的取值范围;2018年全国卷3文科数学试题及其参考答案第11页(共13页)⎛ π 3π ⎫⎪ ⎛ 【答案】(1) α ∈ , ;(2) ⎨ ⎪2 2 ⎝ 4 4 ⎪ y = -α ∈ ⎛ , ⎭ ⎭ k ∈ (-∞, - 1)U (1, + ∞ ) ,又 k = tan α ,∴α ∈ , ⎪ U 2 , 4 ⎪综上, α ∈ , ⎭α ∈ ⎛ , α ∈ ⎛ ,⎪ ⎩ ⎪⎭ ⎭ ⎭ ⎭ ⎪ x =sin 2αα ∈ ⎛ ,⎩⎭ ⎭2019 年全国卷 3 文科数学试题及参考答案(2) 求 AB 中点 P 的轨迹的参数方程.⎧ x = 2 sin 2α ⎭ - cos2α ⎝⎩ 2 2【解析】(1)当 α =π时,直线 l : x = 0 ,符合题意;2,π 3π ⎫ ⎫ ⎝ 4 4 ⎪ ⎪当 α ≠π 2时,设直线 l : y = kx - 2 ,由题意得 d = 2 k 2 + 1< 1 ,即⎛ π π ⎫ ⎛ π 3π ⎫ ⎝ 42 ⎭ ⎝⎭⎛ π 3π ⎫⎝ 4 4 ⎪⎧ x = t cos α ⎛ (2)可设直线参数方程为 ⎨ ⎪ y = - 2 + t sin α ⎝t 2 - 2 2t sin α + 1 = 0∴t = t 1 + t2= 2 sin αP2⎧ x = 2 sin α cos α ⎛ π3π ⎫ ⎫ ⎨⎝ 44 ⎪ ⎪ ⎪⎩ y = - 2 + 2 sin α sin α ⎝ π 3π ⎫ ⎫ ⎝ 4 4 ⎪ ⎪ ,代入圆的方程可得:⎧ 2即点 P 的轨迹的参数方程为 ⎨ 2 ⎪ y = - 2 cos 2α, ⎛⎝π 3π ⎫ ⎫⎝ 4 4 ⎪ ⎪(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况)【考点】参数方程、直线的斜率,轨迹方程23. 选修 4 - 5 :不等式选讲(10 分)已知函数 f (x ) = 2x + 1 + x - 1 .(1)画出 y = f (x )的图像;2018年全国卷3文科数学试题及其参考答案第12页(共13页)⎪ 2 1 【解析】(1) f (x ) = ⎨ x + 2, -≤ x ≤ 1 ,图象如下 22019 年全国卷 3 文科数学试题及参考答案(2)当 x ∈ [ 0, + ∞ ) 时, f (x ) ≤ ax + b ,求 a + b 的最小值.【答案】(1)见解析;(2)5⎧1 -3x, x < - ⎪ ⎪ ⎪⎪3x, x > 1 ⎪⎩y3 21.5-0.5 O 1x(2)由题意得,当 x ≥ 0 时, ax + b 的图象始终在 f (x ) 图象的上方,结合(1)中图象可知, a ≥ 3, b ≥ 2 ,当 a = 3, b = 2 时, a + b 最小,最小值为 5,【考点】零点分段求解析式、用函数图象解决恒成立问题2018 年全国卷 3 文科数学试题及其参考答案 第13页(共13页)。

2019年5月2019届高三第三次全国大联考(江苏卷)数学卷(考试版)

2019年5月2019届高三第三次全国大联考(江苏卷)数学卷(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)……○………………内………………○……………………○………………外………………○………………… 学校:______________姓名:_绝密★启用前|学科网试题命制中心2019年第三次全国大联考【江苏卷】数学Ⅰ(考试时间:120分钟 试卷满分:160分)注意事项:1.本试卷均为非选择题(第1题~第20题,共20题)。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上........) 1.若复数i(12i)z =-,其中i 是虚数单位,则z =______________. 2.已知集合{|A y y x ==,{1,0,1,2}B =-,那么A B I =______________.3.在学校的春季运动会上,一个小组的5位学生的立定跳远的成绩如下:1.9,1.8,2.3,2.4,2.1(单位:米),则这5位学生立定跳远成绩的中位数为______________米.4.运行下面的程序框图,如果输入36,15m n ==,则输出的n 的值为______________.5.不等式2lg(1)lg(35)x x +<+的解集为______________.(用区间形式表示)6.已知正六边形123456A A A A A A 的边长为1,在这6个顶点中任意取2个不同的顶点(16)i j A A i j ≤<≤、 得到线段,则||{1,2}i j A A ∉的概率为______________.7.现有橡皮泥制作成的圆柱和圆锥各一个,已知它们的底面半径都为r ,高都为2,现在把它们重新捏成一个实心球体,其半径也为r (不计捏合过程中的损耗),则这个实心球体的表面积为______________. 8.若矩形的长和宽分别为,,其对角线的长为5,则该矩形的周长的最大值为______________.9.已知双曲线的方程为22221x y a b-=(a >0,b >0),以原点为圆心且过双曲线的焦点的圆弧被双曲线四等分,则双曲线离心率的平方为______________.10.已知曲线Γ上的点到(2,0)的距离比到直线5x =-的距离小3,直线1l 与曲线Γ交于11(,),M x y 22(,)N x y 两点,点3344(,),(,)P x y Q x y 在曲线Γ上,若1234,,,x x x x 均不相等,且MP NQ k k =-,则MN NP PQ QM k k k k +++=______________.11.将函数()f x 的图象向左平移π3个单位后,得到函数2333()cos 4sin 222g x x x x =+的图象,则函数()f x 在π[0,3上的值域为______________. 12.如图,0,|||2OA OB OA OB ⋅===u u u r u u u r u u u r u u u r,点C 是线段AB 上的一个动点,D 为OB 的中点,则DC OC⋅u u u r u u u r 的最小值为______________.13.在锐角三角形ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足222cos cos sin 22a c bB BC -=-,1cos 2A A +的取值范围为______________. 14.若存在实数11[,]22a ∈-,使函数()||()(1)f x x x a t a =---有3个不同的零点,则实数t 的取值范围为______________.i j A A a b数学试题 第3页(共6页) 数学试题 第4页(共6页)二、解答题(本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)如图,在三棱锥P ABC -中,PA AB =,,M N 分别为棱,PB PC 的中点,平面PAB ⊥平面PBC . 求证:(1)BC ∥平面AMN ; (2)平面AMN ⊥平面PBC .16.(本小题满分14分)在ABC △中,内角,,A B C 的对边分别为,,a b c ,且tan A =.(1)求角C 的大小;(2)若2sin cos sin 2sin()A B C A B +=+,1c =,求ABC △的面积. 17.(本小题满分14分)某型号汽车的刹车距离s (单位:米)与刹车时间t (单位:秒)的关系为32510(0)s t k t t t =-⋅++>,其中k 是一个与汽车的速度以及路面状况等情况有关的量.(注:汽车从刹车开始到完全静止所用的时间叫做刹车时间,所经过的距离叫做刹车距离.)(1)某人在行驶途中发现前方大约10米处有一障碍物,若此时k =8,紧急刹车的时间少于1秒,试问此人是否要紧急避让?(2)要使汽车的刹车时间不小于1秒,且不超过2秒,求k 的取值范围. 18.(本小题满分16分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,上顶点为B ,右焦点为F ,点4(,)(0)3T t t >是椭圆C 上的一点,x 轴上到B ,T 两点距离之和最小的点为右焦点F . (1)求椭圆C 的标准方程;(2)过原点O 作直线l 交椭圆C 于两个不同的点M ,N ,若点P 是椭圆C 上一点,三角形PMN 是以MPN ∠为顶角的等腰三角形,且36tan =∠PMN ,求直线l 的方程. 19.(本小题满分16分)设函数2()(ln 1)(0)f x x a x a =-+>,其中e 为自然对数的底数.(1)求()f x 的极小值;(2)当0a >时,求证:2(e )1a f >. 20.(本小题满分16分)设数列{}n a 的前n 项积为n T .若对任意正整数n ,总存在正整数m ,使得n m T a =,则称数列{}n a 是“R 数列”.(1)若数列{}n a 的前n 项积(1)22n n nT +=(n *∈N ),证明:{}n a 是“R 数列”;(2)设{}n a 是等比数列,其首项13a =,公比为q .若{}n a 是“R 数列”,求q 的值;(3)证明:对任意的等比数列{}n a ,总存在两个“R 数列”{}n b 和{}n c ,使得n n n a b c =⋅(n *∈N )成立.数学试题 第5页(共6页) 数学试题 第6页(共6页)数学Ⅱ(附加题)(考试时间:30分钟 试卷满分:40分)注意事项:1.本试卷均为非选择题(第21题~第23题)。

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)和答案

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)和答案

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2}2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.4.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.85.(5分)函数f(x)=2sinx﹣sin2x在[0,2π]的零点个数为()A.2B.3C.4D.56.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.27.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣18.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)已知F是双曲线C:﹣=1的一个焦点,点P在C 上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(5分)记不等式组表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④12.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(文科)(新课标ⅲ)-解析版

2019年全国统一高考数学试卷(文科)(新课标ⅲ)-解析版

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1A =-,0,1,2},2{|1}B x x = ,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}【解答】解:因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==- ,所以{1A B =- ,0,1},故选:A .2.若(1)2z i i +=,则(z =)A .1i--B .1i -+C .1i -D .1i+【解答】解:由(1)2z i i +=,得22(1)12i i i z i -==+1i =+.故选:D .3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A .16B .14C .13D .12【解答】解:用捆绑法将两女生捆绑在一起作为一个人排列,有323212A A =种排法,再所有的4个人全排列有:4424A =种排法,利用古典概型求概率原理得:121242p ==,故选:D .4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.8【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出韦恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:700.7100=.故选:C .5.函数()2sin sin 2f x x x =-在[0,2]π的零点个数为()A .2B .3C .4D .5【解答】解:函数()2sin sin 2f x x x =-在[0,2]π的零点个数,即:2sin sin 20x x -=在区间[0,2]π的根个数,即2sin sin 2x x =,令左右为新函数()h x 和()g x ,()2sin h x x =和()sin 2g x x =,作图求两函数在区间[0,2]π的图象可知:()2sin h x x =和()sin 2g x x =,在区间[0,2]π的图象的交点个数为3个.故选:B .6.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =)A .16B .8C .4D .2【解答】解:设等比数列{}n a 的公比为(0)q q >,则由前4项和为15,且53134a a a =+,有231111421111534a a q a q a q a q a q a ⎧+++=⎪⎨=+⎪⎩,∴112a q =⎧⎨=⎩,∴2324a ==,故选:C .7.已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-【解答】解:x y ae xlnx =+的导数为1x y ae lnx '=++,由在点(1,)ae 处的切线方程为2y x b =+,可得102ae ++=,解得1a e -=,又切点为(1,1),可得12b =+,即1b =-,故选:D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线【解答】解: 点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,BM ∴⊂平面BDE ,EN ⊂平面BDE ,BM 是BDE ∆中DE 边上的中线,EN 是BDE ∆中BD 边上的中线,∴直线BM ,EN 是相交直线,设DE a =,则2BD a =,2235244BE a a a =+=,62BM a ∴=,223144EN a a a =+=,BM EN ∴≠,故选:B .9.执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于()A .4122-B .5122-C .6122-D .7122-【解答】解:第一次执行循环体后,1s =,12x =,不满足退出循环的条件0.01x <;再次执行循环体后,112s =+,212x =,不满足退出循环的条件0.01x <;再次执行循环体后,211122s =++,312x =,不满足退出循环的条件0.01x <;⋯由于610.012>,而710.012<,可得:当261111222s =++++⋯,712x =,此时,满足退出循环的条件0.01x <,输出2661111122222s =+++⋯=-.故选:C .10.已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为()A .32B .52C .72D .92【解答】解:如图,不妨设F 为双曲线22:145x y C -=的右焦点,P为第一象限点.由双曲线方程可得,24a =,25b =,则3c =,则以O 为圆心,以3为半径的圆的方程为229x y +=.联立22229145x y x y ⎧+=⎪⎨-=⎪⎩,解得P ,5)3.5sin 9POF ∴∠=.则15533292OPF S ∆=⨯⨯⨯=.故选:B .11.记不等式组6,20x y x y +⎧⎨-⎩ 表示的平面区域为D .命题:(,)p x y D ∃∈,29x y + ;命题:(,)q x y D ∀∈,212x y + .下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q⌝∧⌝这四个命题中,所有真命题的编号是()A .①③B .①②C .②③D .③④【解答】解:作出等式组6,20x y x y +⎧⎨-⎩的平面区域为D .在图形可行域范围内可知:命题:(,)p x y D ∃∈,29x y + ;是真命题,则p ⌝假命题;命题:(,)q x y D ∀∈,212x y + .是假命题,则q ⌝真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p q ∨真;②p q ⌝∨假;③p q ∧⌝真;④p q ⌝∧⌝假;故答案①③真,正确.故选:A .12.设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A .233231(log )(2)(2)4f f f -->>B .233231(log (2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>【解答】解:()f x 是定义域为R 的偶函数∴331(log )(log 4)4f f =,33log 4log 31>= ,2303202221--<<<<=,23323022log 4--∴<<<()f x 在(0,)+∞上单调递减,∴233231(2)(2)()4f f f log -->>,故选:C .二、填空题:本题共4小题,每小题5分,共20分。

2019年普通高等学校招生全国统一考试(全国III卷文科) 数学试题及答案(教师版)

2019年普通高等学校招生全国统一考试(全国III卷文科) 数学试题及答案(教师版)

2019年普通高等学校招生全国统一考试(全国III卷文科)数学试题注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

)1.已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B= (A)A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2.若z(1+i)=2i,则z=(D)A.−1−i B.−1+i C.1−i D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(D)A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为(C)A.0.5 B.0.6 C.0.7 D.0.85.函数f(x)=2sinx−sin2x在[0,2π]的零点个数为(B)A.2 B.3 C.4 D.56.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=(C) A.16 B.8 C.4 D.27.已知曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,则(D) A.a=e,b=–1 B.a=e,b=1 C.a=e–1,b=1 D.a=e–1,b=−18.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则(B)A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于(C)A.2−124B. 2−125C. 2−126D. 2−12710.已知F是双曲线C:x24−y25=1的一个焦点,点P在C上,O为坐标原点,若|OP|=|OF|,则△OPF的面积为(B)A.32B.52C.72D.9211.记不等式组{x+y≥6,2x−y≥0表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题(A)①p∨q②¬p∨q③p∧¬q④¬p∧¬q 这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则(C) A.f(log314)>f(2−32)>f(2−23)B.f(log314)>f(2−23)>f(2−32)C.f(2−32)>f(2−23)>f(log314)D.f(2−23)>f(2−32)>f(log314)二、填空题(本题共4小题,每小题5分,共20分。

2019年高考全国卷Ⅲ文科数学试题(含答案)

2019年高考全国卷Ⅲ文科数学试题(含答案)

绝密★2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.85. 函数()2sin sin2f x x x =-在[0,2]π的零点个数A .2B .3C .4D .56. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM ,EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9211.记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x是定义域为R的偶函数,且在(0+)∞,单调递减,则A.233231(log)(2)(2)4f f f-->>B.233231(log)(2)(2)4f f f-->>C.233231(2)(2)(log)4f f f-->>D.233231(2)(2)(log)4f f f-->>二、填空题:本题共4小题,每小题5分,共20分。

【全国卷Ⅲ】2019年普通高等学校全国统一考试文数试题(Word版,含答案)

【全国卷Ⅲ】2019年普通高等学校全国统一考试文数试题(Word版,含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 27.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OP F △的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +⎧⎨-≥⎩…表示的平面区域为D .命题:(,),2p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+….下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 二、填空题:本题共4小题,每小题5分,共20分。

2019年全国高考全国卷Ⅲ文科数学(含答案)

2019年全国高考全国卷Ⅲ文科数学(含答案)

2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.85. 函数()2sin sin2f x x x =-在[0,2]π的零点个数A .2B .3C .4D .56. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM ,EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9211.记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设()f x是定义域为R的偶函数,且在(0+)∞,单调递减,则A.233231(log)(2)(2)4f f f-->>B.233231(log)(2)(2)4f f f-->>C.233231(2)(2)(log)4f f f-->>D.233231(2)(2)(log)4f f f-->>二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科数学试题 第1页(共6页) 文科数学试题 第2页(共6页)
绝密★启用前|
2019年第三次全国大联考【新课标Ⅰ卷】
文科数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知全集R U =,集合{|3}A x x =>,
{|ln 1}B x x =>,则()U A B =ð
A .[e,)+∞
B .[3,)+∞
C .(1,3]
D .(e,3]
2.设实数,m n 满足35i
i 1i
m n ++=
-,则2m n +
= A .3 B .2
C .5
D .6
3.已知等差数列{}n a 满足:310a =,722a =,则数列1
{(1)}n n a +-⋅的前40项和为
A .60-
B .60
C .120-
D .120
4.运行如图所示的程序框图,m 为常数,若输出的k 的值为2,则m=
A .
50
3
B .
50
7
C .
10
3
D .
100
7
5.设函数2
||4()3
x x f x =,则函数()f x 的图象大致为
6.如图,边长为2的正方形ABCD 中,点
E 是线段BD 上靠近D 的三等分点,
F 是线段BD 的中点,则
AF CE ⋅=
A .4
-
B .3-
C .6-
D .2-
7.设定义域为R 的奇函数()f x 满足(2)(1)f x f x +=-,若(1)1f =,则62
()i f i ==∑
A .0
B .1
C .41
D .42
8.已知双曲线22
22:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,点M 与M '关于x 轴对称,
12M F MF '⊥.若122,
,MF MF b
k k a
成等比数列(其中1MF k 2,MF k 分别是直线12,MF MF 的斜率)
,则双曲线C 的离心率为
A .
2
B C D .3
文科数学试题 第3页(共6页) 文科数学试题 第4页(共6页)
9.欧拉三角形定义如下:ABC △的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为ABC △的欧拉三角形.已知ABC △中,3,2AB AC BC ===,ABC △的垂心为P ,,,AP BP CP 的中点分别为111,,A B C ,111A B C △即为ABC △的欧拉三角形,往ABC △中随机投掷一点,该点落在11PA B △或
11PB C △内的概率为
A .
1
9
B .
1
8
C .
532
D .964
10.正三棱柱111ABC A B C -中,12
AA AC =,点D 是线段1AA 的中点,O 是ABC △的中心,则直线OD
与直线1BC
所成角的余弦值为
A .
5 B .5 C .5 D .
5
11.已知函数()2cos()f x x ωϕ=+π(0,0)2ωϕ><<
的图象的一条对称轴为π
3
x =,ϕ满足条件π
3tan 2sin()2
ϕϕ=+,则ω
取得最小值时函数)(x f 的最小正周期为
A
.π2 B .π5
C .π
D


5
12.已知圆锥OO '如图所示,,,,A B C D 在圆O '
上,其中2OA =,则四棱锥O ABCD -体积的最大值为
A .
9
B .
27 C .
27 D .3
第Ⅱ卷
二、填空题(本题共4小题,每小题
5分,共20分)
13.为了调研甲、乙、丙三个地区公务员的平均工资,研究人员拟采用分层抽样的方法在这三个地区中抽
取m 名公务员进行调研.已知甲、乙、丙三个地区的公务员人数情况如下表所示,且甲地区的公务员被抽取了15人,则丙地区的公务员被抽取了____________人.
14.设实数,x y 满足330
2930x y x y x -+≤⎧⎪
+≤⎨⎪+≥⎩
,则z x y =-的最大值为____________.
15.已知圆C 过点(6,0),(6,8)-,且与x 轴交于点,M N .若||6MN =,则圆C 的圆心坐标为____________.
16.记等差数列{}n a 的前n 项和为n S ,且59a =,10100S =.若数列{}n b 满足
1
(21)1
2
n
i
i n n
i b a =+-=∑,则
满足8k k b S ≥的k 的最小值为____________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)
已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,π02B <<
,6
3=b ,22a c +- sin sin tan A C B 1
12
=
. (1)求内角B 的大小;
(2)求)2)(2(b c a b c a -+++的最大值. 18.(本小题满分12分)
如图所示,三棱柱1
11ABC A B C -中,1AA ⊥平面ABC ,,,M N P 分别是棱111,,BC CC B C 上的点,且1190AMN A PC ∠=∠=︒. (1)求证:1AM B C ⊥;
(2)若ABC △为等边三角形,124AA AB ==,求三棱锥1M A PN -的体积.
文科数学试题 第5页(共6页) 文科数学试题 第6页(共6页)
19.(本小题满分12分)
为了了解某校高三年级800名学生的体能状况,研究人员在该校高三学生中抽取了10名学生的体能测试成绩进行统计,统计结果如图所示(满分100分),已知这10名学生体能测试的平均成绩为85分.
(1)求m 的值以及这10名学生体能测试成绩的方差;
(2)若从上述成绩在90分以下的学生中随机抽取3名,求恰有1人成绩为82分的概率;
(3)为了研究高三男、女生的体能情况,现对该校高三所有学生的体能测试成绩进行分类统计,得到的数据如下表所示:
试判断是否有99.9%的把握认为体能测试成绩是否超过80分与性别具有相关性.
参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.
临界值表:
20.(本小题满分12分)
已知椭圆2
2:12
x C y +=的左、右焦点分别为12,F F ,过点(2,0)-且不与坐标轴垂直的直线l 与椭圆C 交于,M N 两点.
(1)求直线l 的斜率的取值范围;
(2)若点P 在椭圆C 上,且1,,N F P 三点共线,求证:点M 与点P 的横坐标相同.
21.(本小题满分12分)
已知函数1
()ln f x m x x x
=--
. (1)若4m =,求证:函数()f x 有且仅有2个零点; (2)若关于x 的不等式2
()0e
f x +
≤在(0,)+∞上恒成立,其中e 是自然对数的底数,求实数m 的取值范围.
参考数据:ln 20.693,ln 3 1.099,ln 5 1.609===.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
22.(本小题满分10分)选修4-4:坐标系与参数方程
在以极点O 为原点,极轴为x 轴正半轴的直角坐标系中,曲线1C 的参数方程为2
x y t
⎧=⎪⎨=⎪⎩(t 为参数),
曲线1C 在点),(00y x P 处的切线l 的极坐标方程为θ
θρsin 2cos 323
-=.
(1)求切线l 的直角坐标方程及切点P 的直角坐标;
(2)若切线l 和曲线:2C 016sin 6cos 342
=+--θρθρρ相交于不同的两点B A ,,求
1||PA +1||
PB 的值. 23.(本小题满分10分)选修4-5:不等式选讲
已知函数()|3||1|f x x mx =-++.
(1)若3m =,求不等式()7f x ≤的解集;
(2)若不等式()4f x x ≤-的解集包含[1,3],求实数m 的取值范围.。

相关文档
最新文档