螺纹紧固扭矩-拉关系实验方法

合集下载

拧螺丝时如何控制螺栓的扭矩,这里有机械工程师最专业的讲解

拧螺丝时如何控制螺栓的扭矩,这里有机械工程师最专业的讲解

拧螺丝时如何控制螺栓的扭矩,这里有机械工程师最专业的讲解以下从螺栓连接中扭矩和夹紧力的实际情况,来探讨螺栓拧紧控制方法。

如上图所示:施加扭矩旋转螺栓后,螺杆受力伸长了,螺杆伸长产生夹紧力把连接件夹紧了。

我们知道,施加的扭矩并不像夹紧力那么简单,在通用公式中:力(F)*力矩(L)=扭矩M也就是说螺栓旋转的越多,得到的扭矩越大。

但是90%扭矩被摩擦力消耗掉了,只有10%转化为了夹紧力。

打个比方,当你上紧一颗工艺要求为10N·m力矩的螺栓时,我们真正需要的是那1N·m轴向力矩,大多数力矩都被摩擦力消耗掉了。

摩擦力和夹紧力是什么关系呢?通常情况下,遵循50-40-10原则,就是50%的螺栓头下摩擦力,40%的螺纹副中摩擦力,10%的夹紧力。

但是在一些条件下夹紧力的比例是可以变化的。

比如说当工人师傅拿起一颗螺栓发现其螺纹有碰伤或者有杂质,您一旦将其装入螺孔内,这样的螺栓产生怎样的夹紧力呢?一般认为螺纹副中有缺陷(杂质、磕碰等)按照装配力矩装配后,存在50%的螺栓头下的摩擦力,45%螺纹副中的摩擦力,只有5%我们想要的夹紧力。

这时候这颗螺栓的装配力矩是达到了,但是远不符合我们所需要的夹紧力。

如果这里螺栓在飞轮,曲轴等这样的运动件上就非常容易发生脱落,这就造成了我们经常说的“假紧”。

还有弹性材料变软会使夹紧力衰减,也是通常我们说软连接的扭矩衰减。

比如汽缸盖垫材料较软我们采用二次拧紧的方法来减少夹紧力的衰减,还有机油盘螺栓经常发生夹紧力衰减,就是因为螺栓下面有机油盘垫片(软质材料的原因)。

试想我们需要螺杆伸长而产生夹紧力,扭矩越大螺杆可以伸的越长,是不是扭力越大越好呢?我们施加的扭矩越大会使螺栓过度伸长,螺栓超过屈服强度极限就会发生应力断裂,从而失去了螺栓的连接作用。

在实际工作中,不论是两被连接体间的压紧力还是螺栓上的轴向预紧力,均很难检测,也就很难予以直接控制,因而,人们采取了下述几种方法予以间接控制。

拧松拧紧法测扭矩(动态扭矩过程检测)

拧松拧紧法测扭矩(动态扭矩过程检测)

拧松拧紧法测扭矩(动态扭矩过程检测)汽车零部件装配过程中螺纹装配质量尤为关键,螺纹装配过程中螺栓的紧固方式,扭矩结果的测量,都能导致装配质量受影响。

根据汽车装配螺纹连接特性,通过典型的硬连接及软连接紧固件的动静态扭矩的数据进行比较,对动态、静态扭矩进行区分阐述,建立动态、静态扭矩的对照表,针对装配紧固件过程进行测量监控,以确保汽车装配紧固件在整车上的安装连接的稳定性。

一、动态扭矩和静态扭矩的定义动态扭矩就是在零件紧固过程中测量得到的最大峰值,是螺栓克服动态摩擦所达到的扭矩。

扭矩扳子和动力工具都可以施加动态扭矩,像常用的气动风枪、定扭工具、扭紧轴都是动态扭矩。

静态扭矩就是紧固件被拧紧的螺栓停止后,再继续沿着拧紧方向克服静态摩擦所达到的最大扭矩为静态扭矩。

一般使用的表盘式扭矩扳子测量的扭矩值为静态扭矩。

二、连接方式对扭矩测量值的影响对于紧固件的连接方式不同,其作用于联接副的动态扭矩与静态扭矩也有所不同。

可以通过典型的硬连接及软连接紧固件的动静态扭矩的数据进行比较,本文略去具体的测试数据,大家感兴趣可以网上查到经典的静态扭矩在软连接和硬连接中的检测结果。

由对比数据可得出,对于硬连接形式的螺纹副,静态扭矩要大于动态扭矩,而软连接形式的螺纹副,静态扭矩要小于动态扭矩。

三、常用的扭矩检测方法一般在实际生产中对于拧紧效果的检测方法有以下事后检测法和过程检测法。

1、事后检测法(一般用于静态扭矩的检测)松开法(也称拧松法)。

将装配好的螺栓用指示式扭矩扳子慢慢地反向施加扭矩,使其松开,读取松开转动时的瞬间扭矩值,这种测试方式误差较大,除特殊情况外,生产中很少使用。

标记法(也称复位法、划线法)。

检验前先在被检螺栓或螺母和工件之间划上一条线,然后将螺栓或螺母松开,再用表盘式扭矩扳子拧紧到原始划线的位置,然后读出扭矩值,再乘以系数(0.9~1.1),即为测量值。

紧固法(也称增紧法)。

用表盘式扭矩扳子将装配好的螺栓平稳用力逐渐增加力矩,当螺栓开始发生微小的转动时,继续加力,扭矩增大后逐渐减小,记录表盘式扭矩扳手上红色记忆指针所指示的扭矩值,这种测量方法是最为常用的。

螺纹紧固件扭拉关系试验方法课件

螺纹紧固件扭拉关系试验方法课件
和JIS B 1084-1990三个标准
学习交流PPT
4
二、螺纹紧固件预紧原理
学习交流PPT
5
1、螺栓拧紧过程中的摩擦与扭矩消耗
螺栓的拧紧过程是一个克服摩擦的过程,在这一过 程中存在螺纹副的摩擦及端面摩擦。通常情况下, 装配扭矩的约90%都由于螺纹副摩擦及端面摩擦消 耗掉了,只有约10%转化为螺栓轴向夹紧力。理论 上,螺栓拧紧过程中拧紧扭矩T、螺栓轴向力F与摩 擦系数及螺纹形状之间有(1)式关系:
螺纹紧固件扭-拉关系 试验方法
学习交流PPT
1
在螺纹紧固件的使用中应用的较广泛的是螺栓 -螺母连接副的形式,应用的较多的是有预紧力的连 接方式,预紧力的连接可以提高螺栓连接的可靠性、 防松能力及螺栓的疲劳强度,并且能增强螺纹连接体 的紧密性和刚度。在螺纹紧固件的连接使用中,没有 预紧力或预紧力不够时,起不到真正的连接作用,一 般称之为欠拧;但过高的预紧力或者不可避免的超拧 也会导致螺纹连接的失败。众所周知,螺纹连接的可 靠性是由预紧力来设计和判断的,但是,除在实验室 可以测量外,在装配现场一般是不易直观的测量。螺 纹紧固件的预紧力则多是采用力矩或转角的手段来达 到的。因此,当设计确定了预紧力之后,安装时采用 何种控制方法?如何规定拧紧力矩的指标?则成为关 键重要问题,这就提出来了螺纹紧固件扭(矩)-拉 (力)关系的研究课题。
学习交流PPT
2
螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、 摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服 紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺 纹连接副的紧固特性的测试及计算方法,还涉及到螺纹 紧固件的应力截面积和承载面积的计算方法等基础的术 语、符号的规定。并且也还必须给出螺纹紧固件紧固的 基本规则、主要关系式以及典型的拧紧方法。目前, 2001年12月6日国际标准化组织提出了ISO16047: 2001“紧固件摩擦系数试”标准德初稿,德国工程师协 会早在七十年代就发表了DVI2230《高强度螺栓连接的 系统计算》技术准则。美国汽车工程师协会制订了SAE J174 《钢制螺纹紧固件扭-拉试验方法》标准,日本也 于1987和1990年发布了三项国家标准。国外工业发达 国家的很多企业也制订了类似的企业标准。我国于 1997年发布了紧固件拉-扭关系系列国家标准。

螺钉紧固扭矩选定方法

螺钉紧固扭矩选定方法
备注:力矩换算关系 1N·m ≈10Kg f·cm
21
6
2、不同性能等级粗牙螺纹扭力的选定
一、不同性能等级粗牙螺纹的保证载荷如下表示
7
2、不同性能等级粗牙螺纹扭力的选定
二、根据经验公式1、2、3计算的拧紧 扭力如右表与下表。
性能等级3.6扭力计算经验值(单位Kgf·cm)
扭矩
最大值
标准
最小值
螺纹规格 系数k=0.17 系数k=0.142 系数k=0.114
2.使用非标∅ 1.7可参照∅ 1.6、非标∅ 3.5可参照∅ 4螺钉扭力进行打紧;
20
5、总结
2、对于有特殊要求的螺纹紧固,比如:透明件锁紧、涉及到密封圈压缩预紧锁紧、自
攻螺钉紧固等,应当以大量试验确定其实际扭矩,但是其选用扭矩不能大于螺钉破坏力矩或 保证力矩。
3、用于震动环境的螺纹紧固,可参考汽车行业的螺纹扭矩选用标准,或参考《紧固标 准操作以及扭力表选用技术要求》 参数的1.5倍。
安装 材质
螺钉规格 (mm) 扭力 单位
硬材料
kgf.cm
∅ 1.6
∅ 2
∅ 2.5
∅3 ∅4 ∅5 ∅6
∅8
∅ 10 ∅ 12 ∅ 16
∅ 20
∅ 30
0.7
1.1 2.5± 4.5 10.7 18.7 34
±0.1 ±0.1 0.2 ±0.4 ±1
±2
±3
78 150 256 596 1110± 3750 ±8 ±15 ±25 ±60 110 ±370
18
5、总结
一、以上各类螺钉标准扭矩、破坏力矩汇总如下表(单位Kg f·cm):
螺纹类别 螺纹规格
M3
M4
M5

螺纹联结拧紧力矩检验方法:

螺纹联结拧紧力矩检验方法:

螺纹联结拧紧力矩检验方法:
按下表力矩检验值调整好手动扭力批(或手动扭力扳手)的力矩参数,然后用手动扭力批(或手动扭力扳手)拧预紧后的螺钉(或螺栓),听到咔嚓声后,如螺钉(母)已被转动,则为不良;如螺钉没有被转动,则为合格。

螺纹联结拧紧力矩要求值一览表:
说明:当紧固联结件为不同材质时,则使用较小扭力材质的扭力规格。

铆接螺柱铆接强度检验:
用手动扭力批按下表中力矩值拧入对应钢质螺钉,当听到咔嚓声后,如铆接螺柱的松动现象为不良。

铆接、焊接螺钉联结强度检验:
将与螺柱相对应的钢质螺母、弹垫和平垫装于该螺钉上,将手动扭力扳手按下表中力矩值调好。

然后用该手动扭力扳手拧入该螺母,当听到咔嚓声后,如螺
钉有松动、断裂现象或钢板表面出现凹陷为不良.(对所有基材适用) 今天对铆接强度测试结果如下:
我部通过测试,铆接强度全部满足我司内部检验要求,并通过破坏性试验,铆接扭力值达到100 kgf.cm后,所有螺母无松动等不良现象。

试验用螺栓断裂,故我司铆接螺母完全能满足贵司要求。

螺栓拧紧残余扭矩测量方法盘点

螺栓拧紧残余扭矩测量方法盘点

螺栓拧紧残余扭矩测量方法盘点1 前言紧固件拧紧的本质是为了获取夹紧力,通过夹紧力,可以抵抗各种比如横向和轴向外载荷。

但由于夹紧力无法直接监控,最终拧紧的可靠性是通过扭矩监控的,所以通过有效的监控方法,检测紧固件拧紧后的残余扭矩,是判断紧固件拧紧可靠性的重要方法。

如下图所示,紧固件扭矩衰减一般是在瞬间就完成了60-70%的衰减。

对于任何连接,随着时间的推移,都会有一定程度的扭矩衰减,一般有以下两种情况中:粗糙的表面配合时造成的衰减和软连接中的扭矩衰减。

总之发生扭矩衰减的原因是多种多样,可以通过人、机、料、法、环等各角度去分析,目前螺丝君里该类资料很多,在此不多多说,但如何去有效监测拧紧后的残余扭矩呢?目前方法也很多,小编一一带各位了解下。

图1 扭矩衰减过程2 残余扭矩测试方法(1)再拧紧扭矩法具体做法:再拧紧扭矩法是在拧紧的螺栓上进一步拧紧较小的角度获得的静态扭矩到动态扭矩装化点的扭矩,拧紧的角度一般为10-15°。

优缺点:无需破坏连接副、操作便利、工具价格适中,可靠性强,目前该种方法在主机厂使用较为广泛。

如下图所示,为再拧紧扭矩法的测试方法和测试工具,常用的表盘扳手和数显扳手就可以满足,当然测试人员一般是需要经过专门培训的。

图2 再拧紧扭矩法测试过程如果对再拧紧扭矩不是太清楚,下图是通过记录扭矩和转角的曲线,先拧紧15°,再反松90°,下图中圈出的拐点位置即为对应点的再拧紧扭矩。

图3 再拧紧扭矩测试曲线那如何评判拧紧点的再拧紧扭矩是否合格呢?下面为经验数值:将拧紧点根据重要性分为A,B,C三种等级,A是涉及安全的拧紧点,B 是涉及是否会出现故障的拧紧点,C是一般普通的拧紧点。

测试推荐完成拧紧后的15-30min,对于A类和B类拧紧点,0.8*预拧紧扭矩≤再拧紧扭矩≤1.2*预拧紧扭矩对于C类拧紧点,0.7*预拧紧扭矩≤再拧紧扭矩≤1.2*预拧紧扭矩对于软连接点,0.5*预拧紧扭矩≤再拧紧扭矩≤1.2*预拧紧扭矩那何为软连接点,即拧紧副中含有塑料等较软,拧紧角度较大的连接点。

螺栓适用的紧固扭矩和紧固轴力

螺栓适用的紧固扭矩和紧固轴力

■用螺栓连接时的紧固轴力和疲劳极限1 用扭矩法计算紧固螺栓时的紧固轴力时,其弹性范围计算在扭矩法中以规定耐力的70%为上限2 重复载荷引起的螺栓疲劳强度不能超过容许值3 螺栓及螺母的座面不能陷入被紧固物面4 紧固时不能损坏被紧固物体■紧固轴力和紧固扭矩的计算紧固轴力F f 的关系如(1)式所示:k :扭矩系数F f =0.7X σy XA s (1)d :螺栓的公称直径[cm] 紧固扭矩T fA 可由(2)式中求出:Q :紧固系数T fA =0.35k(1+1/Q)7X σy XA s Xd (2)σy :耐力(强度分类为12.9时112kgf/mm 2)A s :螺栓的有效截面积[mm 2]■计算例求将软钢和软钢用内六角螺栓M6(强度分类12.9)在有润滑油的状态下紧固时的紧固扭矩和轴力。

紧固扭矩根据(2)式轴力F f 根据(1)式 T fA =0.35k(1+1/Q)7X σy XA s Xd F f =0.7X σy XA s =0.35X0.17X(1+1/1.4)X112X20.1X0.6 =0.7X112X20.1 =138[kgf·cm] =1576[kgf]■螺栓的表面处理和被紧固件物体以及内螺纹材质的组合中得出的扭矩系数(a)(b)0.145SCM-FC FC-FC SUS-FC0.155S10C-FC SCM-S10C SCM-SCM FC-S10C FC-SCM钢螺栓0.165SCM-SUS FC-SUS AL-FC SUS-S10C SUS-SCM SUS-SUS 黑色氧化膜0.175S10C-S10C S10C-SCM S10C-SUS AL-S10C AL-SCM 油润滑0.185SCM-AL FC-AL AL-SUS0.195S10C-AL SUS-AL 0.215AL-AL0.25S10C-FC SCM-FC FC-FC0.35S10C-SCM SCM-SCM FC-S10C FC-SCM AL-FC0.45S10C-S10C SCM-S10C AL-S10C AL-SCM0.55SCM-AL FC-AL AL-ALSCM:调质钢(35HRC)FC:铸铁(FC200)AL:铝合金SUS:不锈钢(SUS304)■紧固系数Q的标准值1.251.6钢螺栓黑色氧化膜无润滑螺栓的紧固方法有扭矩法,扭配法,旋转角法,拉伸测试法等。

螺丝破坏扭力计算方法

螺丝破坏扭力计算方法

螺丝破坏扭力计算方法在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。

在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。

众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。

螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。

因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件(如塑料螺丝)扭(矩)-拉(力)关系的研究课题。

螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。

并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。

目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。

日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。

国内尚未发现相应的行业标准,仅少数企业制定了企业标准。

尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。

这也就是制定此项标准的初衷。

日本国家标准JIS B1082-1987《螺纹紧固件应力截面积和承载面积》、JIS B 1083-1990《螺纹紧固件紧固通则》及JIS B1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。

螺丝破坏扭力的计算

螺丝破坏扭力的计算

在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。

在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。

众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。

螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。

因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。

螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。

并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。

目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。

日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。

国内尚未发现相应的行业标准,仅少数企业制定了企业标准。

尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。

这也就是制定此项标准的初衷。

日本国家标准JIS B 1082-1987《螺纹紧固件应力截面积和承载面积》、JIS B 1083-1990《螺纹紧固件紧固通则》及JIS B 1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。

螺丝破坏扭力的计算

螺丝破坏扭力的计算

在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。

在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。

众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。

螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。

因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。

螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。

并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。

目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。

日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。

国内尚未发现相应的行业标准,仅少数企业制定了企业标准。

尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。

这也就是制定此项标准的初衷。

日本国家标准JIS B 1082-1987《螺纹紧固件应力截面积和承载面积》、JIS B 1083-1990《螺纹紧固件紧固通则》及JIS B 1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。

螺栓扭矩_精品文档

螺栓扭矩_精品文档

螺栓扭矩1. 背景介绍螺栓扭矩是指在装配螺栓时所需要施加的扭矩力,用于使螺栓紧固连接达到预期的强度。

螺栓扭矩的正确控制对于确保螺栓连接的可靠性和稳定性至关重要。

本文将介绍螺栓扭矩的概念、作用、测量方法以及常见问题与解决方法。

2. 螺栓扭矩的作用螺栓扭矩的主要作用是将两个或多个零件通过螺纹连接来达到紧固的效果。

通过施加适当的扭矩力,可以使螺栓与螺纹孔之间产生摩擦力和压力,从而达到牢固连接的目的。

螺栓扭矩的大小对于螺栓连接的不同方面都有着直接影响,例如:连接的强度、密封性以及防松性等。

3. 螺栓扭矩的测量方法3.1 预定扭矩法预定扭矩法是一种常用的测量螺栓扭矩的方法。

该方法通过事先确定螺栓连接所需的扭矩范围,并使用扭矩扳手进行施力,在达到预设扭矩值后停止施力。

预定扭矩法适用于对螺栓连接的扭矩要求较为严格的情况,例如:高精度设备的装配。

3.2 扭力计法扭力计法是一种直接测量螺栓扭矩的方法。

该方法使用扭力计在施力过程中直接测量螺栓扭矩的大小。

扭力计法可实时监测螺栓扭矩的变化,并能更准确地控制螺栓连接的紧固力。

扭力计法适用于对螺栓连接的精度要求较高的情况。

3.3 拉伸法拉伸法是一种间接测量螺栓扭矩的方法。

该方法通过在螺栓上安装应变片或伸缩杆等装置,测量施力过程中螺栓的拉伸变化,从而推算出扭矩的大小。

拉伸法适用于无法直接测量扭矩的情况,例如:深埋螺栓连接。

4. 螺栓扭矩的常见问题与解决方法4.1 扭矩过大或过小当螺栓扭矩过大或过小时,会导致螺栓连接的效果不理想。

扭矩过大可能导致螺栓损坏或连接件变形,而扭矩过小则可能导致连接松动。

解决方法是根据设计要求和相关标准,选择合适的扭矩范围进行施力,并定期检查螺栓连接的紧固状态。

4.2 扭矩不均匀螺栓扭矩不均匀会导致螺栓连接出现偏斜、变形等问题。

解决方法是采用交叉顺序进行扭矩施力,以确保每个螺栓都能获得均匀的扭矩力。

4.3 自松现象自松是指螺栓在使用过程中由于振动等因素造成的螺栓松动现象。

螺栓拧紧力矩的确定及检验方法

螺栓拧紧力矩的确定及检验方法
r 一 ~
部 簟 。5 1 5 5 2 电 报 挂鲁 j 6 e 8 5
鼍 程 一5 0 l 铀 ℃ ,误差 ±1 . 5 ,分辨 率 l℃.‘
杌械工 艺师 》1 9 9 2 ¨ 8
厂址 :麓 曩市遗 林
电话 F B 7 】 5 0 9( 直 拨) 磷j S ^ 岑 觚才
2 .可 以制 订有 关 的验 收标 准 , 生 产批量 较 大叉轮 番 生产 时应 用这 种办 祛较 好 。方 法是 t首 先按 图 纸给
出第 1 个 键槽 的对 称 度公 差接式 (1)求 出测量 值公
差, 再按 式 ( 8) 、( 5) 和 图纸培 定 的 对 称 度公 差 ( 还要 根据 实际 情况 确定 a 角) 计算 第 2个键 槽 允许 的测量 值公 差 ,然后 再把 两个 键槽 测量 值 公差 分 档列
( 2 )使 用过 程 中 的检 验方 法 先 在联接 件紧 商 后 的 装配位 置 上打上 标记 ,然 后旋 松 / 4 圈, 接 着再 拧 紧 剐打标 记位 置,检 查 其拧 紧力 矩值 。此 法 由于放梧 后再 拧紧 ,其 螺纹 状态 ,接 头板 材的密 贴程 度 、旖工 溴 差、 螺母 复位的 准确 度等 对扭 矩值有 很 大影响 。即 匣第 2改 拧紧蓟 原来位 置 ,其 值也 述 不到最 初数 值 , 比 最初 值 要小 。 2 . 拧稚螺 母 1 / 6 嗣后 ,再 拧 紧到鳆 来位 置的 检验 方法
释 要求 拧 刮紧 同件断 裂 与实际要 求 检 验 已装配 后的 螺 栓 联接 的 紧固程 度是 否达 剐 了规定 值的 内l 蘑 是 不一 致 曲。

此 珐 由于读 出螺 母 剐开始 转动 时的 扭 矩 比 较困
难,所 以 试 验结果 比较 舟 敦, 误差 比较 大。 4 .用扭 力扳手 顺 螺母 拧鉴 方向 的检验 方法

螺纹紧固扭矩-拉关系实验方法

螺纹紧固扭矩-拉关系实验方法

作者:张德利文章来源:网络6-3-139:33:51螺纹紧固件扭-拉关系试验方法标准在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。

在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。

众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。

螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。

因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。

螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。

并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。

目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。

日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。

国内尚未发现相应的行业标准,仅少数企业制定了企业标准。

尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。

这也就是制定此项标准的初衷。

日本国家标准JISB1082-1987《螺纹紧固件应力截面积和承载面积》、JISB1083-1990《螺纹紧固件紧固通则》及JISB1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。

紧固扭矩验证

紧固扭矩验证

紧固扭矩验证通常工人安装螺栓等紧固件后,或者紧固件长时间使用后,需要对紧固件扭矩值进行抽签,我们将其成为扭矩计量。

这里一般使用表盘式扭矩扳手或者数显扭矩扳手。

方法一用表盘式扭矩扳手或者数显扭矩扳手,对紧固件沿紧固方向慢慢加力紧固,当螺栓开始动时松开。

这时一般可以从扭矩扳手的读数中读出紧固扭矩值。

优点,操作简单。

缺点:1、存在二次紧固的可能;2、对螺栓何时开始启动很难确定,存在主观因素;3、螺栓启动的时候,实际扭矩值应该是大约安装时候的扭矩值,所以测试值一般偏大。

方法二先用标记笔标记螺栓与底下装置,然后将螺栓反向松动约30度,然后使用表盘或数显扳手对紧固件进行紧固,当紧固件标记与装置标记重复即还原到原位置时,停止。

记录扳手显示的最大扭矩值,为该螺栓扭矩值。

优点:相对方法一更精确。

缺点:1、相对比较繁琐。

2、存在一个松螺栓的过程在一些部件是不允许的。

方法三某些工位因为紧固件高,位置限制,较难使用手动扭矩扳手计量。

这些紧固件紧固时候,通常使用液压扳手,检查时候手动根本无法达到扭矩值。

螺栓的紧固作用,实际上是由螺栓拉伸而产生的预紧力。

那么螺栓的长度变化或者螺距的微弱变化与扭矩之间会有一个对应关系。

我们在方便的位置用同样的紧固件,运用倍力器来施加到固定扭矩值。

然后通过用测量工具(千分尺等)计量螺栓的长度。

通过长度相等的情况,扭矩值也相等。

当然也有通过用其他更高方法来测量螺栓螺距的变化来对应扭矩值,但一般难度大投资大,不使用GB/T 3098常用的拧紧方法拧紧,实际上就是要使两被连接体间具备足够的压紧力,反映到被拧紧的螺栓上就是它的轴向预紧力(即轴向拉应力)。

而不论是两个被连接体间的压紧力还是螺栓上的轴向预紧力,在工作现场均很难检测,难以直接控制。

因而,人们采取了下述几种方法予以间接控制。

1.扭矩控制法(T)扭矩控制法是最开始同时也是最简单的控制方法,它是当拧紧扭矩达到某一设定的控制值Tc时,立即停止拧紧的控制方法。

螺栓拧紧扭力的检查方法

螺栓拧紧扭力的检查方法

螺栓拧紧扭力的检查方法螺栓拧紧扭力的检查是确保螺栓在被安装后以正确的扭矩紧固在位置上的关键步骤之一、在各种机械和工程应用中,正确的螺栓拧紧是确保结构完整性和安全性的重要组成部分。

本文将介绍几种常见的螺栓拧紧扭力的检查方法。

1.直接测量扭矩法:最常见的方法是使用扭矩扳手,根据制造商的建议来拧紧螺栓。

扭矩扳手是一种可以测量拧紧扭力的专用工具。

在使用扭矩扳手时,需要根据螺栓规格和应用要求选择合适的扭矩值,并使用扳手精确地拧紧螺栓。

在完成拧紧操作后,可以使用扭矩扳手的读数来检查实际拧紧扭力是否与预期目标值匹配。

2.计算法:另一种常见的方法是使用螺栓的尺寸、材料和摩擦系数等参数,通过计算来确定合适的拧紧扭力。

这种方法需要根据螺栓材料和应用要求选择合适的公式,并使用螺栓尺寸和摩擦系数等参数进行计算。

通过计算,可以得到理论上的拧紧扭力值,然后与实际拧紧扭矩进行比较。

3.拉伸法:拉伸法是一种直接测量螺栓拉伸力的方法,通过测量螺栓拉伸力可以推算出螺栓拧紧扭矩。

这种方法适用于需要非常准确的拧紧扭矩的情况。

在使用拉伸法时,需要使用专用设备(如拉伸仪)来测量螺栓的拉伸力。

然后,根据螺栓规格和应用要求,通过公式或表格来计算出对应的拧紧扭矩值。

4. 麦克斯韦(McPherson)方法:麦克斯韦方法是通过通过测量由螺栓产生的应变来推断螺栓拧紧扭力的方法。

这种方法使用应变计或拉线计来测量应变的变化,然后使用螺栓的材料参数和几何尺寸来计算出拧紧扭矩。

这种方法适用于需要实时监测拧紧扭力的情况,但需要一定的专业知识和设备。

以上是几种常见的螺栓拧紧扭力的检查方法。

在实际应用中,选择适合的方法需要考虑螺栓的材料、规格、应用要求以及可用的工具和设备等因素。

此外,定期检查扭矩设备的准确性和再校准也是保证准确度的重要步骤。

对于特殊应用和要求高精度的情况,建议请专业工程师或技术人员进行检查和测试。

汽车螺纹紧固扭矩与检验扭矩关系验证

汽车螺纹紧固扭矩与检验扭矩关系验证

做好 机油 的换 季保 养 ,入 冬 时更换 冬季机 油 ,入夏 时 发生变 化 时 ,要 有预 见性地 减 小油 门,最好 不 要急踩 更换 夏季机 油 。定期清 洗 润滑 系统 的润滑 油路 ,适 时 刹 车 ,对 发动机 造成 较大 的冲击 等 。 更换 发动机 的机 油滤清器 。 持润滑 系统 的正 常工作 , 保 将 有力 地减 小气缸 磨损量 ,延长 发动 机 的使用寿命 。 33 冷 却系统 的维护 .
e 漆 板 一 角 法 兰 面 一 纹 锁 固密 封 剂 六 螺 检验 值 = 1 5 +1 6 ×紧固值 .0 .8 8 1
检验值 = 一 . 3 . 3 3 4 +1 8 ×紧固值 2 0
8 O

7 o
6 0
5 0
4 0
5 0
6 0
7 0
8 O
紧 固值 / m ( 1 N・
7 0
0 0 9

6 O
彗8 0
7 0
5 5
5 0
4 5
4 0
4 0 4 0 45 5 0 5 5 6 O 6 5 7 0 7 5
5 0
6 0
7 0
8 O
紧 固 值/ m1 ( N・
紧固值/ ・ 1 ( m N
b 钢 板 一 簧 垫 圈 弹
第5 期
言 之一 \
E 喜 汽车工程师 * 强 霞 静
喜 .一 N\
胃 ●
如 图 4所示 。 ( 此处 省 略数据 )
检 验 值 = O7 7 1 5 固值 .2 + . 4x紧 0
检 验 值 = O2 1 . 8 6+O9 7 .5 4×紧 固值
4 0 4 0 5 0 6 0 7 0 8 0 9 0

螺栓 扭矩 紧固力曲线

螺栓 扭矩 紧固力曲线

螺栓扭矩紧固力曲线螺栓扭矩是指在紧固螺栓时所需的力矩。

对于不同的螺栓,其扭矩值也有所不同。

而紧固力曲线就是描述螺栓扭矩所产生的固定力的变化情况的曲线。

下面我们来详细了解一下螺栓扭矩和紧固力曲线之间的关系。

步骤一:计算所需扭矩值在使用螺栓时,需要先计算所需的扭矩值。

这个值取决于螺栓的大小、牌号和紧固的要求等。

通常情况下,可以上网搜索或者查看螺栓的说明书来确定所需的扭矩值。

步骤二:紧固螺栓在确定了所需的扭矩值后,就可以开始紧固螺栓了。

为了准确地施加所需的扭矩,需要使用扭力扳手。

扳手应该与螺栓规格匹配,以确保扭矩的准确性。

在紧固螺栓时,应该始终按照制造商的建议进行操作。

步骤三:记录扭矩和产生的力量一旦完成了紧固螺栓的操作,就应该记录下所施加的扭矩值和产生的力量。

这些值在绘制紧固力曲线时非常重要。

步骤四:绘制紧固力曲线在记录了所有的扭矩值和产生的力量后,就可以开始绘制紧固力曲线了。

在这个过程中,可以使用Excel等工具来帮助绘制。

一般而言,紧固力曲线是一个向上凸起的曲线,其初始斜率较大,随后逐渐变缓。

步骤五:分析紧固力曲线在绘制了紧固力曲线之后,可以对其进行分析,以确定螺栓所能承受的最大运行负载。

在实际应用操作中,通常会将螺栓的安装和使用标准化,以确保螺栓不会出现紧固不够或紧固过度的情况。

综上所述,螺栓扭矩和紧固力曲线是紧固螺栓时需要了解的关键概念。

在进行紧固操作时,需要确保使用正确的扭矩值和工具,并记录下相应的扭矩和产生的力量。

最后,需要根据绘制出的紧固力曲线对螺栓的运行负载进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者:张德利文章来源:网络6-3-139:33:51螺纹紧固件扭-拉关系试验方法标准在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。

在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。

众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。

螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。

因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。

螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。

并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。

目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。

日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。

国内尚未发现相应的行业标准,仅少数企业制定了企业标准。

尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。

这也就是制定此项标准的初衷。

日本国家标准JISB1082-1987《螺纹紧固件应力截面积和承载面积》、JISB1083-1990《螺纹紧固件紧固通则》及JISB1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。

因此,在制定标准时,在充分消化、分析日本标准的基础上,提出了等效采用的意见。

因此,本系列标准也包括了下列三个国家标准:1、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》;2、GB/T16823.2-1997《螺纹紧固件紧固通则》;3、GB/T16823.3-1997《螺纹紧固件拧紧试验方法》一、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》本标准等效采用JISB1082-1987《螺纹紧固件应力截面积和承载截面积》标准,本标准是设计螺纹紧固件扭-拉关系系列标准之一。

1、范围本标准规定的螺纹紧固件的应力截面积(As)适用于计算外螺纹紧固件的最小拉力载荷、保证载荷以及内螺纹紧固件的保证载荷。

外螺纹紧固件包括螺栓、螺钉和螺柱等标准件和专用件;内螺纹紧固件包括螺母标准件、专用件及机体中的螺孔。

其螺纹尺寸及公差均应符合GB/T193、GB/T196和GB/T197的规定。

本标准不适用于寸制螺纹、统一螺纹、惠氏螺纹等其他螺纹紧固件。

2、螺纹紧固件应力截面积计算公式本标准规定的螺纹紧固件应力截面积计算公式有两个,即公式(1)和公式(2)。

螺纹紧固件应力截面积计算公式(1)与已发布的国家标准,即GB/T3098.1《紧固件机械性能螺栓、螺钉和螺柱》、GB/T3098.2《紧固件机械性能螺母》、GB/T3098.4《紧固件机械性能细牙螺母》和GB/T3098.6《紧固件机械性能不锈钢螺栓、螺钉、螺柱和螺母》等标准的规定完全一致。

螺纹紧固件应力截面积计算公式(2)是参照JISB1082标准,首次推出的新的一种计算公式,这个公式是直接利用螺纹公称直径(d)和螺距(P)数据,求出螺纹紧固件应力截面积(As)。

公式(1)与公式(2)是等同的计算式,只不过是公式(2)比公式(1)计算更加方便。

美国ASTM619标准也采用了这一公式。

标准中规定“如无特殊要求,取3位有效数字”,如无特殊要求时,即一般应照此处理。

在已发布的紧固件机械性能国家标准中,也都是这样处理的。

也就是说,当As<1时,取小数点后3位数;当1≤As<10时,取小数点后2位数;当10≤As<100时,取小数点后1位数;当100≤As<1000时,取3位整数乘以10n。

3、螺纹紧固件应力截面积值标准根据GB/T193《普通螺纹直径与螺距系列》有关规定,在标准表1中给出了粗牙螺纹M1~M68和细牙螺纹M8×1~M130×6D的螺纹紧固件应力截面积值。

总之,标准表1给出的螺纹紧固件应力截面积值,完全能满足螺栓、螺钉、螺柱和螺母等螺纹紧固件产品现行国家标准的需要。

4、螺纹紧固件承载面积计算公式虽然螺纹紧固件产品品种,但是,按支撑面的形状大致可分为圆形、六角形和方形三种,因此,在标准表2中给出了这三种支撑面承载面积的计算公式。

承载面积应当是支撑面与被连接件实际接触部分的面积,产品品种不同,承载面积肯定不同,即使是同一批零件,承载面积也不一定完全相同,如在计算中将支撑面形状、尺寸公差、螺栓和螺钉通孔的尺寸和公差都予以考虑,无可非议,但是,给计算增加了麻烦,使用也不一定方便。

标准制定时确定了计算承载面积近似值的原则,故标准表2中所列出的螺纹紧固件承载面积计算公式的各变量均采用公称尺寸或极限尺寸。

螺纹紧固件承载面积的计算与螺纹紧固件应力截面积的计算一样,如无特殊要求,取3位有效数字。

5、面积比螺纹紧固件承载面积(Ab)值与螺纹紧固件应力截面积(As)之比,简称为面积比(Ab/As)。

当面积比小于1时,即螺纹紧固件应力截面积(As)值大于螺纹紧固件承载面积(Ab)值,则支撑面的压强过大,这对普通螺纹紧固件是不适宜的,尤其是对高强度螺纹紧固件更是不宜采用的。

6、典型螺纹紧固件的承载面积及面积比标准中图1~6及表3~表5列出了典型螺纹紧固件的种类、螺纹紧固件承载面积(Ab)值以及面积比(Ab/As)值。

其中有关参数均采用我国现行的紧固件基础标准和产品标准的规定,如:六角头螺栓的标准系列和加大系列按GB/T3104、方头螺栓按GB/T8、内六角头螺钉按GB/70、六角法兰面螺栓按GB/T5787及盘头螺钉按GB/67和GB/T818选取的。

7、应当说明的几个问题①、标准中虽然以螺栓、螺钉分类给出了计算更是及有关数据,但当螺母支撑面的形状、尺寸与表中六角头螺栓、方头螺栓、六角头发兰面螺栓相同时,表中的数据也适用于该螺母。

②、表中的螺栓和螺钉通孔直径dh按GB5277标准中中等装配系列(无内倒角)的基本尺寸选取。

③、表中的垫圈面直径Dw,见图2,按Dw=0.95S计算。

④、内六角螺钉、六角法兰面螺栓的支撑面直径dW分别按GB/70、GB/T5787、的“dWmin”选取。

⑤、方头螺栓(标准型)的对边宽度,按GB/T8(即GB/T3104标准系列)的“Smax”值选取。

⑥、盘头螺钉的支撑面直径dW,按GB/T67或GB/T818的“dWmax”值选取。

二、GB/T16823.2-1997《螺纹紧固件紧固通则》本标准等效采用JISB1083-1990《螺纹紧固件紧固通则》标准,本标准也是设计螺纹紧固件扭-拉关系系列标准之一。

本标准有两个附录,附录A“螺纹摩擦系数、支承面摩擦系数与扭矩系数的对照表”和附录B“螺纹摩擦系数、支承面摩擦系数与屈服紧固轴力和屈服紧固扭矩的对照表”均为标准的附录(现应为规范性附录)。

1、范围本标准的名称为“螺纹紧固件紧固通则”,所以本标准限于螺纹紧固件的范围。

但是,螺纹紧固件包括的种类、设计选用的紧固方法很多,在一个通用规则中不可能完全包括进去,而只能规定最通用的方法。

因此,本标准适用于最典型的,也就是最通用的“螺栓-螺母连接副”。

本标准规定了拧紧螺栓-螺母连接副连接的术语、基本要求、主要关系式以及典型的拧紧方法。

本标准也适用于螺栓或螺钉拧入机体内螺纹的连接副或者其他外螺纹(专用件)与内螺纹的连接副。

但是,本标准对自攻螺钉、自钻自攻螺钉和木螺钉的“螺纹连接体”(由螺纹紧固件和被连接件构成的总体是不适用的,对于螺纹连接体中使用弹簧垫圈或弹性垫圈(如:外齿锁紧垫圈、内齿锁紧垫圈、内外齿锁紧垫圈、鞍形弹性垫圈等)以及使用有效力矩型螺纹紧固件(如:尼龙锁紧螺母等)的螺纹连接副也都是不适用的。

总之,本标准仅适用于影响螺纹紧固件“扭-拉”关系最简单或单纯的,最典型或通用的螺纹连接副。

2、术语及符号标准表1中给出的术语及其定义和相应的英文名称,以及表2给出的本标准使用的主要符号及其含义,均等同采用JISB1083-1990标准。

因为JIS标准制定时,相应的英文名称参考了J.H.BLCKFORD著的《AnIntroductiontotheDesignandBehaviorofBoltedJoints〈螺栓连接件的设计与应用〉》(1981.Dekker发行)的资料,并且,这些与我国现行术语大同小异,基本适用,故没有必要另搞一套。

3、螺纹紧固的基本要求国内外实践表明,螺纹紧固件的紧固,并不是像有些人想像得那样,不就是螺丝螺帽吗?用扳手拧紧就行了吧。

螺纹紧固的方式方法很多,但是最简单的、最常用的还是使用手工扳拧工具进行拧紧,这种紧固手段虽然容易操作,但是,对于高强度或者重要的连接紧固中是绝对不行的,也是绝对不允许的,这一点恐怕极易被人忽视。

因为使用手工扳拧工具进行拧紧的方法是无法控制轴向预紧力的,也是会影响螺纹连接体的可靠性,甚至会直接影响整机或工程的性能和质量。

因此,在螺纹紧固件的连接设计中应该明确提出确切的初始预紧力的指标要求,在装配工艺或施工规范中,根据设计要求,应制订切实可行的方案,采用合适的拧紧方法,准确控制,来确保设计目标的实施,是非常必要的。

在这方面钢结构工程多年来积累了许多经验。

汽车行业在技术引进中,通过通过吸收消化过程,也广泛地采用了国际先进技术,在这方面做了很多基础研究工作。

目前,在各行业中不论是在螺纹紧固件连接紧固的连接理论、检测试验、还是现场装配使用研究工作都引起了足够的重视。

所以,标准中对螺纹紧固的基本要求虽然只有一段话,但意义深刻。

4、螺纹紧固的主要关系式从标准图1中可以看出,螺纹紧固件紧固时,可以根据螺栓承受应力处于屈服点的内或者外的位置,可分为弹性区或塑性区紧固。

弹性区内的紧固扭矩与预紧力的关系,见式1;弹性区内的紧固转角与预紧力的关系,见式6;屈服紧固轴力与螺纹应力截面积及其等效直径的关系,见式7;屈服紧固扭矩与屈服紧固轴力的关系,见式8。

5、螺纹拧紧方法选择螺纹连接的拧紧方法,应该在充分了解各种拧紧方法特性的基础上,按照设计对初始预紧力离散程度的要求、预紧力的大小、使用条件等因素来合理选择拧紧方法。

相关文档
最新文档