2019-2010九年级数学培优讲义:旋转综合之角含半角模型

合集下载

初三专题复习几何变换之旋转辅导讲义

初三专题复习几何变换之旋转辅导讲义

几何变换之旋转【中考剖析:】内容要求考点旋转了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;会识别中心对称图形; 能按要求作出简单平面图形旋转后的图形,能依据旋转前后的图形,指出旋转中心和旋转角.图形旋转后求角度、线段关系、长度、周长、面积【专题结构:】一、旋转有关概念1、旋转:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点'P,那么这两个点叫做这个旋转的的对应点.(如图)2、旋转问题应把握三元素:旋转中心、旋转角度和旋转方向.3、旋转的性质:旋转后的图形与原图形是全等的,对应的旋转角度相等.二、中心对称1、中心对称的有关概念:把一个图形绕着某一点旋转180 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做中心对称点,这两个图形中的对应点叫做关于中心的对称点(如图)三、共顶点旋转模型(证明基本思想SAS)P'Q'QPODCBAO共顶点等边三角形共顶点等腰直角三角形共顶点等腰三角形四、旋转前后具有以下性质1、对应线段相等,对应角相等2、对应点位置的排列次序相同3、任意两条对应线段所在的直线夹角都等于旋转角【例题精讲:】 一、对旋转的初步认识【例1】正方形网格中,ABC ∆为格点三角形(顶点都是格点),将ABC ∆绕点A 按逆时针方向旋转90︒得到11AB C ∆.⑴在正方形网格中,作出11AB C ∆;(不要求写作法)⑵设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留)【巩固】在下图的网格中按要求画出图象,并回答问题.π⑴先画出ABC ∆向下平移5格后的111A B C ∆,再画出ABC ∆以O 点为旋转中心,沿顺时针方向旋转90︒后的222A B C ∆;⑵在与同学交流时,你打算如何描述⑴中所画的222A B C ∆的位置?【例2】如图所示,ABC ∆是直角三角形,BC 是斜边,将ABP ∆绕点A 逆时针旋转后,能与'ACP ∆重合, 如果2AP =,那么'PP =______.【巩固】如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形'''AB C D ,如果22CD DA ==,那么 'CC =_________.【例3】如图,在Rt ABC ∆中,AB AC =,D 、E 是斜边BC 上两点,且45DAE ∠=︒,将ADC ∆绕点A 顺时针旋转90︒后,得到AFB ∆,连接EF ,下列结论:①AED AEF ∆∆≌; ②ABE ACD ∆∆∽; ③BE DC DE +=; ④222BE DC DE += 其中正确的是( )A .②④;B .①④;C .②③;D .①③.D'C'B'D CB A二、大角夹半角模型在大角夹半角模型中比较常见的是90和 45, 120和 60.【例4】正方形ABCD 中,点E 在CD 上,点F 在BC 上,15=∠EAD , 30=∠FAB ,=AD 3,求AEF ∆的面积.【巩固】正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上, 45=∠EAF , 请问现在EF 、DE 、BF 又有什么数量关系?【例5】四边形ABCD 是由等边ABC ∆和顶角为120的等腰ABD ∆拼成,将一个角顶点放在D 处,将 60角绕D 点旋转,该60角两边分别交直线BC 、AC 于M 、N .交直线AB 于E 、F 两点,FEDCBA(1)当E 、F 分别在边AB 上时(如图1),求证:MN AN BM =+;【巩固】条件如例5,当E 、F 分别在边BA 的延长线上时如图2,求线段BM 、AN 、MN 之间又有怎样的数量关系?【例6】如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.三、等边三角形的“Y ”字型模型【例7】如图,是等边内一点,若,,,求的度数.【巩固】如图,P 是等边ABC ∆中的一个点,2,23,4PA PB PC ===,则ABC ∆的边长是 .【例8】如图ABC ∆三边长分别是17BC =,18CA =,19AB =,过ABC ∆内的点P 向ABC ∆三边分别作垂线PD PE PF ,,,且=27BD CE AE ++,求BD BF +的长度.【例9】如图,在凸四边形ABCD 中,30,60ABC ADC ∠=∠=,,AD DC =证明:222BD AB BC =+.P ABC ∆3AP =4PB =5PC =APB ∠PCBADCBA【课后作业:】1、如图,将边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B 顺时针旋转一个角度,若使重叠部分面积为433,则这个旋转的角度为多少?2、如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后得到ABE ∆,如果4AF =,7AB =. ⑴指出旋转中心和旋转角度; ⑵求DE 的长度.3、矩形的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,2AB =,3BC =,则图中阴影部分的面积为_____4、正方形ABCD 中的ABP ∆绕点B 顺时针旋转能与'CBP ∆重合,若4BP =,求点P 所走过的路径长.HA'CAOFEDA5、(2012•珠海)如图,把正方形ABCD 绕点C 按顺时针方向旋转45得到正方形'''CD B A (此时,点'B 落在对角线AC 上,点'A 落在CD 的延长线上),''B A 交AD 于点E ,连接'AA 、CE .求:直线CE 是线段'AA 的垂直平分线.6、如图,四边形ABCD 中, 135ABC ∠=︒,120BCD ∠=︒,AB5BC =6CD =,求AD7、正方形ABCD 中,对角线AC 与BD 交于O ,点E 在BD 上,AE 平分DAC ∠. 求证:EO AD AC-=2.P'DCBA8、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?四、等腰直角三角形的“Y ”字型旋转【例1】如图,P 是正方形ABCD 内一点, 135=∠APB ,2=BP ,1=AP .求PC 的长.【巩固】如图,在正方形ABCD 内有一点P ,且2=BP ,5=AP ,1=PC ,求BPC ∠度数大小和正方形ABCD 的边长.【例2】在ABC ∆中,90,,A AB AC D ∠==为斜边上任一点,求证:2222BD CD AD +=.【巩固】 D ,E 是等腰直角三角形ABC 斜边BC 所在直线上的两点,满足135=∠DAE ,求证:222DE BE CD =+.【例3】四边形ABCD 被对角线BD 分为等腰直角ABD ∆和直角CBD ∆,其中A ∠和C ∠都是直角,另一条对角线AC 的长度为2,求四边形ABCD 的面积.【巩固】如图,以ABC Rt ∆的斜边BC 为一边,在ABC ∆的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果4=AB ,7=AO ,求AC 的长.DCBA五、三角形中的费马点【例4】若P 为ABC ∆所在平面上一点,且 120=∠=∠=∠CPA BPC APB ,则点P 叫做ABC ∆的费马点.(1)若点P 为锐角三角形ABC 的费马点,且︒=∠60ABC ,3=PA ,4=PC ,则PB 的值为______,(2)如图,在锐角三角形ABC 外侧作等边三角形'ACB ,连接'BB ,求证:'BB 过ABC ∆的费马点P ,且'BB PC PB PA ++=.【例5】如图,四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转︒60得到BN ,连接EN 、AM 、CM . (1)求证:AMB ∆≅ENB∆;(2)①当M 点在何处时,CM AM +的值最小;②当M 点在何处时,CM BM AM ++的值最小,并说明理由; (3)当CM BM AM ++的最小值为时,求正方形的边长.【课后作业:】1、如图,P 是正方形ABCD 内一点,a 2=BP ,a AP =,a 3=PC )(0a >.求:(1)APB ∠的度数.(2)正方形的面积.2、已知:2=PA ,4=PB ,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.(1)如图,当︒=∠45APB 时,求AB 及PD 的长;(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.3、已知正方形ABCD 内一点,E 到A 、B 、C 三点的距离之和的最小值为 62+,则此正方形的边长为_______.。

初三数学培优旋转模型及解题方法探究

初三数学培优旋转模型及解题方法探究

【模型概述初三数学旋转之半角模型及解题方法探究】全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

【模型解读】过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.【经典例题】——方法整合,对接中考1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,M N →的长比路线M A N →→的长少_________m (结果取整数,参考数据:1.7≈).2.(2022·河北邢台·模拟演练)学完《旋转》,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF=45°,求证:EF=BE+DF.”小明同学的思路:∵四边形ABCD 是正方形,∴AB=AD,∠B=∠ADC=90°.把△ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '.E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB=AD,∠B=∠D=90°,12EAF BAD ∠=∠,直接写出EF,BE,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB=AD,∠B+∠D=180°,12EAF BAD ∠=∠,求证:EF=BE+DF.(3)【知识迁移】如图4,四边形ABPC 是O 的内接四边形,BC 是直径,AB=AC,请直接写出PB+PC 与AP 的关系.3.(2022·福建·龙岩九年级模拟)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系(不要求证明).②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,35AE =AF 的长.【讲练结合】——开发思维,熟能生巧【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD 中,E、F 分别是AB、BC 边上的点,且∠EDF=45°,探究图中线段EF,AE,FC 之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD 中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE 的长.【拓展提高】(3)如图3,在四边形ABCD 中,AB=AD,∠ABC 与∠ADC 互补,点E、F 分别在射线CB、DC 上,且∠EAF=12∠BAD.当BC=4,DC=7,CF=1时, CEF 的周长等于.(4)如图4,正方形ABCD 中, AMN 的顶点M、N 分别在BC、CD 边上,AH⊥MN,且AH=AB,连接BD 分别交AM、AN 于点E、F,若2EF 的长.(5)如图5,已知菱形ABCD 中,∠B=60°,点E、F 分别是边BC,CD 上的动点(不与端点重合),且∠EAF=60°.连接BD 分别与边AE、AF 交于M、N,当∠DAF=15°时,求证:MN 2+DN 2=BM 2.【专项训练】——举一反三,巩固提高1.(2022·江西九江·一模)如图(2),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF.(1)【观察猜想】如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE,DF,EF 之间的数量关系为______.(2)【类比探究】如图(1),线段BE,DF,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)【问题解决】如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D,E 均在边BC 上,且45DAE ∠=︒,若2BD =,求DE 的长.2.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=12∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.3.(2022·重庆市育才中学二模)(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.。

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。

通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。

常见的半角模型是90°含45°,120°含60°。

例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。

要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。

证明过程如下:1.延长ND到E,使DE=BM。

由四边形ABCD是正方形,得AD=AB。

在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。

得AE=AM,∠XXX∠BAM。

由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。

在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。

得MN=EN。

因此BM+DN=DE+DN=EN=MN。

2.由(1)得△AMN≌△XXX。

因此S△AMN=S△AEN,即AH×MN=AD×EN。

又因为MN=EN,得AH=AD。

因此AH=AB。

在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。

要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。

1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。

2) 猜想:当DM≠DN时,仍有BM+NC=MN。

证明如下:延长AC至E,使CE=BM,连接DE。

因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。

因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。

因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。

九年级中考几何模型之半角模型详解

九年级中考几何模型之半角模型详解

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【模型思想】通过旋转变化后构造全等三角形,实线边的转化。

【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。

结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。

结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。

旋转模型-角含半角模型

旋转模型-角含半角模型

旋转模型-角含半角模型【内容介绍】本次资料主要包含数学科目,重点指导学生了解旋转模型相关知识,掌握不同旋转模型的解题方法;主要是通过要点梳理,帮助大家综合掌握角含半角模型的含义和解题方法,再通过典型例题的分析,帮助大家了解常考题型。

建议大家深入学习掌握要点梳理,认真研读例题,并在日常学习中注重练习,实现对学习目标的综合把握。

【要点梳理】1)半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半2)思想方法:通过旋转构造全等三角形,实现线段的转化3)基本模型要点一、正方形含半角图1 图2△△△△AEF AEB AFDS S +S )4(;BEF 分平 EA ,DFE 分平 FA )3(;半一的长周形方正是长周的(2) CEF EF=BE+DF;)1(:论结的下以明证,EAF=45,点的上边CD 、BC 是别分F 、E ,中ABCD 形方正在:1图如:题例=∠∠∠︒。

化转的角和段线现实,形角三等全造构转旋过通,型模角半合符,角45有含中角90:析分︒︒△△△△△△△△△AEG AEF AEG AEF G AFE AFD CEF BE BG BE DF AEF AEG AEB AEG AEB AFD 证得S S =S S S S ;证得;证得EF+CE+CF=BE+CE+DF+CF=BC+CD,(2)长周的。

立成=+=+≅∴∠=∠∠=∠=∠∴∴+=+,(4),,,(3)=(1),△△△△△EF EG AEG AEF AE AE AEG AEF EAG EAF AG AF EAG EAF EAF G B C GBC ABG ABC ABG AG AF ABG D BG DF ABCD AD AB ,,中和在,,线共点三、、则,到得,转旋针时顺点沿将,中形方正在,图如:答解∴==∴≅⎩=⎪⎨∠∠⎪⎧=∴∠∠︒∠︒∴∴∠∠+∠︒∠︒∆=∠=∠=︒=∠=︒=︒,===45=45==180ABC =90,90,,GAF 90,2,ADF A 90。

第5讲角含半角模型(解析版)

第5讲角含半角模型(解析版)

中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。

它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。

解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为4.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=5,CB=4,∴BE=3,∴AE=1,设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,∴CF===4,故答案为:4.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠F AG=∠DAE,∴∠F AG+∠F AB=∠EAD+∠F AB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE=S△ABG=××4=.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【解答】解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠F AM=45°,∴∠F AM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.【解答】解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=6,∴BM+CM+CN+DN=6,∴BC+CD=6,∴BC=CD=3,故答案为3.(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN,∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE,∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)解:如图3,把△ABM绕点A逆时针旋转150°至△ADG,连接AN.作NH⊥AD于H,在AH上取一点K,使得∠NKH=30°在Rt△DHN中,∵∠NDH=60°DN=5(﹣1),∴DH=DN=,HN=DH=,在Rt△KNH中,KN=2HN=15﹣5,HK=HN=,∴AK=AH﹣HK=15﹣5,∴AK=KN,∴∠KAN=∠KNA,∵∠NKH=∠KAN+∠KNA,∴∠NAK=15°,∴∠MAN=75°=∠BAD,由(2)得,MN=BM+DN=10+5(﹣1)=5+5.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.【解答】解:(1)证明:延长MB到G,使BG=DN,连接AG.∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∴∠1+∠2=∠4+∠2=∠MAN=∠BAD.∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∴∠MAN=∠NAD+∠BAM=∠DAB,∴∠MAG=∠BAD,∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.【解答】解:(1)BM+DN=MN;(2)DN﹣BM=MN.理由如下:如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠F AD.∴∠MAB+∠BAF=∠F AD+∠BAF=90°,即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.∵AN=AN,∴△MAN≌△F AN.∴MN=FN,即MN=DN﹣DF=DN﹣BM;(3)∵正方形的边长为16,DN=4,∴CN=12.根据(1)可知,BM+DN=MN,设MN=x,则BM=x﹣4,∴CM=16﹣(x﹣4)=20﹣x.在Rt△CMN中,∵MN2=CM2+CN2,∴x2=(20﹣x)2+122.解得x=13.6.∴MN=13.6cm.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是EF=BE+FD.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,故答案为EF=BE+FD.(2)(1)中的结论EF=BE+FD仍然成立.理由:延长EB到点G,使BG=DF,连结AG.∵∠ABD+∠D=180°,∠ABD+∠ABG=180°,∴∠ABG=∠D,∴AB=AD,BG=DF,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAD=∠BAE+∠BAG,∴∠EAG=∠EAF,∵AE=AE,AG=AF,∴△EAG≌△EAF,∴EG=EF,∵EG=BG+BE=DF+BE,∴EF=BE+DF.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.【解答】解:(1)证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,∴AM=HF,AN=BC,在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN∴△ABM≌△ADN∴AM=AN,即EG=FH(2)结论:EG:FH=3:2证明:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN.∴△ABM∽△ADN.,∵AB=2,BC=AD=3,∴.(3)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,∵.∴在Rt△ABM中,BM=.将△AND绕点A顺时针旋转90°到△APB.∵EG与FH的夹角为45°,∴∠MAN=45°,∴∠DAN+∠MAB=45°,即∠P AM=∠MAN=45°,从而△APM≌△ANM,∴PM=NM.设DN=x,则NC=1﹣x,MN=PM=.在Rt△CMN中,解得.∴.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.。

人教初三数学旋转模型含详细解析

人教初三数学旋转模型含详细解析

人教版初三数学旋转模型(含详细解析)————————————————————————————————作者:————————————————————————————————日期:旋转模型授课日期时 间主 题教学内容1.巩固并掌握旋转的性质;2.结合辅助线的构造,更深刻的认识旋转的性质;知识结构1、在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转2、►旋转具有以下特征:(1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等; (3)对应角、对应线段相等;(4)图形的形状和大小都不变。

3、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。

4、旋转不同类型(一)正三角形类型在正ABC ∆中,P 为ABC ∆内一点,将ABP ∆绕A 点按逆时针方向旋转60o,使得AB 与AC 重合。

经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的一个'P CP ∆中,此时'P CP ∆也为正三角形。

【例题】如图:(1-1):设P是等边ABC∆内的一点,PA=3,PB=4,PC=5,APB∠的度数是________.οοο1509060.3,'''''''=+=+∠=∠∴≅==∠=∠PBPAPPAPBRTPBPAPPCAPBAPBPAPAPCAPBAPABC△为为正三角形,△。

易证△△则△,连结且的外侧,作简解:在△‘(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ABP∆绕B点按顺时针方向旋转90o,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的'CPP∆中,此时'CPP∆为等腰直角三角形。

九年级旋转专题讲义

九年级旋转专题讲义

九年级旋转专题讲义旋转专题讲义(九年级)一、基础知识1. 旋转的定义:在平面内,一个图形绕着某一点转动一定的角度而不改变其位置的运动称为旋转。

这个定点称为旋转中心,转动的角度称为旋转角。

2. 旋转的性质:(1)旋转中心到图形上任意一点的距离在旋转前后保持不变。

(2)图形上任意两点绕旋转中心按同一方向旋转相等的角度后,对应点到旋转中心的距离相等。

(3)图形上任意两点绕旋转中心按相反方向旋转相等的角度后,对应点到旋转中心的距离相等,但方向相反。

二、常见题型及解题方法1. 确定旋转角:在题目中,常常会给出一些图形经过某种运动后的位置,需要确定这些图形是绕哪个点按什么方向旋转了多少度。

此时可以通过观察图形变化前后的位置,找出旋转中心和旋转角。

2. 求解旋转问题:在求解与旋转相关的问题时,常常需要利用旋转的性质,通过已知条件推导出其他未知条件。

例如,在求解几何图形的面积或周长时,可以通过旋转将不规则图形转化为规则图形,从而方便计算。

3. 判断是否为旋转对称图形:在判断一个图形是否为旋转对称图形时,可以通过观察图形是否能够绕某点按一定角度旋转后与自身重合来确定。

如果可以,则该图形是旋转对称图形。

4. 求解旋转对称图形的中心和角度:在求解旋转对称图形的中心和角度时,可以通过观察图形自身旋转的过程,找出旋转中心和旋转角度。

例如,在求解正多边形的中心和角度时,可以通过将多边形的各顶点绕中心点按相同的方向旋转相同的角度后与自身重合来确定。

三、典型例题解析例1:在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=3BF。

将△ADE绕点A按逆时针方向旋转90°得到△ABG。

则下列结论:①AF=AG;②BF=BG;③AF=FG;④△AFD≌△GFC中,正确的有()A. ①②B. ②③C. ③④D. ①④分析:根据题意,通过全等三角形的判定与性质分别判断即可。

解答:①∵△ADE绕点A按逆时针方向旋转90°得到△ABG,∴AF=AG,故①正确;②∵CF=3BF,E为CD的中点,∴BF=DF=CG=BG,故②正确;③在△AFD与△GFC中,∵AD=AG,DF=CG,AF=FG,∴△AFD≌△GFC (SSS),∴∠AFC=∠AFD=90°+∠DFA,又∵∠AFC+∠AFD+∠DFA=180°,∴AF≠FG,故③错误;④由③得:AF≠FG,故④错误;故选A。

2019-2010九年级数学培优讲义:旋转综合之对角互补模型

2019-2010九年级数学培优讲义:旋转综合之对角互补模型

旋转综合之对角互补模型初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。

在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第二讲:旋转综合之对角互补模型,希望各位同学能从中收益。

基本图形1、如图所示,在等腰Rt ABC中,点O为斜边AB的中点,点E,F分别是AC,BC上两点,且90EOF∠=︒①若过点O分别作AC,BC的垂线段,垂足为M,N,则MOE△△≌NOF②若连接OC,则EOC△.△≌FOB2、如图所示,点D为ABC∠两边上的点,且∠的平分线BD上一点,点E,F分别为AOB△≌GDF△∠+∠=︒.过点D分别作AB,BC的垂线段,垂足为H,G,则HDEABC EDF180对角互补模型的解题步骤1、找旋转点(角平分线上的点),构造旋转;2、证全等、相似;3、利用全等、相似得到边、角的关系.例1 如图1,将一个直角三角板的直角顶点P 放在正方形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与BC 相交于点E .(1)求证:PA PE =(2)若将(1)中的正方形变为矩形,其余条件不变,(如图2),且10AD =,8DC =,求:A P P E 的值;(3)在(2)的条件下,当P 滑动到BD 的延长线上时,如图3,:AP PE 的值是否发生变化?无需证明.解 (1)如图,过P 作PM AB ⊥于点M ,PN BC ⊥于点N .则,90,PM PN MPN APE =∠==︒∠。

【初中数学】旋转复习——半角模型的应用教学设计

【初中数学】旋转复习——半角模型的应用教学设计

旋转复习一一半角模型的应用教学设计学科:数学姓名: ______ 日期:_____________________“旋转变换”是初中图形变换中的一个重要内容,本节课是在学生学完了第二十三章《旋转》后的复习课,旨在帮助学生进一步理解旋转的概念和性质,并能用旋转变换深入理解“半角模型”。

二、学生分析学生已经学习了平移变换、轴对称变换、旋转变换这三个重要的图形变换,对几何图形已经具备了一立的认识,但是还缺乏一泄的动态认识,对于在复杂图形中利用旋转变换解决问题,还存在一定难度。

三、教学目标(-)知识与技能目标1.复习旋转的概念与性质;2.掌握利用旋转,构造全等的解题思路。

(二)过程与方法目标1.在问题的探讨中,通过一题多解,培养分析问题,多角度看待问题的能力:2.借助智慧课堂的信息技术(网络空间的“教学助手”“互动课堂”“家校帮”、HiTeaChTBL2软件、几何画板等)的使用,提髙教与学的有效性、髙效性。

(三)情感、态度与价值观目标1.在分组讨论、合作交流中,培养学生善于观察、勇于探索和勤于思考、合作交流的能力;2.体会从特殊到一般、转化等数学思想。

1.如图,在正方形ABCD中,ZMAN=45° ,当ZMAN绕点人顺时针旋转到如图的位巻时,它的两边分别交QB, DC于点M, N.线段BM, DN和MN之间有怎样的数量关系?写出猜想,并给予证明・几何画板演示旋转动画,并提示学生是否有其他做法?1.互动课堂的“移动讲台”功能,及时舶照,展示学生的学案。

几何画板的动画演示,直观形象,较好地突岀了重点,突破了难点。

2.将第二种证法设置成选择题,及时检测学生对“半角模型”解题方法的理解程度。

如图,正方形ABCD中,ZMAN=45° , ZMAN的两边分别交BG CD于点N.延长CD至点使DM f = BM, 连接AM',下列结论:①AM = AM f②ZMAM= ZΛ½M'③BWDN=MN ®AN=AM,其中正确的是:(). A.①② B.②④C.①②③D.①④2.将第二种证法设置成选择形式,利用HiTeaCh TBL2 的IRS 即时反馈系统,及时检测学生对“半角模型”解题方法的理解程度,为后续的教学策略提供数据分析。

人教版数学九年级上册 旋转几何综合(培优篇)(Word版 含解析)

人教版数学九年级上册 旋转几何综合(培优篇)(Word版 含解析)

人教版数学九年级上册旋转几何综合(培优篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.【答案】(1)∠B+∠D=180°(或互补);(2)∴【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC2+CG2=EG2.在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED .∴DE=EG.又∵CG=BD,∴ BD2+EC2=DE2.∴.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.2.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.3.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.4.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.5.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC DA DC和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90︒,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;类比探索(3)①将GEB绕着点C任意方向旋转,如图③或图④,请问DF和EF的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB绕着点C旋转的过程中,猜想DF与EF的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DF EF ;(2)3EF DF =,DF EF ,理由见解析;(3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DFEF 始终成立.【解析】 【分析】(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析; (3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立.【详解】解:(1)3EF DF =,DFEF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =. 又点F 为AB 的中点, AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴.MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===. tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,333DM FN a ==, 333MF NE b==, 又90DMF FNE ∠=∠=︒, DMF FNE ∴∽.MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒. 90DFE ∴∠=︒.3EF DF ∴=且DFEF .(2)3EF DF =,DFEF .理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=. 又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC , ∴四边形LCMF 为矩形, 90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒. GEB 为等边三角形, 60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在RtDEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明: 如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=, 又AD BN CD ==,()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠+∠=∠+∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF 并延长到点N ,使得FN DF =,连接NB ,DE ,NE ,NB 与CD 交于点O ,EB 与CD 相交于点J , 在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=. 又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒. DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.6.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m3+3m,在Rt△EBH中,sin∠EBH=3+36226mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,7.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.8.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE.∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.9.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.【答案】(1) AD=BE ,AD⊥BE.(2) AD=BE ,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.10.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.。

人教版数学九年级上册:23 旋转——旋转中常见的几何模型 讲义(附答案)

人教版数学九年级上册:23 旋转——旋转中常见的几何模型 讲义(附答案)

旋转中常见的几何模型类型1 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图31.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是(填序号).2.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.若Rt△ABC和Rt△ECD是等腰直角三角形.(1)猜想线段BE,AD之间的数量关系及所在直线的位置关系,写出结论并证明;(2)现将图1中的Rt△ECD绕着点C顺时针旋转n°,得到图2,请判断(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.类型2 “半角”模型模型特征:大角含半角+有相等的边,通过旋转“使相等的边重合,拼出特殊角”.模型说明:如图,在正方形ABCD 中,∠EAF =45°,将△ADF 绕点A 顺时针旋转90°,得到△ABG ,可证△AEF ≌△AEG.所以可得DF +BE =EF.如图,在等腰直角△ABC 中,∠MAN =45°,将△ACN 绕点A 顺时针旋转90°,得到△ABQ ,可证△AMN ≌△AMQ.所以可得CN 2+BM 2=MN 2.如图,等腰△ABC 中,AB =BC ,∠DBE =12∠CBA.将△CBD 绕点B 逆时针旋转∠CBA 的度数得到△ABD ′,可证△DBE ≌△D ′BE.3.已知在等腰△ABC中,AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连接D′E.(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?并说明理由.4.如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A 顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.拓展类型构造旋转模型解题若一个图形中含有相等的线段和特殊的角度,通常是以等线段的公共端点为旋转中心进行旋转,使得相等的边重合,得出特殊的图形.5.【注重阅读理解】请阅读下列材料:问题:如图1,在等边△ABC内有一点P,且PA=2,PB=3,PC=1,求∠BPC的度数和等边△ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC的度数和正方形ABCD的边长.参考答案:1.①②③2.解:(1)BE =AD ,BE ⊥AD.证明:延长BE 交AD 于点F.∵Rt △ABC 和Rt △ECD 是等腰直角三角形,∠ECD =90°,∴CB =CA ,CD =CE.在△BCE 和△ACD 中,⎩⎪⎨⎪⎧CB =CA ,∠BCE =∠ACD ,CE =CD ,∴△BCE ≌△ACD (SAS ).∴BE =AD ,∠BEC =∠ADC.∵∠EBC +∠BEC =90°,∴∠EBC +∠ADC =90°.∴∠BFD =90°.∴BE ⊥AD.(2)BE =AD ,BE ⊥AD 仍然成立.证明:设BE ,AC 交于点F ,BE ,AD 交于点G ,∵∠ACB =∠ECD =90°,∴∠ACD =∠BCE.在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS ).∴AD =BE ,∠CAD =∠CBE.∵∠BFC =∠AFG ,∠BFC +∠CBE =90°,∴∠AFG +∠CAD =90°.∴∠AGF =90°.∴BE ⊥AD.3.解:(1)证明:∵△ABD 绕点A 旋转,得到△ACD ′,∴∠DAD ′=∠BAC =120°,AD =AD ′.∵∠DAE =60°,∴∠D ′AE =∠DAD ′-∠DAE =120°-60°=60°.∴∠DAE =∠D ′AE.在△DAE 和△D ′AE 中,⎩⎪⎨⎪⎧AD =AD ′,∠DAE =∠D ′AE ,AE =AE ,∴△DAE ≌△D ′AE (SAS ).∴DE =D ′E.(2)∠DAE =12∠BAC ,理由如下: ∵△ABD 绕点A 旋转,得到△ACD ′,∴∠DAD ′=∠BAC ,AD =AD ′.在△DAE 和△D ′AE 中,⎩⎪⎨⎪⎧AD =AD ′,DE =D ′E ,AE =AE ,∴△DAE ≌△D ′AE (SSS ).∴∠DAE =∠D ′AE =12∠DAD ′. ∵∠DAD ′=∠BAC ,∴∠DAE =12∠BAC.4.证明:(1)∵将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,∴QB =DF ,AQ =AF ,∠BAD =∠QAF =90°.∵∠EAF =45°,∴∠QAE =∠FAE =45°.在△AQE 和△AFE 中,⎩⎪⎨⎪⎧AQ =AF ,∠QAE =∠FAE ,AE =AE ,∴△AQE ≌△AFE (SAS ).∴∠AEQ =∠AEF.∴EA 是∠QED 的平分线.(2)由(1)得△AQE ≌△AFE ,∴QE =EF.∵∠ABQ =∠ADF =∠ABD =45°,∴∠QBE =90°.在Rt △QBE 中,QB 2+BE 2=QE 2,∴EF 2=BE 2+DF 2.5.解:将△BPC 绕点B 逆时针旋转90°,得△BP ′A ,则△BPC ≌△BP ′A.∴AP ′=PC =1,BP ′=BP = 2.易证∠PBP ′=∠ABC =90°.连接PP ′,在Rt △BP ′P 中,∵BP =BP ′=2,∠PBP ′=90°,∴PP ′=2,∠BP ′P =45°.在△AP ′P 中,AP ′=1,PP ′=2,AP =5,∵12+22=(5)2,即AP ′2+PP ′2=AP 2,∴△AP ′P 是直角三角形,即∠AP ′P =90°.∴∠AP ′B =∠AP ′P +∠BP ′P =135°.∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形.∵BP′=2,∴EP′=BE=1.∴AE=2.∴在Rt△ABE中,由勾股定理,得AB= 5.∴∠BPC=135°,正方形ABCD的边长为 5.。

半角模型(初三数学最全最详细半角模型)

半角模型(初三数学最全最详细半角模型)

几何模型07——半角模型一、正方形中夹半角模型(45°)例1.如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.求证:(1)EF=BE+DF;变式1.如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=MF(2)若AE=2,求FC的长.变式2.在四边形ABCD中,AD∥BC(BC>AD),∠A=∠B=90°,AB=BC=20,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.变式3.已知,正方形ABCD,M在CB延长线上,N在DC延长线上,∠MAN=45°.求证:MN=DN﹣BM.变式4.在平面直角坐标系中,已知A(x,y),点A作AB⊥y轴,垂足为B.若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt △BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM =a,MF=b,AF=c,试证明:=.例2.如图所示,过正方形ABCD的顶点A在正方形ABCD的内部作∠EAF=45°,E、F分别在BC、CD上,连接EF,作AH⊥EF于点H求证:AH=AB.变式1.已知△AMN中,∠MAN=45°,AH⊥MN于点H,且MH=3,NH=7,求AH的长.变式2.已知:如图,在正方形ABCD中,M在CB延长线上,N在DC延长线上,∠MAN=45°,AH⊥MN,垂足为H,求证:AH=AB.二、等腰直角三角形中的夹半角模型(45°)例3.已知Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°,证明:DE2=BE2+AD2;.变式1.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.变式2.如图,在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.∠BAC=90°,∠EAF=135°,证明:EF2=EC2+BF2三、其他半角模型例4.在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC,DM≠DN,证明:MN=BM+NC.变式1.如图,在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.∠BAC=60°,∠EAF=30°,已知BE=3,CF=5,求线段EF的长度;例5.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;变式1.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;变式2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD.证明:EF=BE﹣FD,变式3.已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=∠BAD.变式4.已知△ABC中,AB=AC,∠BAC=120°.点M在BC上,点N在BC 的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;。

旋转中的几何模型(角含半角模型)(解析版)

旋转中的几何模型(角含半角模型)(解析版)

旋转中的几何模型模型一角含半角模型模型特征:角含半角模型,顾名思义即一个角包含着它的一半大小的角。

它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。

解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

1综合与实践:如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF= 45°,连接EF,求证:DE+BF=EF.李伟同学是这样解决的:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,再证明△GAF≌△EAF,可得结论.(1)如图2,在四边形ABCD中,AD∥BC AD>BC,∠D=90°,AD=CD=10,且∠BAE= 45°,DE=4,求BE的长;(2)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD2+CE2=DE2始终成立,请说明理由.【思路点拨】(1)过A作AG⊥BC,交BC延长线于G,由正方形的性质得出CG=AD=10,再运用勾股定理和方程求出BE的长;(2)运用旋转性质和勾股定理判断说明等式成立.【解题过程】解:(1)如图2,过点A作AG⊥BC,交CB延长线于点G.四边形ADCG中,∠D=∠C=∠G=90°,AD=DC,∴四边形ADCG是正方形.∴CG=AD=10.已知∠BAE=45°,根据已知材料可得:BE=GB+DE.设BE=x,则BG=x-4,∴BC=14-x.在Rt△BCE中,BE2=BC2+CE2,∴x2=14-x2+62,解得x=58 7.∴BE=587.(2)如图3,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,AE=AH∠HAD=∠EAD AD=AD,∴△EAD≌△HAD SAS.∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,∴BD2+CE2=DE2.2如图,△ABC中,AB=AC,∠BAC=90°,点D、E在BC边上,∠DAE=45°,将△ACE绕点A顺时针旋转90°得△ABF.(1)求证:BF⊥BC;(2)连接DF,求证:△ADF≌△ADE;(3)若BD=3,CE=4,则DF=,四边形AFDE的面积=.【思路点拨】(1)由旋转的性质得∠C=∠ABF,从而得到∠DBF=∠ABC+∠ABF=90°,即可证明结论;(2)由旋转的性质得AF=AE,∠BAF=∠CAE,则∠BAD+∠BAF=∠BAD+∠CAE=45°,再利用SAS即可证明;(3)如图,过点A作AH⊥BC于H,由(1)得,∠DBF=90°,在Rt△DBF中,由勾股定理得DF= BD2+BF2=32+42=5,则BC=BD+DF+CE=3+5+4=12,再根据直角三角形斜边上的中线等于斜边的一半求出AH,再利用S四边形AFDE=2S△ADE可得出答案.【解题过程】(1)证明:∵将△ACE绕点A顺时针旋转90°得△ABF,∴∠C=∠ABF,∵在△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠DBF=∠ABC+∠ABF=45°+45°=90°,∴BF⊥BC.(2)证明:∵将△ACE绕点A顺时针旋转90°得△ABF,∴AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∠BAC=90°,∴∠BAD+∠CAE=90°-45°=45°,∴∠BAD+∠BAF=∠BAD+∠CAE=45°,∴∠DAF=∠DAE,在△ADF和△ADE中,AF=AE∠DAF=∠DAE AD=AD,∴△ADF≌△ADE SAS.(3)解:如图,过点A作AH⊥BC于H,∵将△ACE绕点A顺时针旋转90°得△ABF,BD=3,CE=4,∴BF=CE=4,由(1)得,∠DBF=90°,在Rt△DBF中,DF=BD2+BF2=32+42=5,由(2)得,△ADF≌△ADE,∴DE=DF=5,S△ADF=S△ADE,∴BC=BD+DE+CE=3+5+4=12,∵在△ABC中,AB=AC,∠BAC=90°,AH⊥BC∴BH=CH,∴AH=12BC=6,∴四边形AFDE的面积:S四边形AFDE=S△ADF+S△ADE=2S△ADE=2×12×DE×AH=DE×AH=5×6=30.故答案为:5;30.针对训练13如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,分别连接EF、BD,BD与AF、AE分别相交于点M、N(1)求证:EF=BE+DF为了证明“EF=BE+DF”,小明延长CB至点G,使BG=DF,连接AG,请画出辅助线并按小明的思路写出证明过程.(2)若BE=2,DF=3,请求出正方形ABCD的边长.(3)请直接写出线段BN、MN、DM三者之间的数量关系【分析】(1)延长BC 到G ,使BG =DF ,连接AG ,证得△ABG ≌△ADF ,△AEF ≌△AEG ,最后利用等量代换求得答案即可;(2)根据(1)中的结论,设正方形的边长为x ,列方程可解答;(3)在AG 截取AH =AM ,连接NH 、BH ,证得△ABH ≌△ADM ,△AMN ≌△AHN ,最后利用勾股定理求得答案即可.【解析】(1)证明:如图1,延长CB 至点G ,使BG =DF ,连接AG,∵四边形ABCD 为正方形,∴AB =AD ,∠BAD =∠ADF =∠ABE =∠ABG =90°,在△ABG 和△ADF 中,AB =AD ∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ),∴∠DAF =∠BAG ,AF =AG ,∴∠GAE =∠BAG +∠BAE =∠DAF +∠BAE =90°-45°=45°=∠EAF ,在△AEF 和△AEG 中,AF =AG ∠FAE =∠GAE AE =AE,∴△AEF ≌△AEG (SAS ),∴EF =EG ,∵EG =BE +BG ,∴EF =BE +DF ;(2)解:设正方形的边长为x ,∵BE =2,DF =3,∴CE =x -2,CF =x -3,由(1)得:EF =BE +DF =2+3=5,Rt △CEF 中,EF 2=CE 2+CF 2,52=(x -2)2+(x -3)2,解得:x =6或-1(舍),答:正方形ABCD 的边长为6.(3)解:BN 2+DM 2=MN 2;理由是:如图2,在AG 上截取AH =AM ,连接HN 、BH ,在△AHB 和△AMD 中,AB =AD ∠HAB =∠MAD AH =AM,∴△AHB ≌△AMD (SAS ),∴BH =DM ,∠ABH =∠ADB =45°,又∵∠ABD =45°,∴∠HBN =90°.∴BH 2+BN 2=HN 2.在△AHN 和△AMN 中,AH =AM ∠HAN =∠MAN AN =AN,∴△AHN ≌△AMN (SAS ),∴MN =HN .∴BN 2+DM 2=MN 2.4如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .(1)求证:CE =CF ;(2)在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:①如图2,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是AB 的中点,且∠DCE =45°,求DE 的长;②如图3,在△ABC 中,∠BAC =45°,AD ⊥BC ,BD =4,CD =6,则△ABC 的面积为60(直接写出结果,不需要写出计算过程).【分析】(1)因为ABCD 为正方形,所以CB =CD ,∠B =∠CDA =90°,又因为DF =BE ,则△BCE ≌△DCF ,即可求证CE =CF ;(2)因为∠BCD =90°,∠GCE =45°,则有∠BCE +∠GCD =45°,又因为△BCE ≌△DCF ,所以∠ECG =∠FCG ,CE =CF ,CG =CG ,则△ECG ≌△FCG ,故GE =BE +GD 成立;(3)①过点C 作CG ⊥AD 交AD 的延长线于点G ,利用勾股定理求得DE 的长;②由题中条件,建立图形,根据已知条件,运用勾股定理,求出AD 的长,再求得△ABC 的面积.【解析】(1)在正方形ABCD 中CB =CD ,∠B =∠CDA =90°,∴∠CDF =∠B =90°.在△BCE 和△DCF 中,CB =CD ∠B =∠CDF BE =DF,∴△BCE ≌△DCF (SAS ).∴CE =CF .(2)GE =BE +GD 成立.理由如下:∵∠BCD =90°,∠GCE =45°,∴∠BCE +∠GCD =45°.∵△BCE ≌△DCF (已证),∴∠BCE =∠DCF .∴∠GCF =∠GCD +∠DCF =∠GCD +∠BCE =45°.∴∠ECG =∠FCG =45°.在△ECG 和△FCG 中,CE =CF ∠ECG =∠FCG CG =CG,∴△ECG ≌△FCG (SAS ).∴GE =FG .∵FG =GD +DF ,∴GE =BE +GD .(3)①如图2,过点C 作CG ⊥AD ,交AD 的延长线于点G ,由(2)和题设知:DE =DG +BE ,设DG =x ,则AD =6-x ,DE =x +3,在Rt △ADE 中,由勾股定理得:AD 2+AE 2=DE 2,∴(6-x )2+32=(x +3)2,解得x =2.∴DE =2+3=5;②如图3,将△ABD 沿着AB 边折叠,使D 与E 重合,△ACD 沿着AC 边折叠,使D 与G 重合,可得∠BAD =∠EAB ,∠DAC =∠GAC ,∴∠EAG =∠E =∠G =90°,AE =AG =AD ,BD =EB =4,DC =CG =6,∴四边形AEFG 为正方形,设正方形的边长为x ,则BF =x -4,CF =x -6,在Rt △BCF 中,根据勾股定理得:BF 2+CF 2=BC 2,即(x -4)2+(x -6)2=(4+6)2,解得:x =12或x =-2(舍去),∴AD =12,∴S △ABC =12BC •AD =12×10×12=60.故答案为:60拓展类型 构造旋转模型解题方法指导:若一个图形中含有相等的线段和特殊的角度,通常是以等线段的公共端点为旋转中心进行旋转,使得相等的边重合,得出特殊的图形.1请阅读下列材料:问题:如图1,在等边△ABC 内有一点P ,且PA =2,PB =3,PC =1,求∠BPC 的度数和等边△ABC 的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠BPC =∠AP′B=150°,进而求出等边△ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= 5,BP=2,PC=1.求∠BPC的度数和正方形ABCD的边长.解:将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP′=BP=2.易证∠PBP′=∠ABC=90°.连接PP′,在Rt△BP′P中,∵BP=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°.在△AP′P中,AP′=1,PP′=2,AP=5,∵12+22=(5)2,即AP′2+PP′2=AP2,∴△AP′P是直角三角形,即∠AP′P=90°.∴∠AP′B=∠AP′P+∠BP′P=135°.∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形.∵BP′=2,∴EP′=BE=1.∴AE=2.∴在Rt△ABE中,由勾股定理,得AB=5.∴∠BPC=135°,正方形ABCD的边长为5.2如图1,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD且EB⊥GD;(2)若AB=2,AG=2,求BE的长;【答案】(1)见解析;(2)10;(3)不变,△ABG与△DAE的面积之差为0【分析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB,从而△EAB≌△GAD,即EB=GD;由∠AEB=∠AGD,∠EOH=∠AOG,即可得出∠EHG=∠EAG=90°;(2)设BD与AC交于点O,由AB=AD=2,在Rt△ABD中求得DB,在Rt△GOD中利用勾股定理即可求得结果;【详解】(1)如图1,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,∠EAG=90°,∠DAB=90°,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△EAB和△GAD中,AB=AD∠EAB=∠GAD AE=AG,∴△EAB≌△GAD(SAS),∴EB=GD;∠AEB=∠AGD,∵∠EOH=∠AOG,∴∠EHG=∠EAG=90°,∴EB=GD且EB⊥GD;(2)如图2,连接BD,BD与AC交于点O,∵AB=AD=2,在Rt△ABD中,DB=AB2+AD2=22+22=22,∴AO=DO=2,∴OG=OA+AG=2+2=22,∴EB=GD=OG2+OD2=222+22=10;【点睛】本题考查了正方形的性质及全等三角形的判定与性质、勾股定理、三角形外角的性质,作出辅助线,利用三角形全等是解题的关键.针对训练25以△ABC的AB、AC为边作△ABD和△ACE,且AE=AB,AC=AD,CE与BD相交于M,∠EAB=∠CAD=α.(1)如图1,若α=40°,求∠EMB 的度数;(2)如图2,若G 、H 分别是EC 、BD 的中点,求∠AHG 的度数(用含α式子表示);(3)如图3,连接AM ,直接写出∠AMC 与α的数量关系是 90°+12α .【分析】(1)由“SAS ”可证△AEC ≌△ABD ,可得∠AEC =∠ABD ,由外角的性质可得结论;(2)由“SAS ”可证△ACG ≌△ADH ,可得AG =AH ,∠CAG =∠DAH ,即可求解;(3)由全等三角形的性质可得S △ACG =S △ADH ,EC =BD ,由面积法可求AP =AN ,由角平分线的性质可求∠AMD ,即可求解.【解答】解:(1)∵∠EAB =∠CAD =α,∴∠EAC =∠BAD ,在△AEC 和△ABD 中,AE =AB ∠EAC =∠BAD AC =AD,∴△AEC ≌△ABD (SAS ),∴∠AEC =∠ABD ,∵∠AEC +∠EAB =∠ABD +∠EMB ,∴∠EMB =∠EAB =40°;(2)连接AG ,AH ,由(1)可得:EC =BD ,∠ACE =∠ADB ,∵G 、H 分别是EC 、BD 的中点,∴DH =CG ,在△ACG 和△ADH 中,AC =AD ∠ACE =∠ADB CG =DH,∴△ACG ≌△ADH (SAS ),∴AG =AH ,∠CAG =∠DAH ,∴∠AGH =∠AHG ,∠CAG -∠CAH =∠DAH -∠CAH ,∴∠GAH =∠DAC ,∵∠DAC =α,∴∠GAH =α,∵∠GAH +∠AHG +∠AGH =180°,∴∠AHG =90°-12α;(3)如图3,连接AM ,过点A 作AP ⊥EC 于P ,AN ⊥BD 于N ,∵△ACE ≌△ADB ,∴S △ACE =S △ADB ,EC =BD ,∵12EC ×AP =12×BD ×AN ,∴AP =AN ,又∵AP ⊥EC ,AN ⊥BD ,∴∠AME =∠AMD =180°-α2,∴∠AMC =∠AMD +∠DMC =90°+12α,故答案为:90°+12α.6在△ABC 中,∠BAC =90°,AC =AB ,点D 为直线BC 上的一动点,以AD 为边作△ADE (顶点A 、D 、E 按逆时针方向排列),且∠DAE =90°,AD =AE ,连接CE .(1)如图1,若点D 在BC 边上(点D 与B 、C 不重合),①求证:△ABD ≌△ACE ;②求证:DE 2=BD 2+CD 2(2)如图2,若点D 在CB 的延长线上,若DB =5,BC =7,则△ADE 的面积为.(3)如图3,若点D 在BC 的延长线上,以AD 为边作等腰Rt △ADE ,∠DAE =90°,连结BE ,若BE =10,BC =6,则AE 的长为.【答案】(1)①见解析;②见解析;(2)1694;(3)34【分析】(1)①根据∠BAC =∠DAE ,推出∠BAD =∠CAE ,再结合AB =AC ,AD =AE ,即可证明△ABD ≌△ACE ,②根据∠ABD =∠ACE ,可得∠ABD +∠ACB =∠ACE +∠ACB =∠BCE ,根据BD =CE ,即可证明结论;(2)过点A 作AF ⊥DE 于点F ,利用等腰三角形的性质和直角三角形的性质,易得AF =12DE ,利用全等三角形的判定定理可得△ABD ≌△ACE ,由全等三角形的性质可得∠ADB =∠AEC ,DB =EC ,易得EC =5,DC =12,利用勾股定理可得DE 的长,利用三角形的面积公式可得结论;(3)根据Rt △BCE 中,BE =10,BC =6,求得CE =102-62=8,进而得出CD =8-6=2,在Rt △DCE 中,求得DE =22+82=68,最后根据△ADE 是等腰直角三角形,即可得出AE 的长.【详解】(1)①∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ABD ≌△ACE ,②∵△ABD≌△ACE,∴∠ABD=∠ACE,BD=CE,∴∠ABD+∠ACB=∠ACE+∠ACB=∠DCE=90°,∴DE2=CD2+CE2=CD2+BD2;(2)过点A作AF⊥DE于点F.∵AD=AE,∴点F是DE的中点,∵∠DAE=90°,∴AF=12DE,同理可证△ABD≌△ACE,∴∠ADB=∠AEC,DB=EC,∵DB=5,BC=7,∴EC=5,DC=12,∵∠DAE=90°,∴∠ADE+∠AED=90°,∴∠ADC+∠CDE+∠AED=90°,∴∠AEC+∠AED+∠CDE=90°,即∠CED+∠CDE=90°,∴∠ECD=90°,∴DE2=CE2+CD2=25+144=169,∵DE>0,∴DE=13,∴AF=132,∴△ADE的面积为=12DE•AF=12×13×132=1694;(3)由(1)可知:△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠BCE=∠ACB+∠∠ACE=∠ACB+∠ABD=90°,∴Rt△BCE中,BE=10,BC=6,∴CE=102-62=8,∴BD=CE=8,∴CD=8-6=2,∴Rt△DCE中,DE=22+82=68,∵△ADE是等腰直角三角形,∴AE=DE2=682=34.【点睛】本题主要考查了全等三角形的判定定理及性质定理,还有等腰三角形的性质等,综合利用定理,作出恰当的辅助线是解答此题的关键.巩固练习1已知在△ABC中,BC=4。

九年级上册数学 旋转几何综合(培优篇)(Word版 含解析)

九年级上册数学 旋转几何综合(培优篇)(Word版 含解析)

九年级上册数学旋转几何综合(培优篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;(2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32秒、695.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm=,8AD cm=,10BD cm∴=,根据旋转的性质可知10B D BD cm''==,2CD B D BC cm'=''-=,tanA B CEB D AA D CD'''''∠==''',682CE∴=,32CE cm∴=,()28634522222A B CE A B D CEDS S S cm''''''⨯∴==-⨯÷=-;(2)①当165x≤<时,22CD x'=+,32CE x=,233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭, 解得:669x -=秒,(669x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.3.小明研究了这样一道几何题:如图1,在△ABC 中,把AB 点A 顺时针旋转α (0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B ′C ′.当α+β=180°时,请问△AB ′C ′边B ′C ′上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CMDM在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM∵DA∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD=6,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC与△PAB之间满足小明探究的问题中的边角关系;在Rt△PDQ中,∵∠PDQ=90°,PD=DADN=12CD=3,∴PQ.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.4.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,5.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.6.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为2 22 +315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,90OA ODAOG DOEOG OE=⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠AG′O=OAOG'=12,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,∴2,∴O F′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.7.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC ,又∵BG=ED ,DE=DA ,∴BG=AD ,又∵BC=AC , ∴△BCG ≌△ACD (SAS ),∴GC=DC ,∠BCG=∠ACD , ∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG 是等腰直角三角形,又∵F 是DG 的中点,∴CF ⊥DF 且CF=DF .点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.8.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB =42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3.【解析】 【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m<∴满足条件的m 的取值范围为2<m< (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.9.(操作发现)(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点D ,在三角板斜边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=30°,连接AF ,EF .①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2,理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°﹣45°=45°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF .在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.10.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;(2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=,60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=,当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=,ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,30AEC ∴∠︒=,ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=,28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,当CE 最小时,DEC ∆的周长最小,ADE ∆为等边三角形,DE AD ∴=, AD的最小值为DEC ∴∆的周长的最小值为4+【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

初三数学几何专题 旋转--“对角互补 角含半角”模型

初三数学几何专题  旋转--“对角互补 角含半角”模型

“对角互补+角含半角”旋转模型知识点:1. 旋转的定义及其性质;2. 旋转对称图形和中心对称图形;3. 旋转的对角互补模型;4. 旋转的角含半角模型.教学目标:1. 理解旋转的定义和性质;2. 熟记旋转的模型;3. 知道旋转对角互补模型和角含半角模型的特点;4. 会根据旋转的对角互补模型和角含半角模型解决几何问题.教学重点:1. 会根据旋转的对角互补模型和角含半角模型解决几何问题.教学难点:1. 会根据旋转的对角互补模型和角含半角模型解决几何问题.难度 ★1、如图,在等腰直角三角形ABC 中,∠ABC=90°,D 为AC 边上的中点,过点D 作DE ⊥DF ,交AB 于点D ,交BC 于点F ,若AE=4,FC=3,则EF 的长为 .【思路点拨】连接BD ,根据的等腰直角三角形的性质证明△BED ≌△CFD (ASA ),得出AE=BF 、BE=CF ,由AE=BF=4,FC=BE=3,由勾股定理就可以求得EF 的长. 【解析】解:连接BD .∵D 是AC 中点,∴∠ABD=∠CBD=45°,BD=AD=CD ,BD ⊥AC ∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°,∴∠EDB=∠CDF ,在△BED 和△CFD 中,⎪⎩⎪⎨⎧∠∠CDF =EDB ∠CD =BD C=EBD ∠,∴△BED ≌△CFD (ASA ),∴BE=CF ;∵AB=BC ,BE=CF=3,∴AE=BF=4,在Rt △BEF 中,EF=22BF BE +=2243+=5; 故答案为:5.难度 ★2、如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.【思路点拨】角含半角模型的倒推,需要旋转,将△APQ 的周长转化成正方形两边长之和,可得∠PCQ的度数.【解析】解:如图所示,△APQ 的周长为2,即AP+AQ+PQ=2①,正方形ABCD 的边长是1,即AQ+QD=1,AP+PB=1, ∴AP+AQ+QD+PB=2②, ①-②得,PQ -QD -PB=0, ∴PQ=PB+QD .延长AB 至M ,使BM=DQ .连接CM ,△CBM ≌△CDQ (SAS ), ∴∠BCM=∠DCQ ,CM=CQ ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°, PM=PB+BM=PB+DQ=PQ .在△CPQ 与△CPM 中,CP=CP ,PQ=PM ,CQ=CM , ∴△CPQ ≌△CPM (SSS ), ∴∠PCQ=∠PCM=12∠QCM=45°.“图形的旋转”是近几年中考的必考内容,也是中考的热点和重点.运用旋转的全等变换,证明线段与角相等或和、差、倍、分关系,以及在旋转中探索图形的变化,进行图案中心对称选择是近几年中考的常见题型,研究图形旋转变换的变化规律,证明线段之间的数量关系是中考的重点题型,对Q PDCBA角互补和角含半角的旋转模型相对手拉手模型虽少些,但也是旋转模型的考查方向,所以要关注.知识点一 旋转(1)定义:在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫作旋转,定点叫作旋转中心,旋转的角度叫作旋转角,如果一个图形上的点A 经过旋转变为A ’,那么这两个点叫做旋转的对应点.(2)性质:①对应点到旋转中心的距离相等; ②旋转前后图形的大小和形状没有改变;③两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角; ④旋转中心是唯一不动的点. (3)旋转三要素:①定点﹣﹣﹣﹣旋转中心 ②旋转方向 ③旋转角度(4)旋转对称图形:在平面内,一个图形绕着一个定点旋转一定的角度后,能够与原图形重合,这样的图形叫旋转对称图形.中心对称图形:在平面内,一个图形绕某一定点旋转180°,能够和原来的图形完全重合,那么这个图形叫作中心对称图形,这个定点叫作对称中心.中心对称:把一个图形绕某一个点旋转180°。

初中九年级数学竞赛培优讲义全套专题13 旋转变换_答案

初中九年级数学竞赛培优讲义全套专题13 旋转变换_答案

3 + 3 A 2B 2C 2 -3S = 2x , 于 是 x +3 x + 2x = 1 ⇒ x = 1,故 S 例 2 ∵N ,M 分别为线段 AB ,CB 的中点,∴MN = 1 ' ' A ∠C A ' ∠C = 角 形 , ∠DCE ' = 60 ° , 又 BC = CD = CE ’, 则 ∠E 'BD = ∠DCE ' = 30 ° . ∴''专题 13 旋转变换例 1 如图,连接 OB 1,OB 2,B 1B 2,则 OB 1=OB 2,∠OB 1B 2=∠OB 2B 1.又∠OB 1C =30°=∠OB 2C , ∴∠CB 1B 2=∠CB 2B 1,故 CB 1=CB 2.同理,B 2D =DC 1.设 CB 1=x ,则 CB 2=x ,CD = 3 x ,DC 1=DB 2 六边形ABCDEF = S B 2CD =3 1 3 3 3 3 3 - 3 ⨯ x ⨯ 3x = - x 2 = -4 2 4 2 4 4.1 1 1AC .同理 MQ = BD ,PQ = AC ,PN = BD .2 2 2 2∵AC =BD ,∴MN =MQ =PQ =PN ,∴四边形 NMQP 为菱形.∵MN ∥AC ,MQ ∥BD ,∴AC ⊥BD ,∴∠NMQ =90°,∴菱形 NMQP 为正方形.例 3APM ≌ AP 'C , AP =AP ' , ∠APB =∠AP 'C , P 'C =PB . 连接 PP ' ,由 AP =AP 得 ∠APP = ∠AP 'P ,而 ∠ PB <AP 即 PB >PC .,即 ∠ PC <AP ,∴ ∠PP 'C <∠P 'PC ,于是 P 'C >PC ,例 4 (1)60° 45° (2)90°- 1 1 1α (3)∠AFB =90°- α ∠AFB =90°+ α 对∠2 2 2AFB =90°- 1 2α 证明如下:∵AB =AC ,EC =ED ,∠BAC =∠CED ,∴△ABC ∽△EDC ,得∠ACBBC AC=∠ECD , ,∠BCD =∠ACE ,∴△BCD ∽△ACE ,得∠CBD =∠CAE .∵∠AQF =∠BQC ,DC EC ∠CBD =∠CAF ,∴∠AFB =∠ACB =180︒ - ∠BAC 1= 90︒ - α .2 2例 5 ∵ ∠EBE =∠ABC =2∠DEB , ∴ ∠EBD = ∠E 'BD . 连 接 DE ' . ∵ BD =BD , ∠EBD = ∠E 'BD , BE =BE ' ,∴ EBD ≌ E 'BD ,得 ED =E 'D =CD =CE ' ,∴ CDE ' 为正三12∠ABC =∠EBE =2∠E 'BD =60︒ . 例 6 将△ABE 绕 B 点逆时针旋转 △60°,得 FBG ,连接 GE ,△FC ,则 BEG 为等边三角形,GE = BE ,∴FC ≤FG +GE +EC ,即 FC ≤EA +EB +EC ,∵FC 为定长,∴当 E 点落在 FC 上时,FC =EA +EB +EC 为最小值.∵∠FBC =150°,FB =BC ,∴∠BCF =∠BFC =15°,而∠GEB =60°,∴∠ EBC =45°,即 E 在正方形 ABCD 的对角线 BD 上.作 FH ⊥BC 交 CB 延长线于 H ,设 BC =x ,则 FB=x ,FH = x2 ,HB =3 2 x 3 x ,在 △Rt FHC 中,由( 2 + 6) 2 = ( )2 + ( x +2 2x )2,得 x =2 或 x =-2(舍去),即正方形的边长为 2.,B’N=1-,AM=,Rt△AKB≌△Rt AKD,∠KAB’=∠KAD=15°,∠,DK=2-3,重叠部分面积=2S△AKD=2⨯⨯1⨯(2-3)=2-3’EF=EG=2(3-1),S△AEF△=SABG=1例6题图A级1.1或52.6150°3.14.80或1205.2-3提示:如图,过B'作MN//AD,分别AB,CD于M,N,点B’C’交CD于K,则B’M=AB’sin60°=331222ADB’=75°△ADK∽△DN B’,DK AD1=NB'DN26.过P作PM丄AC于M,PN丄DF于N,可证明四边形PMGN为正方形,PM=125,S重叠=S正方形PMGN=12144()2=525.7.D8.A9.B提示△:将CPA绕点A逆时针旋转△60°到C AP’,连结PP’,△APP’为等边三角形.PB+PP’+P’C=PA+PB+PC>AB+AC’=AB+AC.10.(1)AE’=BF’.(2)证法较多,如取OE’中点G,连结AG.11.(1)AM=AN,∠MAN=α.(2)第(1)问的结论仍成立,理由如下:由△ABE≌△ACF得BE=CF,∠ABM=∠CAN,进一步可以证明△ABM≌△CAN.B级1.2提示:MN=BM+CN2.B提示:△ACM≌△BCD.∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,又CN=CN,则△MNC≌△DNC,MN=ND=x,AM=BD=m,又∠DBN=45°+45°=90°,故m2+n2=x2. 3.D 4.3-3提示:将△ADF'绕点A顺时针方向旋转90°,到△ABG.的位置,则△AEF≌△AEG.∠AEF=∠AEG=∠FEC=60°,BE=1,EC=BC-BE=3-1,2EG·AB=3-3.5.(1)提示:延长BC至E,使CE=CD连结DE,证明△ACD≌△BED.(2)将△ABD绕点A旋转△60°到ACB’,连结B’D,B’P,则四边形AB’DP符合(1)的条件,于是B’P=PA+PD连结AC,则△ABD≌△ACB’.BD=B’C,B’C≤PB’+PC=PA+PD+PC,从而BD≤PA+PD+PC.BD:DC=CD1:D1M=MD2:D2B=2:3,连结DM,则△SADE=△SABD=36cm2,而S3MD1D2=S=150-3×36=42cm2,故△SADE=13DD1D2=14cm2.10.(1)D(,)(2)α=2β(3)如图1,△OAE≌△DAE,△ABO≌△ABD,B,D,C,三点共线.设D(a,b),则解得a=,b=,∴D(,),可得直线CD的解析式为y=-x+4.如图2,同理2525252524a2+(4-b)2=42,6.直接解题有困难,△ABC绕点A逆时针旋转120°,240°拼成正△MBC(如图△,)则正ADE变为正△AD1E1和正△AD2E2易知,六边形DE D1E1D2E2是正六边形,△DD1D2是正三角形,其面积是△ADE面积的3倍..因此△设法由正MBC面积为150求出△DD1D2的面积,问题就解决了.注意到1DCD2=36cm2.同理,可得SDD1D2S7.如图,将BP,BO,BC绕点B沿顺时针方向旋转60°,变为BP',BO’,BC’连结OO’,PP’,则△BOO’,△BPP’都是正三角形.因此OO’=OB,PP’=PB,显然△BO’C’≌△BOC,△BP’C≌△BPC,由于∠BO’C=∠BOC=120°=180°-∠BO’O,∴A,O,O’,C’四点共线.故AP+PP’+P’C≥AC’=AO+OO’+O’C,即PA+PB+PC≥OA+OB+OC.8.(1)提示:延长DM交EF于N,由△ADM≌△ENM,得DM=MN,MF=1DN,FD=FN,故MD丄MF.(2)延长DM2交CE于N,连结DF,FN先证明△ADM≌△ENM,再证明△CDF≌△ENF.第(1)问中的结论仍成立.(3)第(1)问中的结论仍成立,延长DM至N,使MN=DM,连结DF,FN,证法同上. (9)提示:EG=CG,EG丄CG,B,E,D在一条直线上,(2)仍然成立,延长EG交CD于H点△FEG≌△DHG,△ECH,△ECG为等腰直角三角形.(3)仍然成立.61255⎧(a-3)2+b2=32,967296727⎨⎩可得,y=7x+4.2,于是DE2=(522)=QE2+QD2,从而∠DQE=90°,11.提示:易证∠ACB=90°△如图,将APC绕点A顺时针旋转60°△得到AQO,点D为AB的中点,连结PQ,得到△APQ为等边三角形.过点Q作QE丄AP,垂足为E,则∠AQE=30°,QE=3,AE=PE连结DE,则DE=1BP=522∠AQD=∠AQE+∠EQD=120°=∠APC.过点C作CF丄AP交AP的延长线于点F,得到∠CPF=60°,∵PC=2,∴PF=1,CF=3,于是AC2=AF2+CF2=(3+1)2+(3)2=7+23,∴△SABC=2S△ACD=6+732。

数学九年级上册 旋转几何综合(培优篇)(Word版 含解析)

数学九年级上册 旋转几何综合(培优篇)(Word版 含解析)

数学九年级上册 旋转几何综合(培优篇)(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)5π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°, ∵BD=22125+=,∴D 到点D 1所经过路径的长度=30551806ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC =-, ∴16A C EC=, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴3FG FE =, ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴3FG F FM FE D ==,∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴FM DM =;在矩形ABCD 中,有3AD AB ==3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴222FM DM ==⨯=∴6PF PM MF =+=+【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.3.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________; ②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M , OM m ∴=,143GM m =-+,AB BC =,BG AC ⊥,AG CG ∴=,90AOB GMH CDH ︒∠=∠=∠=,OA GMCD ∴, 1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q , 4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==,同理可得25AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H , ∴1403x -+=,解得,x =12,∴(12,0)H ,∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.4.小明研究了这样一道几何题:如图1,在△ABC 中,把AB 点A 顺时针旋转α (0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B ′C ′.当α+β=180°时,请问△AB ′C ′边B ′C ′上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD = BC ;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CMDM在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD=6,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC与△PAB之间满足小明探究的问题中的边角关系;在Rt△PDQ中,∵∠PDQ=90°,PD=DADN=12CD=3,∴PQ.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.5.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.【答案】(1)∠B+∠D=180°(或互补);(2)∴【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC2+CG2=EG2.在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED .∴DE=EG.又∵CG=BD,∴ BD2+EC2=DE2.∴.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.6.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P 是AF 的中点,∠ADF=90°,∴PD=AF=PA ,∵BE=DF ,BC=CD ,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF ,∠FCQ=∠ECQ ,∴CQ ⊥EF ,∠AQF=90°,∴PQ=AF=AP=PF ,∴PD=PQ=AP=PF ,∴点A 、F 、Q 、P 四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ 是等腰直角三角形.考点:四边形综合题.7.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】 (1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,31DG -∴=31BD BF DF ∴=-=;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD∆是等腰直角三角形,∴F是ED中点,又∵H是AE中点,∴AD∥HF,∵HF⊥ED,∴AD BE⊥.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.8.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为2 2+315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,90OA ODAOG DOEOG OE=⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠AG′O=OAOG'=12,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,∴2,∴OF′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.9.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.10.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;(2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=,60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=,当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=,ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,30AEC ∴∠︒=,ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=,28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,当CE 最小时,DEC ∆的周长最小,ADE ∆为等边三角形,DE AD ∴=, AD的最小值为∴∆的周长的最小值为4+DEC【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

角含半角模型

角含半角模型

角含半角模型角含半角模型,顾名思义即一个角包含着它的一半大小的角。

它主要包含:等腰直角三角形含半角模型;正方形含半角模型两类。

解决类似问题的常见办法主要有两种:旋转目标三角形和翻折目标三角形。

类型一:等腰直角三角形含半角模型(1)如图,在ΔABC中,AB=AC,∠BAC=90°,点D、E在BC上,且∠D AE=45°,则222+=.BD CE DE图示(1)作法1:将ΔABD旋转90°作法2:分别翻折三角形(2)如图,在ΔABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠D AE=45°,则:222+=BD CE DE图示(2)旋转法翻折法(3)如图,将等腰直角三角形变成任意等腰三角形,亦可以进行两种方法的操作。

任意等腰三角形旋转法翻折法类型二:正方形中角含半角模型(1) 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,∠E AF=45°,连接EF ,过点A 作AG ⊥EF 于点G ,则:,EF BE DF AG AD =+=图示(1) 作法:将ΔABE 绕点A 逆时针旋转90°(2)如图,在正方形ABCD 中,点E 、F 分别在边CB 、DC 的延长线上,∠E AF=45°,则:EF DF BE =-图示(2) 作法:将ΔABE 绕点A 逆时针旋转90°(2) 如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD 中,AB=AD ,∠BAD+∠C =180°,点E 、F 分别在边BC 、CD 上,∠EAF=12∠BAD ,连接EF ,则:EF BE DF =+。

图示(3) 作法:将ΔABE 绕点A 逆时针旋转∠BAD 的大小例题1:如图,正方形ABCD的边长为4,点E、F分别在AB、AD上,若CE=5,且∠E CF=45°,则CF的长为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转综合之角含半角模型
初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。

在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第三讲:旋转综合之角含半角模型,希望各位同学能从中收益。

基本图形
1、如图所示,在等腰Rt ABC △中,点D ,E 在斜边上,45DAE ∠=︒,
将ABD △旋转至ACF △,连接EF .则ADE △≌AFE △,222DE BD CE =+
2、如图所示,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,45EAF ∠=︒,将ABE △旋转至ADG △,则AEF △≌AGF △,EF BE DF =+
角含半角模型的解题步骤
1、找旋转点(含半角的角的顶点),构造旋转;
2、证全等;
3、利用全等、相似得到边角的关系.
例1 如图,已知等边ABC △的边长为1,D 是ABC △外一点且120BDC ∠=︒,BD CD =,60MDN ∠=︒.求AMN △的周长.
解 延长AC 到E ,使CE BM =,连接DE .
易证
BMD △≌(SAS).CED △ 所以
,.BDM CDE DM DE ∠=∠= 可得
60,NDE NDM ∠∠=︒= 所以
MDN △≌(SAS).EDN △ 从而
,MN EN CN CE CN BM ==+=+ 所以AMN △周长为
2.AMN C AB AC =+=△
例 2 如图,正方形ABCD 的边长为a ,BM ,DN 分别平分正方形的两个外角,且满足45MAN ∠=︒,连接MC ,NC ,MN .
(1)填空:与ABM △相似的三角形是_______,_______;(用含a 的代数式表示)
(2)求MCN ∠的度数;
(3)猜想线段BM ,DN 和MN 之间的等量关系并证明你的结论.。

相关文档
最新文档