2.2平面向量的线性运算2.2.1加法含答案

合集下载

2.2 平面向量的线性运算

2.2 平面向量的线性运算

2.2 平面向量的线性运算2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+=.⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ= ;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.课堂训练 一.选择题1.下列命题正确的是( ) A.若∥a b ,则a 与b 同向B.若∥a b ,则a 与b 同向或反向 C.若a =0,则a 与0共线D.若a 不为0,则a 与0不共线且3AC CB =-,设2.如图1所示,向量 ,,OAOBOC 的终点A B C ,,在一条直线上,=OA p ,= OB q ,= OC r ,则以下等式中成立的是( )A.1322r p q =-+B.2r p q =-+baCBAa b C C -=A -AB =BC.3122r p q =- D.2r q p =-+3.如图2所示,在菱形ABCD 中,120DAB ∠= ,则以下说法错误的是( ) A.与AB 相等的向量只有一个(不含AB本身) B.与AB 的模相等的向量只有4个(不含AB本身) C.BD 的长度恰为DAD.CB 与DA不共线4.将1[2(28)4(42)]12+--a b a b 化简成最简式为( ) A.2a b - B.b a - C.a b - D.2b a -5.已知G 是ABC △的重心,如图1所示,则GA GB GC +-=( ) A.0 B.4GEC.4GDD.4GF6.若9AB = ,6AC = ,则BC的取值范围为( )A.[315],B.[39], C.(315),D.[69],二.填空题7.已知非零向量1e 和2e 不共线,欲使t 12+e e 和1+e t 2e 共线, 则实数t 的值为 .8.平行四边形ABCD 中,M 为DC 中点,N 为BC 的中点.设AB = a ,AD = b ,则=MN (用a ,b 表示).9.已知菱形ABCD 的边长为1,60ABC AB ∠==,a ,AC = c ,BC =b ,则a bc ++= .10.已知OA = a ,OB = b ,若12OA = ,5OB =,且90AOB ∠= ,则-=a b . 11.在菱形ABCD 中,60DAB ∠= ,1AB = ,则BC DC +=.12.在静水中划船速度是10米/分钟,水流速度10米/分钟,如果船从岸边径直沿垂直于水流方向行走,那么船实际行进速度应是 .实际行进方向与水流方向的夹角为 . 三.解答题13.两个非零向量12,e e 不共线.(1)若= AB 12e e +,BC = 1228e e +,CD =123()-e e ,求证:,,A B D 三点共线; (2)求实数k ,使k 12e e +与12+e k 2e 共线.14.一艘军舰从基地A 出发向东航行了200海里到达基地B ,然后又改变航向向东偏北60 航行了400海里到达C 岛,最后又改变航行,向西航行了200海里到达D 岛.(1)试作出向量AB BC CD,,;(2)求AD .15.如图4,在ABC △中,在AC 上取点N ,使得13AN AC =,在AB 上取点M ,使得13AM AB =,在BN 的延长线上取点P ,使得12NP BN =,在CM 的延长线上取点Q ,使得12MQ CM =,用向量的方法证明P A Q ,,三点共线.16.一架飞机向北飞行300 km ,然后改变方向向西飞行400 km ,求飞机飞行的路程及两次位移的合成.17.已知ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,用向量a ,b 分别表示向量OC ,OD,DC ,BC .18.飞机从甲地以北偏西15˚的方向飞行1400km 到达乙地,再从乙地以南偏东75˚的方向飞行1400km 到达丙地.试画出飞机飞行的位移示意图,并说明丙地在甲地的什么方向?丙地距甲地多远?第19题.如图,13AM AB = ,13AN AC =.求证:13MN BC = .同步提升一.选择题(每题5分)1.设b →是a →的相反向量,则下列说法错误的是( ) A .a →与b →的长度必相等 B .a bC .a →与b →一定不相等 D .a →是b →的相反向量2.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →、b →、c →,则向量OD 等于( ) A .a b c ++ B .a b c -+ C .a b c + - D .a b c-- 3.(如图)在平行四边形ABCD 中,下列正确的是( ).A .AB CD = B .AB AD BD -=C .AD AB AC += D .AD BC 0+= 4.+++等于( ) A . B . C .AC D .CA5.化简SP PS QP OP ++-的结果等于( )A 、B 、C 、D 、A AB OC = B AB ∥DEC AD BE =D AD FC =7.下列等式中,正确的个数是( )①a b b a +=+ ②a b b a = --③0a a -=- ④(a )a --= ⑤a (a )0+-=A .5B .4C .3D .28.在△ABC 中,AB a = ,AC b = ,如果a||b|=|,那么△ABC 一定是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形9.在ABC ∆中,BC a =,CA b =,则AB 等于( )A .a b +B .(a b )-+C .a b -D .b a -10.已知a 、b 是不共线的向量,AB a b λ=+ ,AC a b μ=+(λ、R μ∈),当且仅当( )时, A 、B 、C 三点共线. ()1A λμ+= ()1B λμ-=()1C λμ=-()1D λμ=二.填空题(每题5分)11.ABCD 的两条对角线相交于点M ,且AB a,AD b ==,则MA = ______,MB = ______,MC = ______,MD =______.12.已知向量a 和b 不共线,实数x ,y 满足b y x a b a y x)2(54)2(-+=+-,则=+y x ______13.在ABCD 中,AB a,AD b ==,则AC = ______,DB = ______.14.已知四边形ABCD 中,1AB DC 2=,且AD BC = 则四边形ABCD 的形状是______.三.解答题15.化简下列各式:(1)=++++______;(2)()()AB MB BO BC OM ++++=______.(3)=-++-)()(______.16.某人从A 点出发向西走了10m ,到达B 点,然后改变方向按西偏北︒60走了15m 到达C 点,最后又向东走了10米到达D 点.(1)作出向量AB ,,(用1cm 长线段代表10m 长);(2)求DA17.如图,在梯形ABCD 中,对角线AC 和BD 交于点O ,E 、F 分别是AC 和BD 的中点,分别写出 (1)图中与、共线的向量; (2)与相等的向量.CDABNM18.在直角坐标系中,画出下列向量: (1)a 2= ,a的方向与x 轴正方向的夹角为 60,与y 轴正方向的夹角为 30;(2)a 4=,a的方向与x 轴正方向的夹角为 30,与y 轴正方向的夹角为 120;(3)a=,a的方向与x 轴正方向的夹角为 135,与y 轴正方向的夹角为 135.19.在ABC ∆所在平面上有一点P ,使得=++,试判断P 点的位置.20.如图所示,在平行四边形ABCD 中,点M 是AB 边中点,点N 在BD 上且BD BN 31=,求证:M 、N 、C 三点共线.2.2 平面向量的线性运算 课堂训练参考答案一.选择题 1~5 CADDD 6 A 二.填空题7.1± 8.1()2-a b 9.2 10.13 11.45三.解答题 第13题.(1)证明:=++= AD AB BC CD 1266+=e e 6AB, A B D ∴,,三点共线;(2)解: k 12+e e 与12e +k 2e 共线, ∴k 12+=e e λ(12e +k 2e ),(2)λ∴-k 1e +(1)k λ-2e =0,201k k k λλ-=⎧∴⇒=⎨-⎩,,第14题.解:(1)向量ABBC CD ,,如右图所示.(2)根据题意,易知AB 和CD 方向相反,故AB 与CD共线.又AB CD = ,∴在四边形ABCD 中,AB CD∥,四边形ABCD 是平行四边形, AD BC ∴= ,400AD BC ∴==海里.第15题.证明:111()()222AP NP NA BN CN BN NC BC =-=-=+=,111()()222QA MA MQ BM CM BM MC BC =-=-=+= ,AP QA ∴= ,P A Q ∴,,三点共线.第16题.飞机飞行的路程是700 km ;两次位移的合成是向北偏西约53˚方向飞行500 km .第17题.OC a =- ,OD b =- ,DC b a =- ,BC a b =--.第18题.丙地在甲地的北偏东45˚方向,距甲地1400km .第19题.证明:因为MN AN AM =-,而13AN AC = ,13AM AB = ,所以1133MN AC AB =- ()1133AC AB BC =-= .同步提升参考答案 一.选择题(每题5分)1.C2. B3.C4.B5. B6.D7.C8.A9.B 10.D 二.填空题(每题5分)11.111(a b ),(a b ),(a b )222-+-+ ,1(b a )2-12.1 13.a b + ,a b- 14.等腰梯形三.解答题(每题10分)15.(1)0(2)AC (3)016.【解答】(1)如图,(2)∵-=,故四边形ABCD 为平行四边形, )m (15==DA BC17.【解答】与EF 共线的向量有AB 、; 与CO 共线的向量有CE ,CA ,OE ,OA ,; 与EA 相等的向量是18.【解答】19.【解答】 PA PB PC AB ++=()PA PA AB PC AB ∴+++=,故-=2A ∴、P 、C 三点共线,且P 是线段AC 的三分点中靠近A 的那一个20.【解答】提示:可以证明MC 3MN =CDABNM。

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

③当两个非零向量a与b反向且|a|<|b|时(如图2),则a+b与b方向相同 (与a方向相反),且|a+b|=||a|-|b||. ④当两个向量a与b中至少有一个为0时,则必有|a+b|=|a|+|b|=||a||b||. 综上可知任意两个向量a,b恒有||a|-|b||≤|a+b|≤|a|+|b|.
uuur uuur 则飞机飞行的路程指的是| AB |+| BC |;
uuur uuur uuur 两次飞行的位移的和指的是 AB + BC = AC .
uuur uuur 依题意,有| AB |+| BC |=800+800=1 600(km), 又α=35°,β=55°,∠ABC=35°+55°=90°,
新知导学 课堂探究
新知导学·素养养成
1.向量加法的定义 定义:求两个向量 和 的运算,叫做向量的加法. 对于零向量与任一向量a,规定0+a=a+ 0 = a .
2.向量求和的法则
三角形 法则
法则
前提 作法
结论
已知非零向量a,b,在平面内任取一点A
uuur uuur
uuur
作 AB =a, BC =b,再作向量 AC
uuur uuur uuur uuur uuur uuur uuur uuur (1)解析:a=( AB + CD )+( BC + DA )= AB + BC + CD + DA =0, 所以 0∥b,①正确;0+b=b,③正确;|0+b|=|0|+|b|,⑤正确.故选 C.
uuur uuur uuur (2)化简:① AB + CD + BC ;

高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

【即时小测】
1.思考下列问题.
(1)两个向量相加结果可能是一个数量吗? 提示:不能,实数相加结果是数,而向量具有方向,所以相加的结果 是向量. (2)两个向量相加实际上就是两个向量的模相加,这种说法对吗? 提示:这种说法是不正确的.向量既有大小又有方向,在进行向量相 加时,不仅要确定长度还要确定向量的方向.
答案:CF
知识点1 向量的加法
【知识探究】
观察图形,回答下列问题:
问题1:三角形法则和平行四边形法则的使用条件有何不同? 问题2:共线向量怎样进行求和? 问题3:当涉及多个向量相加时,运用哪个法则求解?
【总结提升】 1.对向量加法的三角形法则和平行四边形法则的三点说明 (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于 两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的. (3)在使用三角形法则时要注意“首尾相连”,在使用平行四边形法 则时需要注意两个向量的起点相同.
3.如图,在正六边形ABCDEF中BuuAur
uuur CD
uur EF
=______.
【解析】根据正六边形的性质,对边平行且相等,我们容易得到
uuur uuur uur uuur uuur uur uur uuur uur BA CD EF BA AF EF BF CB CF.
uur
【解题探究】典例图1中a与b有何关系,图2两向量相加可采用哪种方
法进行?图3三向量相加可采用哪种方法进行? 提示:图1中向量a与向量b共线,图2中两向量相加可采用三角形法则 或平行四边形法则进行.图3中三向量相加可采用三角形法则或平行四 边形法则进行.
【解析】如图中(1),(2)所示, 首先作OuuAu=r a,然后作 Auu=Burb,则 Ou=uBura+b.

平面向量的加减法

平面向量的加减法

,b= ,仍是零向量
a
(-a)+a
-b
-a
0
向量减法的定义和法则
问题1:两个相反数的和为零,那么两个相反向量的和也为零吗? 提示:是零向量. 问题2:根据向量加法,如何求作a-b? 提示:①先作出-b;②再按三角形或平行四边形法则进行.
向量的减法
(1)定义:a-b=a+ (-b) ,即减去一个向
量相当于加上这个向量的 相反向量

(2)几何意义:以O为起点,作向量 OA =
a, OB =b,则 BA =a-b,如图所示,即a-b可表示从
向量b的终点
指向 向量a的终点
的向量.
深化理解
1.向量的减法运算与向量的加法运算是互逆运算, 可以相互转化,减去一个向量等于加上这个向量的相反 向量.
2.两个向量的差也可用平行四边形法则及三角形法 则求得:用平行四边形法则时,两个向量也是共起点,
跟踪练习
1.在平行四边形ABCD中, AB + CB - DC =
A. BC
B. AC
C. DA
D. BD
解析:如图∵ CB = DA , ∴ AB + CB - DC = AB + DA - DC = AB + CA = CA + AB = CB = DA .
答案:C
()
2.如图,在四边形 ABCD 中,根据图示填空: a+b=____,b+c=____,c-d=____, a+b+c-d=____.
答案:4 km/h
2.如图,一架飞机从 A 地按北偏西 30°的方向飞行 300 km 后 到达 B 地, 然后向 C 地飞行.已知 C 地在 A 地北偏 东 60°的方向处,且 A,C 两地相距 300 km,求飞机从 B 地向 C 地飞行的方 向及 B、C 两地的距离.

向量加减运算及几何意义

向量加减运算及几何意义
B
AE a (b) a b 又 b BC a 所以 BC a b
a b
b
A
a
D
C
b
a b
E
不借助向量的加法法则你能直接作出 a b 吗?
一般地
a
三、几何意义: 的终点的向量
O
a
a b
b
B
b
A
a b 可以表示为从向量 b 的终点指向向量 a
( 三 角 形 法 则 )
向量既有大小又有方向,如位移,速度,力等
2. 怎样来表示向量?
1)用有向线段来表示 2)用字母来表示 如
A B
a , AB
长度相等,方向相同的向量相等.
3. 什么叫相等向量?
正因为如此,任何向量可以在不改变它的大小和方向 的前提下,移到任何位置.即向量可以平移
4.平行向量:
方向相同或相反的向量叫做平行向量
| a + b |< =| a b |+ |a b|
判断 | a + b | 与 | a | + | b | 的大小 A 2、不共线 a o· b
a
a+ b
b
B
三角形的两边之和大于第三边
| a+ b|< | a|+ |b|
综合以上探究我们可得结论:
| a b || a | | b |
规定: 0a a0 a
解:(1 ) OA OC OB ;
E
D
(2) BC FE AD;
(3) OA FE 0.
F A
O
B
C
请选用合适符号连接:
a b ____ a b (<,>, ,, )

人教版高中数学必修四2.2平面向量的线性运算2.2.1含答案

人教版高中数学必修四2.2平面向量的线性运算2.2.1含答案

§2.2 平面向量的线性运算 2.2.1 向量加法运算及其几何意义课时目标 1.理解向量加法的法则及其几何意义.2.能用法则及其几何意义,正确作出两个向量的和.1.向量的加法法则 (1)三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量________叫做a 与b 的和(或和向量),记作__________,即a +b =AB →+BC →=________.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a 的和有a +0=________+______=______. (2)平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以______,______为邻边作__________,则对角线上的向量________=a +b ,这个法则叫做两个向量求和的平行四边形法则. 2.向量加法的运算律(1)交换律:a +b =______________.(2)结合律:(a +b )+c =______________________.一、选择题 1.已知向量a 表示“向东航行1 km ”,向量b 表示“向南航行1 km ”,则a +b 表示( ) A .向东南航行 2 km B .向东南航行2 km C .向东北航行 2 km D .向东北航行2 km2.如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )A.AB →=CD →,BC →=AD →B.AD →+OD →=DA →C.AO →+OD →=AC →+CD →D.AB →+BC →+CD →=DA →3.在四边形ABCD 中,AC →=AB →+AD →,则( ) A .四边形ABCD 一定是矩形 B .四边形ABCD 一定是菱形 C .四边形ABCD 一定是正方形D .四边形ABCD 一定是平行四边形4.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同 B .a ,b 是共线向量且方向相反 C .a =bD .a ,b 无论什么关系均可5. 如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( )A. BD →B. DB →C. BC →D. CB →6. 如图所示,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|等于( )A .1B .2C .3D .2 3 题 号 1 2 3 4 5 6 答 案二、填空题7.在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________.8.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 9.已知|a |=3,|b |=5,则向量a +b 模长的最大值是____.10. 设E 是平行四边形ABCD 外一点,如图所示,化简下列各式(1)DE →+EA →=________; (2)BE →+AB →+EA →=________; (3)DE →+CB →+EC →=________; (4)BA →+DB →+EC →+AE →=________.三、解答题11.一艘船以5 km/h 的速度向垂直于对岸方向行驶,船实际航行方向与水流方向成30°角,求水流速度和船实际速度.12. 如图所示,在平行四边形ABCD 的对角线BD 的延长线和反向延长线上取点F ,E ,使BE =DF .求证:四边形AECF 是平行四边形.能力提升13.已知点G 是△ABC 的重心,则GA →+GB →+GC →=______.14.在水流速度为4 3 km /h 的河中,如果要船以12 km/h 的实际航速与河岸垂直行驶,求船航行速度的大小和方向.1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的.当两个向量首尾相连时常选用三角形法则,当两个向量共始点时,常选用平行四边形法则.2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.§2.2 平面向量的线性运算 2.2.1 向量加法运算及其几何意义答案知识梳理1.(1)AC → a +b AC → 0 a a (2)OA OB 平行四边形 OC → 2.(1)b +a (2)a +(b +c ) 作业设计1.A 2.C 3.D 4.A5.C [BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.]6.B [|AB →+FE →+CD →|=|AB →+BC →+CD →|=|AD →|=2.] 7.0解析 注意DC →+BA →=0,BC →+DA →=0. 8.213解析 |AB →+BC →+AC →|=|2AC →|=2|AC →|=213. 9.8解析 ∵|a +b |≤|a |+|b |=3+5=8. ∴|a +b |的最大值为8.10.(1)DA → (2)0 (3)DB → (4)DC →11.解如图所示,OA →表示水流速度,OB →表示船垂直于对岸的方向行驶的速度,OC →表示船实际航行的速度,∠AOC =30°,|OB →|=5 (km/h). ∵四边形OACB 为矩形,∴|OA →|=|AC →|tan 30°=5 3 (km/h),|OC →|=|OB →|sin 30°=10 (km/h),∴水流速度大小为5 3 km /h ,船实际速度为10 km/h.12.证明 AE →=AB →+BE →,FC →=FD →+DC →,因为四边形ABCD 是平行四边形,所以AB →=DC →,因为FD =BE ,且FD →与BE →的方向相同,所以FD →=BE →,所以AE →=FC →,即AE 与FC 平行且相等, 所以四边形AECF 是平行四边形. 13.0解析 如图所示,连接AG 并延长交BC 于E 点,点E 为BC 的中点,延长AE 到D 点,使GE =ED ,则GB →+GC →=GD →,GD →+GA →=0, ∴GA →+GB →+GC →=0. 14.解如图,设AB →表示水流速度,则AC →表示船航行的实际速度,作AD 綊BC ,则AD →即表示船航行的速度.因为|AB →|=4 3,|AC →|=12,∠CAB =90°,所以tan ∠ACB =4 312=33,即∠ACB =30°,∠CAD =30°.所以|AD →|=8 3,∠BAD =120°.即船航行的速度大小为8 3 km/h ,方向与水流方向所成角为120°.附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。

高中数学必修4第二章:平面向量2.2平面向量的线性运算

高中数学必修4第二章:平面向量2.2平面向量的线性运算
知识回顾
向量的表示:AB或a
有向线段
向量
向量的大小 (长度、模)
向量的方向
单位向量 与零向量
相等向量与 平行向量 相反向量 (共线向量)
既有大小又有方向的量叫向量; 向量不能比较大小,但向量的模可以比较大小。
新课导入
大三通之前,由 于大陆和台湾没有直 航,因此要从台湾去 上海探亲,乘飞机要 先从台北到香港,再 从香港到上海,这两 次位移之和是什么?
解:(1)OA OC OB;
(2)BC FE AD;
E
D
FO
C
(3)OA FE 0.
A
B
(1)向量加法交换律: a b b a
D
a
C
b
b a+b
A
a
B
(2)向量加法结合律:
(a+b)+c a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
-c.
通法提炼 两个向量的减法可以转化为向量的加法来进行.例如, 作a-b,可以先作-b,然后作a+-b即可,也可以直接 用向量减法的三角形法则,把两向量的起点重合,则差向 量就是连接两个向量的终点,指向被减向量的终点的向量.
如图,已知不共线的两个非零向量a,b,求作向量a- b,b-a,-a-b.
2(2008安徽)若 AB (2,4), AC (1, 3),
则BC ( B )
A.(1,1) C.(3,7)
B.(-1,-1) D.(-2,-4)

向量加法及几何意义

向量加法及几何意义

ABBCAC
CA
B
思考3:如图,某人从点A到点B,再从点 B改变方向到点C,则两次位移的和可用 哪个向量表示?由此可得什么结论?
C
ABBCAC
A
B
思考4:上述分析表明,两个向量可以相加, 并且两个向量的和还是一个向量.一般地, 求两个向量和的运算,叫做向量的加法.上 述求两个向量和的方法,称为向量加法的三 角形法则.对于下列两个向量a与b,如何用 三角形法则求其和向量?
3.两个向量的和的模不大于这两个向 量的模的和,这是一个不等式性质, 解题中具有一定的功能作用
作业: P84练习:3,4.(做书上) P91习题2.2A组:1,2,3.
a

C
a+b

A
a
B
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
思考5:图1表示橡皮条在两个力F1和F2 的作用下,沿MC方向伸长了EO;图2表示
橡皮条在一个力F的作用下,沿相同方向
伸长了相同长度.从力学的观点分析,力
F与F1、F2之间的关系如何?
F1
M
C
EO
F1 F
图1
F2
F2
M
F
EO
C D
A
A
B
小结作业
1.向量概念源于物理,位移的合成是向量 加法三角形法则的物理模型,力的合成是 向量加法平行四边形法则的物理模型.
2.任意多个向量可以相加,并可以按任意 次序、组合进行.若平移这些向量使其首 尾相接,则以第一个向量的起点为起点, 最后一个向量的终点为终点的向量,即为 这些向量的和.
O
a
A
思考8:用三角形法则和平行四边形法则 求作两个向量的和向量,其作图特点分 别如何?

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

数学必修四答案详解第二章 平面向量2.1平面向量实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、AD =u u u r .6、(1)×; (2)√; (3)√; (4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r . 练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略. 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BCuuu r与AB u u u r反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -rr ; (2)1112a -r r(3)2ya r . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以AC ===u u u r 因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r ; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r .5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r ; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r . 11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r ,34DB a =u u u r r,34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r;(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r 而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,(53,6(1))(2,7)BC =---=u u u r由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线. 7、2(2,4)OA OA '==u u u r u u u r ,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=-u u u u r习题2.3 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r,所以(5,4)P --;当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r 35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题2.4 A 组(P108)1、a b ⋅=-r r 222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r .4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==r r r r r r()cos a b a b λλθ⋅=r r r r()cos cos a b a b a b λλθλθ⋅==r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r()cos cos a b a b a b λλθλθ⋅==-r r r r r r()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+r r11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r ,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r , (8,4)(4,6)(4,2)DC =-=-u u u r∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r , 则2292x y y x ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是(55a=r或(55a=--r.11、解:设与ar垂直的单位向量(,)e x y=r,则221420x yx y⎧+=⎨+=⎩,解得5xy⎧=⎪⎪⎨⎪=⎪⎩或5xy⎧=-⎪⎪⎨⎪=⎪⎩.于是,55e=-r或(55e=-r.习题2.4 B组(P108)1、证法一:0()0()a b a c a b a c a b c a b c⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y=r,22(,)b x y=r,33(,)c x y=r.先证()a b a c a b c⋅=⋅⇒⊥-r r r r r r r1212a b x x y y⋅=+r r,1313a c x x y y⋅=+r r由a b a c⋅=⋅r r r r得12121313x x y y x x y y+=+,即123123()()0x x x y y y-+-=而2323(,)b c x x y y-=--r r,所以()0a b c⋅-=r r r再证()a b c a b a c⊥-⇒⋅=⋅r r r r r r r由()0a b c⋅-=r r r得123123()()0x x x y y y-+-=,即12121313x x y y x x y y+=+,因此a b a c⋅=⋅r r r r2、cos cos cos sin sinOA OBAOBOA OBαβαβ⋅∠==+u u u r u u u ru u u r u u u r.3、证明:构造向量(,)u a b=r,(,)v c d=r.cos,u v u v u v⋅=<>r r r r r r,所以,ac bd u v+=<>r r ∴2222222222()()()cos,()()ac bd a b c d u v a b c d+=++<>≤++r r4、AB AC⋅u u u r u u u r的值只与弦AB的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r 又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r ,而AM BAC AC∠=u u u u r u u u r 所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r 5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r ∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r ,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r ,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =.2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+u u u r u u u r u u u r u u u r r r r r r r (2)因为1()2AE a b =+u u u r r r 所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE= 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD === 3、解:(1)(2,7)B A v v v =-=-r u u r u u r ;(2)v r 在A v u u r 方向上的投影为135A Av v v ⋅=r u u r u u r . 4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F u u r 的夹角为θ, 则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r 的夹角为150°.习题2.5 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r ,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r .设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r 为重力加速度 所以,最大高度为220sin 2v g θu u r ,最大投掷距离为20sin 2v g θu u r . 2、解:设1v u r 与2v u u r 夹角为θ,合速度为v r ,2v u u r 与v r夹角为α,行驶距离为d .则1sin 10sin sin v v v θθα==u r r r ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-O DF E A B C (第2题) (第4题)解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r . 将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x =- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r 4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r 2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r 1133EF a b =--u u u r r r ,1233FA DC a b ==-u u u r u u u r r r 1233CD a b =-+u u u r r r ,2133AB a b =-u u u r r r CE a b =-+u u u r r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r ;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r . (第4题)6、AB u u u r 与CD u u u r 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u u r 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C === 11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ== 第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r .222()2a b a b a b a b +=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r r r r r r . 再证a b a b a b +=-⇒⊥r r r r r r .由于222a b a a b b +=+⋅+r r r r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r 可得0a b ⋅=r r ,于是a b ⊥r r所以a b a b a b +=-⇔⊥r r r r r r . 【几何意义是矩形两条对角线相等】3、证明:先证a b c d =⇒⊥r r r u r22()()c d a b a b a b ⋅=+⋅-=-r u r r r r r r r又a b =r r ,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r .由c d ⊥r u r 得0c d ⋅=r u r ,即22()()0a b a b a b +⋅-=-=r r r r r r 所以a b =r r 【几何意义为菱形对角线互相垂直,如图所示】(第3题)(第6题)4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r 而34EF a =u u u r r ,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r ,所以3OP OD =-u u u r u u u r ,1OD =u u u r 所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒ 所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为千米/时,沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r ,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=; (4)d =第三章 三角恒等变换P 2(第5题)3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=. cos(2)cos2cos sin 2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==; 又由33cos ,(,2)42πββπ=∈,得sin β== 所以32cos()cos cos sin sin (()43βαβαβα-=+=⨯⨯-=. 练习(P131) 1、(1; (2) (3(4)22、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4); (5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-; (6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+; (2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+; (3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-; (4)原式=12(cos )cos sin sin ))2333x x x x x πππ=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=, 即3sin[()]5αβα--=,3sin()5β-= 所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-. 因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=练习(P135)1、解:因为812παπ<<,所以382αππ<< 又由4cos 85α=-,得3sin 85α=-,3sin 385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-= 2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---= 2232tan 23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--= 3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α==,所以sintan (2)cos ααα==-=4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题3.1 A 组(P137) 1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-; (2)33sin()sin cos 1cos 0sin cos22ππαααααα-=-=-⨯-⨯=-; (3)cos()cos cos sin 1cos 0sin cos παπαααα-=+-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===, 所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin 7α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-⨯6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β===.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin3α==-∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题3.1 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 方程2(1)10x p x +++=,即210x px p +++=两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===----1tan tan1142131tan tan 1()142πθπθ+-+===-⋅--⨯∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+. 在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒-=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅=2cos50sin50cos10︒=︒⋅=︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π,最大值为21+;(2)()f x 在[,]22ππ-12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示三角函数式值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。

高中数学必修四 第2章 平面向量课件 2.2.1 向量加法运算及其几何意义

高中数学必修四 第2章 平面向量课件 2.2.1 向量加法运算及其几何意义

③A→B+A→D+C→D=________; ④A→C+B→A+D→A=________. [思路探索] 首先观察各向量字母的排列顺序,再进行恰当的组 合,利用向量加法法则运算求解. 解 (1)C→D+B→C+A→B=(A→B+B→C)+C→D=A→C+C→D=A→D. (2)A→B+D→F+C→D+B→C+F→A =(A→B+B→C)+(C→D+D→F)+FA =A→C+C→F+F→A=A→F+F→A=0.
(3)①A→D+A→B=A→C,
②C→D+A→C+D→O=C→O+A→C=A→O,
③A→B+A→D+C→D=A→C+C→D=A→D,
④A→C+B→A+D→A=D→C+B→A=0.
答案
→ (1)AD
(2)0
(3)①A→C
②A→O
③A→D
④0
[规律方法] (1)解决该类题目要灵活应用向量加法运算,注意各 向量的起、终点及向量起、终点字母排列顺序,特别注意勿将0 写成0. (2)运用向量加法求和时,在图中表示“首尾相接”时,其和向量 是从第一个向量的起点指向最后一个向量的终点.
类型一 向量的加法运算 【例 1】 化简或计算:(1)C→D+B→C+A→B=________. (2)A→B+D→F+C→D+B→C+F→A=________.
(3)在平行四边形 ABCD 中(如图),对角线 AC、BD 交于点 O. 则①A→D+A→B=________; ②C→D+A→C+D→O=________;
类型二 利用向量证明几何问题 【例 2】 在平行四边形 ABCD 的对角线 BD 的延长线及反向延长线上,取点 F、E,使 BE=DF(如图).用向量的方法证明:四边 形 AECF 也是平行四边形.
[思路探索] 本题主要考查利用向量方法证明几何问题,只需证明 一组对边对应的向量相等即可.

2014年人教A版必修四课件 2.2 平面向量的线性运算

2014年人教A版必修四课件 2.2  平面向量的线性运算

结论: 同起点两向量的和, 是以这两向量为邻边的 平行四边形的一条对角线, 起点是已知两向量的起点. 这种方法叫做向量加法的平行四边形法则.
C D
AB AC AD.
A B
练习(课本第84页): 2. 如图, 已知 a、b, 用向量加法的平行四边形法 则作出 ab. (2) (1) b b a (作图如下, 作法略)
· · 问题1. 以上操作中的三个向量构成一个什么图形? 从三个向量的图形关系看, 你得到一个什么结论?
A C
AB BC AC . 向量加法的三角形法则: 求向量 a b , 是将向量 b 的起点与向量 a 的终点重合, 则 a 的起点到 b 的终点 的向量即为和向量 a b .
本章内容
2.1 2.2 2.3 2.4 2.5 平面向量的实际背景及基本概念 平面向量的线性运算 平面向量的基本定理及坐标表示 平面向量的数量积 平面向量应用举例 第二章 小结
2.2.1 向量加法运算及其几何意义 2.2.2 向量减法运算及其几何意义 2.2.3 向量数乘运算及其几何意义
2.2.1 向量加法运算 及其几何意义
D C
2 5 ≈5.4. tan∠CAB 5 2.5, 2 得∠CAB≈68. 答: 船实际航行的速度约为 5.4 km/h, B A 68 方向约是东偏北 .
2
D 2
C
A
B
练习(补充). 如图是一个正六边形, 根据向量加法 的平行四边形法则求下列向量的和: A F (1) AB AF; (2) OB OD; (3) BO OC ; (4) BC DE . B 解: (1) AB AF AO . (2) OB OD OC . (3) BO OC OE OC OD. (4) BC DE OD OF OE .

2.2平面向量的线性运算

2.2平面向量的线性运算

2.2 平面向量的线性运算教案 A第1课时教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流1提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC.求两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b 的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?232. 思考|a +b |,|a |,|b |存在着怎样的关系?3. 数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与结合律,即对任意a ,b ∈R ,有a +b =b +a ,(a +b )+c =a +(b +c ).任意向量a ,b 的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1. 两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2. 当a ,b 不共线时,|a +b |<|a |+|b |(即三角形两边之和大于第三边); 当a ,b 共线且方向相同时,|a +b |=|a |+|b |;当a ,b 共线且方向相反时,|a +b |=|a |-|b |(或|b |-|a |).其中当向量a 的长度大于向量b 的长度时,|a +b |=|a |-|b |;当向量a 的长度小于向量b 的长度时,|a +b |=|b |-|a |.一般地,我们有|a +b |≤|a |+|b |.3. 如下左图,作AB =a ,AD =b ,以AB 、A D 为邻边作ABC D ,则BC =b ,DC =a .因为AC =AB +AD =a +b ,AC =AD +DC =b +a ,所以a +b =b +a .如上右图,因为AD =AC +CD =(AB +BC )+CD =(a +b )+c ,AD =AB +BD =AB +(BC +CD )=a +(b +c ),所以(a +b )+c =a +(b +c ). 综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a 和-a 互为相反向量.于是-(-a )=a .我们规定,零向量的相反向量仍是零向量. 任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0.所以,如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.解:作法一:在平面内任取一点O(上中图),作OA=a,AB=b,则OB=a+b.作法二:在平面内任取一点O(上右图),作OA=a,OB=b.以OA、OB 为邻边作OACB,连接OC,则OC=a+b.例3如图(1)已知向量a、b、c、d,求作向量a-b,c-d.活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.作法:如图(2),在平面内任取一点O,作OA=a,OB=b,OC=c,OD=d.则BA=a-b,DC=c-d.45例4 如图,ABC D 中, AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC =a +b , 同样,由向量的减法,知DB =AB -AD =a -b .四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a ⑤a +(-a )=0 A .5 B .4 C .3 D .22.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF -DB 等于( )A .FDB .FC C .FED .BE 3.下列式子中不能化简为AD 的是( )A .(AB +CD )+BC B .(AD +MB )+(BC +CM ) C .BM AD MB -+ D .OC -OA +CD4.已知A 、B 、C 三点不共线,O 是△ABC 内一点,若OA +OB +OC =0,则O 是△ABC 的( ) A .重心 B .垂心 C .内心 D .外心 参考答案:1.C 2.D 3.C 4.A .第2课时教学目标一、知识与技能1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.二、过程与方法充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.三、情感、态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.教学重点、难点教学重点:实数与向量积的意义、两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.教学关键:两个向量共线的等价条件的探究过程的引导.教学突破方法:从向量共线的定义出发,引导学生分组讨论,得出结果.教法与学法导航教学方法:问题式教学,启发诱导.学习方法:合作探讨,在向量加减法的基础上进行推广.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.二、主题探究,合作交流提出问题:①探究:已知非零向量a,试一试作出a+a+a和(-a)+(-a)+(-a).②你能说明它们的几何意义吗?③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?师生互动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a=0,而不是0·a=0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a,λ-a都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a=λa+μa和λ(a+b)=λa+λb,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.67对问题①,学生通过作图可发现,OC =OA +AB +BC =a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC =3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a |=3|a |.同样,由下图可知,PN =MN QM PQ ++=(-a )+(-a )+(-a ), 即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下: (1) |λa |=|λ||a |; (2) 当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.由(1)可知,λ=0时,λa =0. 根据实数与向量的积的定义,我们可以验证下面的运算律. 实数与向量的积的运算律: 设λ、μ为实数,那么 (1)λ(μa )=(λμ)a ; (2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb .特别地,我们有(-λ)a =-(λa )=λ(-a ),λ(a -b )=λa -λb .对问题③,向量共线的等价条件是:如果a (a ≠0)与b 共线,那么有且只有一个实数λ,使b =λa .推证过程教师可引导学生自己完成,推证过程如下:对于向量a (a ≠0)、b ,如果有一个实数λ,使b =λa ,那么由向量数乘的定义,知a 与b 共线.反过来,已知向量a 与b 共线,a ≠0,且向量b 的长度是向量a 的长度的μ倍,即|b |=μ|a |,那么当a 与b 同方向时,有b =μa ;当a 与b 反方向时,有b =-μa .关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a ≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a |确定. ②它的几何意义是把向量a 沿a 的方向或a 的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.三、拓展创新,应用提高 例1 计算: (1)(-3)×4a ;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图,已知任意两个非零向量a、b,试作OA=a+b,OB=a+2b,OC=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A、B、C三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a、b变化过程中,A、B、C三点始终在同一条直线上的规律.解:分别作向量OA、OB、OC过点A、C作直线AC(如上图).观察发现,不论向量a、b怎样变化,点B始终在直线AC上,猜想A、B、C三点共线.事实上,因为AB=OB-OA=a+2b-(a+b)=b,而AC=OC-OA=a+3b-(a+b)=2b,于是AC=2AB.所以A、B、C三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3 如图,ABC D的两条对角线相交于点M,且AB=a,AD=b,你能用a、b表示MA MB MC、、和MD吗?89活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.解:在ABC D 中,∵AC =AB +AD =a +b ,DB =AB -AD =a -b , 又∵平行四边形的两条对角线互相平分, ∴MA =21-AC =21-(a +b )=21-a -21b , MB =21DB =21(a -b )=21a -21b ,MC =21AC =21a +21b ,MD =MB -=-21DB =-21a +21b .点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.四、小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件. 2.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化. 课堂作业1.31[21(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( ) A .1 B .-1 C .±1 D .0 3.若向量方2x -3(x -2a )=0,则向量x 等于( )A .56a B .-6a C .6a D .56-a 4.在△ABC 中,AE =51AB ,EF ∥BC ,EF 交AC 于F ,设AB =a ,AC =b ,则BF 用a 、b 表示的形式是BF =_________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA +OC OB +=31e 1-21e 2,则OP ON OM ++=________.106.已知△ABC 的重心为G ,O 为坐标原点,OA =a ,OB =b ,OC =c , 求证:OG =31(a +b +c ).参考答案:1.B2. C3. C 4.-a +51b 5.31e 1-21e 2. 6.连接A G 并延长,设A G 交BC 于M . ∵AB =b -a ,AC =c -a ,BC =c -b ,∴AM =AB +21BC =(b -a )+21(c -b )=21(c +b -2a ). ∴AG =32AM =31(c +b -2a ).∴OG =OA +AG =a +31(c +b -2a )=31(a +b +c ).。

2.2向量的线性运算(习题)

2.2向量的线性运算(习题)
又 ∵ || = ||
∴四边形ABCD为菱形
B 能力提升
1.点是正六边形的中心, = , = ,试用向量、表示向量、、.
E
解:
D
= ; = =
∴ = + = +
C
F
OБайду номын сангаас
A
∴ = = ( + )
解:
= (, ); = (, −)
() + = (, ) + (, −)
= (, −)
() − = (, ) − (, −)
= (−, )
()( + ) = (, −)
7.根据下列条件判断四边形ABCD的形状,并证明你的结论.

() = ; () = 且|| = || ; () = 且|| = ||.

解:

() =

() =
∴ //, =

∴ //, =

∴四边形ABCD为平行四边形
∴四边形ABCD为梯形
又 ∵ || = ||
∴四边形ABCD为距形
() =
∴ //, =
∴四边形ABCD为平行四边形
4.(1)如图,向量、不共线,试比较| + |与|| + ||的大小.
(2)对于任意向量、,讨论在什么情况下,| + | = || + ||.
解:

()| + | < || + ||

()当、方向相同时, | + | = || + ||
(3) − ( + ).
解:原式= − −

向量的加法法则

向量的加法法则
2.2 平面向量的线性运算
2.2.1 向量加法运算及其几何意义
1.向量加法的定义
两个向量和求的运算源自叫做向量的加法.2.向量加法的三角形法则和平行四边形法则
(1)三角形法则:已知向量 a,b,在平面上 → → 任取一点 A,作AB=a,BC=b,则向量
AC
叫做 a 与 b 的和(或和向量)。
→ → 即 a+b=AB+BC=
AC .上述求两个向量和的作图法则,
叫做向量求和的三角形法则. 对于零向量与任一向量 a 的和有 a+0=a.
向量加法的三角形法则讲究:首尾相接
(2)平行四边形法则:已知两个不共线向量 → → a,b,作OA=a,OB=b,以 OA,OB 为
邻边作▱OACB,则向量 OC 就是 a 与 b 的和.
(3)当 a 与 b 反向时,且|a|≥|b|,
结论则 a+b 与 a 的方向相同,且|a+b|=|a|-|b|.
(4)当 a 与 b 反向时,且|a|<|b|
结论则 a+b 与 b 的方向相同,且|a+b|=|b|-|a|.
易错题 因忽略特殊向量而出错 【示例】 下列命题: ①如果非零向量 a 与 b 的方向相同或相反, 那么 a+b 的方向必 与 a,b 之一的方向相同;
→ → BE=GE; → → → → → → → → → → → ②EG+CG+DA+EB=EG+GD+DA+AE=ED+DA+AE= → → EA+AE=0.
题型二
利用向量证明几何问题
【例 2】 已知四边形 ABCD 的对角线 → → → → AC 与 BD 相交于点 O,且AO=OC,DO=OB. 用向量法证明:四边形 ABCD 是平行四边形. → → [思路探索] 证明四边形 ABCD 为平行四边形,只需证AB=DC. 解 → → → → → → AB=AO+OB,DC=DO+OC.

2.2_平面向量的线性运算2.2.1_向量加法运算及其几何意义

2.2_平面向量的线性运算2.2.1_向量加法运算及其几何意义
(
答案:8 2
北偏东 45°
答案:8 2 北偏东 45° 答案:8 2 北偏东 45°
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
首页
Байду номын сангаас
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点一:准确理解向量加法的三角形法则和平行四边形法则 1.两个法则的使用条件不同 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量 求和.
3.以同一点 O 为起点的两个已知向量 a,b 为邻边作▱OACB,则以 O 为起点的对角线 OC― →就是 a 与 b 的和,这种作两个向量和的方法叫做向量加法的平行四边形法则. 4.对任意两个向量 a、b,均有|a+b|≤|a|+|b|. 当 a、b 同向时有|a+b|=|a|+|b|;当 a、b 反向时有|a+b|=|a|-|b|(或|b|-|a|). 5.向量的加法满足交换律和结合律, 即 a+b=b+a;(a+b)+c=a+(b+c). a+0=0+a=a.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点二:向量 a+b 与非零向量 a,b 的模及方向的关系 1.当向量 a 与 b 不共线时,a+b 的方向与 a,b 都不相同,且|a+b|<|a|+|b|,几何背 景是三角形两边之和大于第三边. 2.当 a 与 b 同向时,a+b 与 a,b 的方向相同,且|a+b|=|a|+|b|. 3.当 a 与 b 反向时,若|a|≥|b|,则 a+b 与 a 的方向相同,且|a+b|=|a|-|b|. 若|a|<|b|,则 a+b 与 b 的方向相同,且|a+b|=|b|-|a|. 知识要点三:向量加法的运算律 1.向量加法的交换律:将 a 的起点移至 A 点,将 b 的起点移至 a 的终点,则由 a 的起 点 A 指向 b 的终点 C 的向量 AC― →=a+b;同样将 b 的起点移至 A 点,将 a 的起点移至 b 的终点,则由 b 的起点 A 指向 a 的终点 C′的向量 AC′― →=b+a,由平行四边形法则知 C 必然和 C′重合,即 a+b=b+a. 2.向量的加法满足交换律和结合律,因此在进行多个向量的加法运算时,就可以按照 任意的次序和任意的组合去进行.如(a+b)+(c+d)=(a+d)+(b+c). 3.向量加法运算满足:A1A2―→+A2A3― →+„+An- 1An― →=A1An―→.

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义课后集训

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义课后集训

2.2.1 向量加法运算及其几何意义课后集训基础达标1.在四边形ABCD中,CB+AD+BA等于()A.DBB.CAC.CDD.DC解析:CB+AD+BA=(CB+BA)+AD=CA+AD=CD,故选 C.答案:C2.在△ABC中,必有AB+CA+BC等于()A.0B.0C.任一向量D.与三角形形状有关解析:AB+CA+BC=AC+CA=0.故应选 B.答案:B3.如右图,在△ABC中,D、E、F分别为AB、BC、CA的中点,则AF+BD( )A.FDB.FCC.FED.BE解析:由于D、E、F分别是△ABC三边的中点,∴AF=DE则AF+BD=BD+DE=BE,故应选 D.答案:D4.已知正方形ABCD的边长为1(如右图),AB=a,AC=c,BC=b,则|a+b+c|等于()2A.0B.3C.2D.2解析:如右图所示,a+b=c,2.∴|a+b+c|=2|c|=2∴应选 D.答案:D5.如右图所示,O是四边形ABCD对角线的交点,若a+d=c+b则四边形ABCD形状为()A.等腰梯形B.菱形C.平行四边形D.矩形解析:c+b=CB,a+d=d+a=DA∴DA=CB.∴ABCD为平行四边形.答案:C6.(1)CD+BC+AB=_______________;(2)OB+AO+OC+CO=_______________;(3)(AC+BA)+CB=_______________;(4)(AB+CB)+BD+DC=_______________.解析:(1)CD+BC+AB=CD+(AB+BC)=CD+AC=AC+CD=AD.(2)OB+AO+OC+CO=AO+OB=AB.(3)(AC+BA)+CB=AC+BA+CB=AC+(CB+BA)=AC+CA=0.(4)(AB+CB)+BD+DC=(AB+BD)+DC+CB=AD+DB=AB.答案:(1)AD(2)AB(3)0(4)AB综合运用7.下列各式中不能化简为AD的是()A.(AB+CD)+BCB.(AD+MB)+(BC+CM)C.MB+AD+MBD.OC+AO+CD答案:C8.向量a、b满足|a|=6,|b|=10,则|a+b|的最大值是_____________,最小值是_____________.。

2.2平面向量的线性运算2.2.1加法含答案

2.2平面向量的线性运算2.2.1加法含答案

2.2 平面向量的线性运算2.2.1向量加法运算及其几何意义类型一已知向量作和向量例1如图,已知向量a ,b ,c ,求作和向量a +b +c .跟踪训练1 如图,已知向量a ,b ,c 不共线,作向量a +b +c .类型二向量的加法运算例2 化简:(1)BC →+AB →;(2)AO →+BC →+OB →;(3)AB →+DF →+CD →+BC →+FA →.跟踪训练2 化简:(1)DB →+CD →+BC →;(2)(AB →+MB →)+BO →+OM →.类型三向量加法的实际应用例3 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.现有一艘船从长江南岸A 点出发,以23km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 km/h.(1)试用向量表示水速、船速及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与水速之间的夹角表示,精确到度).跟踪训练3 本例中若该船从A 点出发以2 3 km/h 的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为4 km/h ,求水速大小.【巩固提升】一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于() A.AB → B.BC → C.CD → D.DA →2.下列等式错误的是( )A .a +0=0+a =a B.AB →+BC →+AC →=0C.AB →+BA →=0D.CA →+AC →=MN →+NP →+PM→3.设a 表示“向东走 5 km ”,b 表示“向南走 5 km ”,则a +b 表示() A .向东走10 km B.向南走10 km C .向东南走10 km D .向东南走5 2 km4.已知向量a ∥b ,且|a|>|b|>0,则向量a +b 的方向() A .与向量a 方向相同 B.与向量a 方向相反C .与向量b 方向相同 D.不确定5.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( ) A.OH → B.OG → C.FO → D.EO→6.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则下列结论中正确的有( )①a ∥b ②a +b =a ③a +b =b ④|a +b |<|a |+|b | ⑤|a +b |=|a |+|b | ⑥|a +b |>|a |+|b | A .①②⑥ B.①③⑥ C.①③⑤ D .③④⑤⑥二、填空题7.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.8.化简(AB →+MB →)+(BO →+BC →)+OM →=________.9.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________.10.如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,则A 和B 处所受力的大小为________(绳子的重量忽略不计).三、解答题11.如图,已知向量a 、b ,求作向量a +b .12.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量:(1)OA →+OC →;(2)BC →+FE →.13.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =60°,求|a +b |.14.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.2.1.1 课后巩固提升答案1—6 ABDACC7. 0?(注意是零向量,你要写上箭头)8. AC→9.110. 5 3 N,5 N11. 解析:(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1);(2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2);(3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).12.解析:(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.13. 解析:如图,∵|OA →|=|OB →|=3,∴四边形OACB 为菱形.连接OC 、AB ,则OC ⊥AB ,设垂足为D .∵∠AOB =60°,∴AB =|OA →|=3.∴在Rt △BDC 中,CD =332. ∴|OC →|=|a +b |=332×2=3 3. 14.解析:如图,作?OACB ,使∠AOC =30°,∠BOC =60°,则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N.所以|OA →|=|OC →|cos 30°=1503(N),|OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 平面向量的线性运算
2.2.1
向量加法运算及其几何意义类型一
已知向量作和向量例1如图,已知向量a ,b ,c ,求作和向量a +b +c .
跟踪训练1 如图,已知向量a ,b ,c 不共线,作向量a +b +c .类型二向量的加法运算
例2 化简:
(1)BC →+AB →;
(2)AO →+BC →+OB →;
(3)AB →+DF →+CD →+BC →+FA →.
跟踪训练2 化简:
(1)DB →+CD →+BC →;
(2)(AB →+MB →)+BO →+OM →.
类型三向量加法的实际应用
例3 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.现有一艘船从长江南岸A 点出发,以23km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 km/h.
(1)试用向量表示水速、船速及船实际航行的速度;
(2)求船实际航行的速度的大小与方向(用与水速之间的夹角表示,精确到度).跟踪训练3 本例中若该船从A 点出发以2 3 km/h 的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为
4 km/h ,求水速大小.【巩固提升】
一、选择题
1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于(
) A.AB → B.BC → C.
CD → D.DA →2.下列等式错误的是( )
A .a +0=0+a =a B.A
B →+B
C →+AC →=0
C.AB →+BA →=0
D.CA →+AC →=MN →+NP →+PM
→3.设a 表示“向东走 5 km ”,b 表示“向南走 5 km ”,则a +b 表示(
) A .向东走10 km B
.向南走10 km C .向东南走10 km D .向东南走5 2 km
4.已知向量a ∥b ,且|a|>|b|>0,则向量a +b 的方向(
) A .与向量a 方向相同 B
.与向量a 方向相反C .与向量b 方向相同 D
.不确定5.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( ) A.OH → B.OG → C.FO → D.EO

6.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则下列结论中正确的有
( )
①a ∥b ②a +b =a ③a +b =b ④|
a +
b |<|a |+|b | ⑤|
a +
b |=|a |+|b | ⑥|a +b |>|a |+|b | A .①②⑥ B
.①③⑥ C
.①③⑤ D .③④⑤⑥二、填空题7.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.
8.化简(AB →+MB →)+(BO →+BC →)+OM →=________.
9.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________.
10.如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,则A 和B 处所受力的大小为________(绳子的重量忽略不计).
三、解答题
11.如图,已知向量a 、b ,求作向量a +b .
12.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量:
(1)OA →+OC →;
(2)BC →+FE →.
13.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =60°,求|a +b |.
14.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为
30°,60°,当整个系统处于平衡状态时,求两根绳子的拉
力.2.1.1 课后巩固提升答案
1—6 ABDACC
7. 0?(注意是零向量,你要写上箭头)
8. AC
→9.1
10. 5 3 N,5 N
11. 解析:(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1);
(2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2);
(3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).
12.
解析:(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法
则,得OA →+OC →=OB →.
(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.
13. 解析:如图,∵|OA →|=|OB →|=3,
∴四边形OACB 为菱形.
连接OC 、AB ,则OC ⊥AB ,设垂足为D .
∵∠AOB =60°,∴AB =|OA →|=3.
∴在Rt △BDC 中,CD =332
. ∴|OC →|=|a +b |=332
×2=3 3. 14.解析:如图,作?OACB ,
使∠AOC =30°,∠BOC =60°,
则∠ACO =∠BOC =60°,∠OAC =90°.
设向量OA →,OB →分别表示两根绳子的拉力,则
CO →表示物体所受的重力,且|OC →|
=300 N.
所以|OA →|=|OC →|cos 30°=1503(N),
|OB →|=|OC →|cos 60°=150 (N).
所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.。

相关文档
最新文档