信号与系统第2章1

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

信号与系统课后题解第二章

信号与系统课后题解第二章


对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt

将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统教案第2章

信号与系统教案第2章
如何求解?
bm f
( m)
(t ) bm1 f
( m1)
ai 、 bj为常数。
2.1 LTI连续系统的响应
经典时域分析方法 y(t ) yh (t ) yp (t ) 卷积法
y(t) = yzi (t) + yzs (t)
一、经典时域分析方法(微分方程经典解)
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为 单位冲激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
h t T 0 , t
def
h t
t
信号与系统 电子教案
第二章 连续系统的时域分析
《信号与系统》
授课教师:吕晓丽
第2-1页

长春工程学院电子信息教研室
信号与系统 电子教案
第二节总结


1、LTI系统的判定方法 线性性质 时不变性质 2、 LTI系统的分类 因果系统 稳定系统 3、系统的描述 系统框图与系统方程
第2-2页

长春工程学院电子信息教研室
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et ε(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) C1e

《信号与系统》第2章1

《信号与系统》第2章1

信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )


信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R

信号与线性系统分析第2章

信号与线性系统分析第2章
t r ( Pmt m Pm1t m1 P 0的特征根) 1t P 0 )(有r重为
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d


为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )

f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:

第2章 离散时间信号与系统-1-2节

第2章 离散时间信号与系统-1-2节

5 m , m 0 z (m) 将m替换成m-n 0, m 0
5 ( mn ) , m n 0 z[(m n)] 0, m n 0
x ( n ) * z ( n)
n
5n m , n m z ( n m) 0, n m
m
m
[ x(m) z(n m)] [3
m0
( 5n m )]
n n 3 m n 1 (3 / 5) n 1 ,n 0 5 ( ) , n 0 5 1 3 / 5 m0 5 0, n 0 0, n 0 3n 1 5n 1 ,n 0 2 2 0, n 0
n=1
n=2
n=3
n=4
【例2-5】(P15)已知 ,
x(n) {
n ,1n3 2 0,其他
h(n) {
求:
1,0n2 0,其他
y (n) x(n) h(n)
m
x ( m )h ( n m )

【例2-5】(P15)
0.5, 1 , 1.5 1, 1, 1 ×—————————————————— 0.5, 1 , 1.5 0.5, 1 , 1.5 0.5, 1 , 1.5 + ————————————————————— 0.5, 1.5, 3, 2.5 , 1.5
1
2
3
4
y(n)
0 -2 -4 1
-3
-2
-1
0 (b)
1
2
3
4
z(n)
0
-1 -4
-3
-2
-1
0 (c)
1
2
3

信号与系统-第2章

信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.

信号与系统第2章信号描述及其分析1

信号与系统第2章信号描述及其分析1

图2.2.3 谐波逐次叠加后的图形 (a)1次 (b)1,3次 (c)1,3,5次
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
(2) 从以上两例可看出,三角波信号的频谱比方波信号的频谱 衰减得快,这说明三角波的频率结构主要由低频成分组成,而 方波中所含高频成分比较多。这一特点反映到时域波形上,表 现为含高频成分多的时域波形(方波)的变化比含高频成分少的时 域波形(三角波)的变化要剧烈得多。因此,可根据时域波形变化 剧烈程度,大概判断它的频谱成分。
本节小结 本节主要介绍了信号的分类。由于不同类型的信号其处 理方法不同,所以必须善于区分不同类型的信号。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
§2 周期信号与离散频谱
信号的时域描述与时域分析 本课程所研究的信号 一般是随时间变化的物理量,抽象为以时间为自变量表达 的函数,称为信号的时域描述。求取信号幅值的特征参数 以及信号波形在不同时刻的相似性和关联性,称为信号的 时域分析。时域描述是信号最直接的描述方法,它只能反 映信号的幅值随时间变化的特征,而不能明显表示出信号 的频率构成。因此必须研究信号中蕴涵的频率结构和各频 率成分的幅值、相位关系。
本章重点及难点 本章重点为信号的分析,其中信号频
谱的求取为主要内容。难点为傅里叶变换。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
首先应清楚如下三个方面:
信号与信息 信号与信息并非同一概念。 信号分析和信号处理 信号分析和信号处理并没有明确的界 限,通常把研究信号的构成和特征称为信号分析,把信号经过 必要的变换以获得所需信息的过程称为信号处理。 对信号进行分析与处理的原因 在一般情况下,仅通过对信 号波形的直接观察,很难获取所需要的信息,需要对信号进行 必要的分析和处理。

《信号与系统分析基础》第二章部分习题参考答案

《信号与系统分析基础》第二章部分习题参考答案

第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。

121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

信号与系统课后答案 第2章 习题解

信号与系统课后答案 第2章 习题解

第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。

(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。

解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

信号与系统王明泉第二章习题解答

信号与系统王明泉第二章习题解答
(1)零输入响应 满足方程
其 值
方程特征根 , ,故零输入响应
将初始值代入上式及其导数,得
由上式解得 , ,所以
(2)零状态响应 是初始状态为零,且 时,原微分方程的解,即 满足方程

及初始状态 。先求 和 ,由于上式等号右端含有 ,令
积分(从 到 )得
将 、 和 代入微分方程可求得 。对以上三式等号两端从 到 积分,并考虑到 , ,可求得
解:(1)求齐次解
特征方程为:
特征根为:
所以,
(2)求特解
(3)全响应
将 代入系统方程得
(1)
将初始条件代入
得:
所以全响应为:
2.5 已知描述某线性时不变连续系统的微分方程为

当激励为 时,系统的完全响应为 , 。试求其零输入响应、零状态响应、自由响应和强迫响应。
解:由全响应得初始条件 ,
(1)求零输入响应
在时域中,子系统级联时,总的冲激响应等于子系统冲激响应的卷积。
因果系统的冲激响应为
(2)阶跃响应
一线性时不变系统,当其初始状态为零时,输入为单位阶跃函数所引起的响应称为单位阶跃响应,简称阶跃响应,用 表示。阶跃响应是激励为单位阶跃函数 时,系统的零状态响应
阶跃响应 与冲激响应 之间的关系为

2.2.6卷积积分
(1)卷积积分的概念
一般情况下,如有两个信号 和 做运算
此运算定义为 和 的卷积(Convolution),简记为

(2)卷积积分的图解法
用图解法能直观地说明卷积积分的计算过程,而且便于理解卷积的概念。两个信号 和 的卷积运算可通过以下几个步骤来完成:
第一步,画出 和 波形,将波形图中的 轴改换成 轴,分别得到 和 的波形。

《信号与系统》第二版第二章:LTI连续时间系统的时域分析

《信号与系统》第二版第二章:LTI连续时间系统的时域分析
由起始状态Y(0-)≠0 所产生的响应。
零状态(zero state)响应 yzs (t ) :不考虑起始时刻系统储能的作用,即Y(0-) ≡0,由系统的外加激励信号 v (t ) = v (t )u (t ) ≠ 0 所产生的响应。
零输入响应 yzi (t ) :
5
《信号与系统》
第二章:LTI 连续时间系统的时域分析
∏(p −αi )
i =1
(αi 为互异特征根)
= N (p) ⎡⎣eαnt ∗ ∗ eα1t ∗ v (t )⎤⎦
(2-19)
n
∑ yzs (t ) = 齐次解 Aieαit +特解 B (t ) i =1
(2-20)
特解 B (t ) 反映系统输入对输出的强迫。
非零状态线性系统: 定义(非零状态线性系统):系统 T 的初始状态为X(0-)≠0
令: D (p) pn + an−1pn−1 + ... + a1p + a0
N (p) bmpm + ... + b1p + b0
4
《信号与系统》
有:
第二章:LTI 连续时间系统的时域分析
y
(t)
=
N (p) D(p)
v(t
)
H (p)v(t)
(2-13)
其中,
H
(p)
=
N (p) D(p)
称为系统算子。
≤ ∫ ∫ f (τ ) g (t −τ ) dτ dt ΩΩ
= ∫ f (τ ) ∫ g (t −τ ) dtdτ
Ω
Ω
=∫
f (τ )
g (t ) dτ = 1
f (t) 1
g (t ) 1

信号与系统第二章

信号与系统第二章

§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。

信号与系统(教案) 第二章

信号与系统(教案) 第二章

二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分

信号与系统第2章ppt课件

信号与系统第2章ppt课件

(B) u(t)Limetu(t) 0
假设u(t)的傅立叶变换为:
F ()A ()jB ()
e t u (t ) 的傅立叶变换为 :
依据傅立叶变换具有唯一性:
F e()A e()jB e()
F()li m0Fe()
所以
A()li m0Ae()精选pBpt()li m0Be()
第二章 傅立叶变换
F ()A ()jB () A()li m0Ae() B()li m0Be()
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)乘以Cs(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
精选ppt
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为

信号与系统第二章 总结

信号与系统第二章 总结

第二章 总结一﹑LTI 连续系统响应(一)微分方程经典解法=解开方式:全解y (t )=通解)(特解)(t y t y p n + 1﹑通解(齐次解):令右侧为零由特征方程n a +n λ1-n a +1-n λ…+0a a 01=+λ确定通解形式,再由n 个+0初始条件确定系数。

总结:齐次解模式由系统决定,系数由n 个初始条件决定,有时与f (t )有关。

2﹑特解:函数形式与f (t )有关,根据f (t )形式选择特定形式后,代入原微分方程,球的系数。

3﹑全解:) y (t )=)()(t y t y p n + 响应。

)又称强迫响应或受迫(响应;)又称自由响应或固有(t y t y p n (二)初始条件与-00+(1)经典系统的响应应限于到正无穷范围。

+0(2)不能将{)(-n 0y }作为微分方程初始条件。

(3){)(+0y n }由{)(-n 0y }导出,{)(+0y n }又称导出初始条件。

(三)零输入响应与零状态响应y (t )=)()(t y t y zs zi + 定义求解:(1)求解zi y :微分方程→特征方程→特征根→zi y (t )模式→数由{)(-n 0y }确定。

(2))(t y zs 求解:经典法﹑卷积积分法。

二﹑卷积积分卷积积分及其图解计算(1)定义: (2)图解计算:∑=n 1i i i t y a )()(∑=m 1j j j t f b )()(()()()τττd 21⎰∞∞--=t f f t f ττ ),()(.111积分变量改为f t f →)()()()(.22222τττ-−−→−-−−→−→t f f f t f 平移翻转τττd )(.)(.321-⎰∞∞-t f f 乘积的积分:总结:翻卷(翻转+平移)→乘积→积分三﹑卷积的性质:(一)卷积的代数性质:(1) 交换性:(2) 分配性:(3) 结合律: (二)延时特性:卷积的延迟量等于相卷积的两函数卷积之和(三)函数与冲激函数卷积)()()(t f t t f =*δ卷积奇偶性:同偶异奇(四)卷积的导数与积分:1﹑卷积导数:[)()(t f t f 21*]´=)()(t f t f 21*´=)()(,t f t f 21* 推广:)()()()()()(t f t f t f t f n 2n 121-*=* 2、卷积积分)()()()()()(t f dx x f dx x f t f dx x f x f 2t 1t 212t 1*=*=*⎰⎰⎰∞-∞-∞- 若y (t )=)()(t f t f 21*,则)()()()()()(t f t f t y j -i 2j 1i *= (五)相关函数dt t f t f dt t f t )()()(f R 212-112•+=-•=⎰⎰∞∞-∞∞τττ)()( dt t f t f dt t f t )()()(-f R 212-121τττ+•=•=⎰⎰∞∞-∞∞)()( )-(R 2112ττR =)( )()(ττ-R R 1221=自相关函数:若)()()(t f t f t f 21==,则R (τ)称为自相关函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档