) A .log a b +log b a ≥2 B .log a b +log b a ≥-2
C .log a b +log b a ≤-2
D .log a b +log b a >2
5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是 (
) A .a +b +1ab ≥2 2 B .(a +b )⎝⎛⎭⎫1a +1
b ≥4 C.a 2+b 2
ab ≥2ab D.2ab
a +
b >ab
6.若a <1,则a +1
a -1有最______(填“大”或“小”)值,为________.
7.若lg x +lg y =1,则2x +5
y 的最小值为________.
8.设a 、b 、c 都是正数,求证:bc a +ca
b +ab
c ≥a +b +c .
二、能力提升
9.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1
y 的最大值为(
) A .2 B.32 C .1 D.1
2
10.若对任意x >0,x
x 2+3x +1≤a 恒成立,则a 的取值范围为________.
11.已知x >y >0,xy =1,求证:x 2+y 2
x -y ≥2 2.
12.已知a ,b ,c 为不等正实数,且abc =1. 求证:a +b +c <1a +1b +1
c .
三、探究与拓展
13.已知a>b>0,求证:a2+16
b(a-b)
≥16.
答案
1.C 2.D 3.A 4.C 5.D
6.大 -1 7.2
8.证明 ∵a 、b 、c 都是正数,
∴bc a 、ca b 、ab c
也都是正数. ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +ab c ≥2b , 三式相加得
2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ),
即bc a +ca b +ab c
≥a +b +c . 9.C 10.⎣⎡⎭⎫15,+∞
11.证明 ∵xy =1,
∴x 2+y 2x -y =(x -y )2+2xy x -y
=(x -y )2+2x -y
=(x -y )+2x -y ≥2(x -y )·2x -y
=2 2. 当且仅当⎩⎨⎧ x -y =2x -y xy =1
, 即⎩⎪⎨⎪⎧ x =
6+22y =6-22时取等号. 12.证明 ∵1a +1b
≥21ab =2c , 1b +1c ≥21bc
=2a ,
1c +1a ≥21ac =2b , ∴2⎝⎛⎭⎫1a +1b +1c ≥2(a +b +c ), 即1a +1b +1c
≥a +b +c . ∵a ,b ,c 为不等正实数,
∴a +b +c <1a +1b +1c
. 13.证明 ∵a >b >0,∴a -b >0.
∴a 2+16b (a -b )
=2+16b (a -b )
≥2+16b (a -b )
=4(a -b )b +16b (a -b )
≥4×2(a -b )b ×4b (a -b )
=16. 取“=”时当且仅当:a -b =b >0且(a -b )b =4b (a -b )
>0, 即当a =22且b =2时“=”成立.