全国卷理科数学-第18题-概率(精选)

合集下载

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

2021年高考全国乙卷数学(理科)试题及答案解析

2021年高考全国乙卷数学(理科)试题及答案解析

2021年普通高等学校招生全国统一考试数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.设2(z+z−)+3(z−z−)=4+6i,则z=()A. 1−2iB. 1+2iC. 1+iD. 1−i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. ⌀B. SC. TD. Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p∧qB. ¬p∧qC. p∧¬qD. ¬(p∨q)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A. f(x−1)−1B. f(x−1)+1C. f(x+1)−1D. f(x+1)+15.在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. π2B. π3C. π4D. π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,则f(x)=()A. sin(x2−7π12) B. sin(x2+π12) C. sin(2x−7π12) D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A. 79B. 2332C. 932D. 299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A. B.C. D.10.设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A. [√22,1) B. [12,1) C. (0,√22] D. (0,12]12.设a=2ln1.01,b=ln1.02,c=√1.04−1,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、单空题(本大题共4小题,共20.0分)13.已知双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则C的焦距为______ .14.已知向量a⃗=(1,3),b⃗ =(3,4),若(a⃗−λb⃗ )⊥b⃗ ,则λ=______ .15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不2√s12+s2210认为有显著提高).18.如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A−PM−B的正弦值.19.记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.20.己知函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.21.已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB为C的两条切线,A,B是切点,求△PAB面积的最大值.22.在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案解析1.【答案】C【解析】解:设z =a +bi ,a ,b 是实数, 则z −=a −bi ,则由2(z +z −)+3(z −z −)=4+6i , 得2×2a +3×2bi =4+6i , 得4a +6bi =4+6i , 得{4a =46b =6,得a =1,b =1, 即z =1+i , 故选:C .利用待定系数法设出z =a +bi ,a ,b 是实数,根据条件建立方程进行求解即可. 本题主要考查复数的基本运算,利用待定系数法建立方程是解决本题的关键,是基础题.2.【答案】C【解析】解:当n 是偶数时,设n =2k ,则s =2n +1=4k +1, 当n 是奇数时,设n =2k +1,则s =2n +1=4k +3,k ∈Z , 则T ⊊S , 则S ∩T =T , 故选:C .分别讨论当n 是偶数、奇数时的集合元素情况,结合集合的基本运算进行判断即可. 本题主要考查集合的基本运算,利用分类讨论思想结合交集定义是解决本题的关键,是基础题.3.【答案】A【解析】解:对于命题p :∃x ∈R ,sinx <1,当x =0时,sinx =0<1,故命题p 为真命题,¬p 为假命题; 对于命题q :∀x ∈R ,e |x|≥1,因为|x|≥0,又函数y =e x 为单调递增函数,故e |x|≥e 0=1, 故命题q 为真命题,¬q 为假命题,所以p ∧q 为真命题,¬p ∧q 为假命题,p ∧¬q 为假命题,¬(p ∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】B【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.5.【答案】D【解析】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=6+8−22×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.6.【答案】C【解析】解:5名志愿者选2个1组,有C 52种方法,然后4组进行全排列,有A 44种, 共有C 52A 44=240种,故选:C .5分先选2人一组,然后4组全排列即可.本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.7.【答案】B【解析】解:∵把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变, 再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像, ∴把函数y =sin(x −π4)的图像,向左平移π3个单位长度, 得到y =sin(x +π3−π4)=sin(x +π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变, 可得f(x)=sin(12x +π12)的图像. 故选:B .由题意利用函数y =Asin(ωx +φ)的图像变换规律,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图像变换规律,属基础题.8.【答案】B【解析】解:由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积=12×34×34=932, 1−932=2332. 故选:B .由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积,结合几何概型即可得出结论.本题考查了线性规划知识、三角形的面积、几何概型、对立事件的概率计算公式,考查了推理能力与计算能力,属于基础题.9.【答案】A【解析】解:DEAB =EHAH,FGBA=CGCA,故EHAH =CGCA,即EHAE+EH=CGAE+EG+GC,解得:AE=EH⋅EGCG−EH,AH=AE+EH,故:AB=DE⋅AHEH =DE(AE+EH)EH=DE⋅EGCG−EH+DE.故选:A.根据相似三角形的性质、比例的性质、直角三角形的边角关系即可得出.本题考查了相似三角形的性质、比例的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题.10.【答案】D【解析】解:令f(x)=0,解得x=a或x=b,即x=a及x=b是f(x)的两个零点,当a>0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.分a>0及a<0,结合三次函数的性质及题意,通过图象发现a,b的大小关系,进而得出答案.本题考查三次函数的图象及性质,考查导数知识的运用,考查数形结合思想,属于中档题.11.【答案】C【解析】解:点B的坐标为(0,b),因为C上的任意一点P都满足|PB|≤2b,所以点P的轨迹可以看成以B为圆心,2b为半径的圆与椭圆至多只有一个交点,即{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,消去x,可得b2−a2 b2y2−2by+a2−3b2=0,∴△=4b2−4⋅b2−a2b2⋅(a2−3b2)≤0,整理可得4b4−4a2b2+a4≤0,即(a2−2b2)2≤0,解得a2=2b2,∴e=√1−b2a2=√22,故e的范围为(0,√22],故选:C.由题意可得{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,根据判别式即可得到a与b的关系式,再求出离心率的取值范围.本题考查了椭圆的方程和性质,考查了运算求解能力和转化与化归思想,属于中档题.12.【答案】B【解析】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,令√1+4 x=t,则1<t<√5∴x= t2−14,∴g(t)=2ln(t2+34)−t+1=2ln(t2+3)−t+1−2ln4,∴g′(t)=4tt2+3−1=4t−t2−3t2+3=−(t−1)(t−3)t2+3>0,∴g(t)在(1,√5)上单调递增,∴g(t)>g(1)=2ln4−1+2ln4=0,∴f(x)>0,∴a>c,同理令ℎ(x)=ln(1+2x)−(√1+4 x−1),再令√1+4 x=t,则1<t<√5∴x= t2−14,∴φ(t)=ln(t2+12)−t+1=ln(t2+1)−t+1−ln2,∴φ′(t)=2tt2+1−1=−(t−1)2t2+1<0,∴φ(t)在(1,√5)上单调递减,∴φ(t)<φ(1)=ln2−1+1−ln2=0,∴ℎ(x)<0,∴c>b,∴a>c>b.故选:B.构造函数f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,ℎ(x)=ln(1+2x)−(√1+4 x−1),利用导数和函数的单调性即可判断.本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.13.【答案】4【解析】解:根据题意,双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则有√3=√m,解可得m=3,则双曲线的方程为x23−y2=1,则c=√3+1=2,其焦距2c=4;故答案为:4.根据题意,由双曲线的性质可得√3=√m,解可得m的值,即可得双曲线的标准方程,据此计算c的值,即可得答案.本题考查双曲线的几何性质,涉及双曲线的渐近线方程的分析,属于基础题.14.【答案】35【解析】解:因为向量a⃗=(1,3),b⃗ =(3,4),则a⃗−λb⃗ =(1−3λ,3−4λ),又(a⃗−λb⃗ )⊥b⃗ ,所以(a⃗−λb⃗ )⋅b⃗ =3(1−3λ)+4(3−4λ)=15−25λ=0,解得λ=35.故答案为:35.利用向量的坐标运算求得a⃗−λb⃗ =(1−3λ,3−4λ),再由(a⃗−λb⃗ )⊥b⃗ ,可得(a⃗−λb⃗ )⋅b⃗ =0,即可求解λ的值.本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.15.【答案】2√2【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+ 10.0+10.1+10.2+9.7)=10,y−=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3,s12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2 +(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y−−x−=10.3−10=0.3,2√s12+s2210=2√0.036+0.0410=2√0.0076≈0.174,所以y−−x−>2√s12+s2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】(1)利用平均数和方差的计算公式进行计算即可;(2)比较y−−x−与2√s12+s2210的大小,即可判断得到答案.本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.18.【答案】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM⊥PD,又AM⊥PB,PB∩PD=P,PB,PD⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD , 所以∠ABD +∠DAM =90°,又∠DAM +∠MAB =90°, 则有∠ADB =∠MAB ,所以Rt △DAB∽Rt △ABM , 则ADAB =BABM ,所以12BC 2=1,解得BC =√2;(2)因为DA ,DC ,DP 两两垂直,故以点D 为坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P(0,0,1),所以AP⃗⃗⃗⃗⃗ =(−√2,0,1),AM ⃗⃗⃗⃗⃗⃗ =(−√22,1,0),BM ⃗⃗⃗⃗⃗⃗ =(−√22,0,0),BP ⃗⃗⃗⃗⃗ =(−√2,−1,1), 设平面AMP 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−√2x +z =0−√22x +y =0, 令x =√2,则y =1,z =2,故n ⃗ =(√2,1,2), 设平面BMP 的法向量为m⃗⃗⃗ =(p,q,r), 则有{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,即{−√22p =0−√2p −q +r =0, 令q =1,则r =1,故m ⃗⃗⃗ =(0,1,1), 所以|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ ||m ⃗⃗⃗ |=3√7×√2=3√1414, 设二面角A −PM −B 的平面角为α,则sinα=√1−cos 2α=√1−cos 2<n ⃗ ,m ⃗⃗⃗ >=√1−(3√1414)2=√7014,所以二面角A −PM −B 的正弦值为√7014.【解析】(1)连结BD ,利用线面垂直的性质定理证明AM ⊥PD ,从而可以证明AM ⊥平面PBD ,得到AM ⊥BD ,证明Rt △DAB∽Rt △ABM ,即可得到BC 的长度; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)证明:当n =1时,b 1=S 1,由2b 1+1b 1=1,解得b 1=32,当n ≥2时,b nbn−1=S n ,代入2S n+1b n=2,消去S n ,可得2 b n−1b n+1b n=2,所以b b −b n−1=12,所以{b n }是以32为首项,12为公差的等差数列. (2)由题意,得a 1=S 1=b 1=32, 由(1),可得b n =32+(n −1)×12=n+22,由2S n+1b n=2,可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1= n+2n+1−n+1n=−1n(n+1),显然a 1不满足该式,所以a n ={32,n =1−1n(n+1),n ≥2.【解析】(1)由题意当n =1时,b 1=S 1,代入已知等式可得b 1的值,当n ≥2时,将b nb n−1=S n ,代入2S n+1b n=2,可得b b −b n−1=12,进一步得到数列{b n }是等差数列;(2)由a 1=S 1=b 1=32,可得b n =n+22,代入已知等式可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1=−1n(n+1),进一步得到数列{a n }的通项公式.本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.20.【答案】(1)解:由题意,f(x)的定义域为(−∞,a),令g(x)=xf(x),则g(x)=xln(a −x),x ∈(−∞,a), 则g′(x)=ln(a −x)+x ⋅−1a−x =ln(a −x)+−xa−x ,因为x =0是函数y =xf(x)的极值点,则有g′(x)=0,即lna =0,所以a =1, 当a =1时,g′(x)=ln(1−x)+−x1−x =ln(1−x)+−11−x +1,且g′(0)=0, 因为g′′(x)=−11−x +−1(1−x)2=x−2(1−x)2<0, 则g′(x)在(−∞,1)上单调递减, 所以当x ∈(−∞,a)时,g′(x)>0, 当x ∈(0,1)时,g′(x)<0,所以a =1时,x =0时函数y =xf(x)的一个极大值. 综上所述,a =1;(2)证明:由(1)可知,xf(x)=xln(1−x),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x∈(−∞,0)时,xln(1−x)<0,当x∈(0,1)时,xln(1−x)<0,所以需证明x+ln(1−x)>xln(1−x),即x+(1−x)ln(1−x)>0,令ℎ(x)=x+(1−x)ln(1−x),则ℎ′(x)=(1−x)⋅−11−x+1−ln(1−x),所以ℎ′(0)=0,当x∈(−∞,0)时,ℎ′(x)<0,当x∈(0,1)时,ℎ′(x)>0,所以x=0为ℎ(x)的极小值点,所以ℎ(x)>ℎ(0)=0,即x+ln(1−x)>xln(1−x),故x+ln(1−x)xln(1−x)<1,所以x+f(x)xf(x)<1.【解析】(1)确定函数f(x)的定义域,令g(x)=xf(x),由极值的定义得到g′(x)=0,求出a的值,然后进行证明,即可得到a的值;(2)将问题转化为证明x+ln(1−x)xln(1−x)<1,进一步转化为证明x+ln(1−x)>xln(1−x),令ℎ(x)=x+(1−x)ln(1−x),利用导数研究ℎ(x)的单调性,证明ℎ(x)>ℎ(0),即可证明.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题.21.【答案】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2−4ky−4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=−4b,∴P(2k,−b),∵|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b ,d p→AB =2√k 2+1,∴S △PAB =12|AB|d =4(k 2+b)32①,又点P(2k,−b)在圆M :x 2+(y +4)2=1上,故k 2=1−(b−4)24,代入①得,S △PAB =4(−b 2+12b−154)32,而y p =−b ∈[−5,−3],∴当b =5时,(S △PAB )max =20√5.【解析】(1)由点F 到圆M 上的点最小值为4建立关于p 的方程,解出即可; (2)对y =14x 2求导,由导数的几何意义可得出直线PA 及PB 的方程,进而得到点P 的坐标,再将AB 的方程与抛物线方程联立,可得P(2k,−b),|AB|以及点P 到直线AB 的距离,进而表示出△PAB 的面积,再求出其最小值即可.本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于中档题.22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1, ⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数).(2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0, 圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33,所以切线方程为y =±√33(x −4)+1,因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【解析】(1)求出⊙C 的标准方程,即可求得⊙C 的参数方程;(2)求出直角坐标系中的切线方程,再由x =ρcosθ,y =ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a=1时,f(x)=|x−1|+|x+3|={−2x−2,x≤−3 4,−3<x<12x+2,x≥1,∵f(x)≥6,∴{x≤−3−2x−2≥6或{−3<x<1 4≥6或{x≥12x+2≥6,∴x≤−4或x≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x−a|+|x+3|≥|x−a−x−3|=|a+3|,若f(x)>−a,则|a+3|>−a,两边平方可得a2+6a+9>a2,解得a>−32,即a的取值范围是(−32,+∞).【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。

2023年高考全国甲卷数学(理)真题

2023年高考全国甲卷数学(理)真题

年普通高等学校招生全国统一考试(全国甲卷)2023理科数学一、选择题1. 设集合{31,},{32,}A xx k k Z B x x k k Z ∣∣,U 为整数集,()A B U ð( ) A. {|3,}x x k k ZB. {31,}x x k k Z ∣ C {32,}x x k k Z ∣D. 2. 若复数 i 1i 2,R a a a ,则 a ( )A. -1B. 0 ·C. 1D. 23. 执行下面的程序框遇,输出的B ( )A. 21B. 34C. 55D. 894.向量||||1,||a b c 0a b c ,则cos ,a c b c ( )A 15 B. 25 C. 25 D. 455. 已知正项等比数列 n a 中,11,n a S 为 n a 前n 项和,5354S S ,则4S ( )A. 7B. 9C. 15D. 306. 有60人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A. 0.8B. 0.4C. 0.2D. 0.1..7. “22sin sin 1 ”是“sin cos 0 ”的( )A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充要条件D. 既不是充分条件也不是必要条件 8. 已知双曲线22221(0,0)x y a b a b22(2)(3)1x y 交于A ,B 两点,则||AB ( ) A. 15B.C.D. 59. 有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务选择种数为( )A. 120B. 60C. 40D. 3010. 已知 f x 为函数πcos 26y x向左平移π6个单位所得函数,则 y f x 与1122y x 的交点个数为( )A. 1B. 2C. 3D. 411. 在四棱锥P ABCD 中,底面ABCD 为正方形,4,3,45AB PC PD PCA ,则PBC 的面积为( )A.B.C.D. 12. 己知椭圆22196x y ,12,F F 两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ,则||PO ( ) A. 25B. 2C. 35D. 2二、填空题13. 若2π(1)sin 2y x ax x为偶函数,则 a ________. 14. 设x ,y 满足约束条件2333231x y x y x y,设32z x y ,则z 的最大值为____________. 15. 在正方体1111ABCD A B C D 中,E ,F 分别为CD ,11A B 的中点,则以EF 为直径的球面与正方体每条的为棱的交点总数为____________.16. 在ABC 中,2AB ,60,BAC BCD 为BC 上一点,AD 为BAC 的平分线,则AD_________. 三、解答题17. 已知数列 n a 中,21a ,设n S 为 n a 前n 项和,2n n S na .(1)求 n a 的通项公式;(2)求数列12n n a的前n 项和n T . 18. 在三棱柱111ABC A B C -中,12AA ,1A C 底面ABC ,90ACB ,1A 到平面11BCC B 的距离为1.(1)求证:1AC AC ;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.19. 为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.214.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用. 参考数据:20. 已知直线210x y 与抛物线2:2(0)C y px p 交于,A B 两点,且||AB . (1)求p ;(2)设C 的焦点为F ,M ,N 为C 上两点,0MF NF ,求MNF 面积的最小值. 21. 已知3sin π(),0,cos 2x f x ax x x(1)若8a ,讨论()f x 的单调性;(2)若()sin 2f x x 恒成立,求a 的取值范围.四、选做题22. 已知(2,1)P ,直线2cos :1sin x t l y t(t 为参数), 为l 倾斜角,l 与x 轴,y 轴正半轴交于A ,B 两点,||||4PA PB .(1)求 的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.23. 已知()2||, 0 f x x a a a .(1)求不等式 f x x 的解集;(2)若曲线 y f x 与x 轴所围成的图形的面积为2,求a .的2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D【9题答案】【答案】B【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】B二、填空题【13题答案】【答案】2【14题答案】【答案】15【15题答案】【答案】12【16题答案】【答案】2三、解答题【17题答案】【答案】(1)1n a n(2) 1222n n T n【18题答案】【答案】(1)证明见解析(2)13【19题答案】【答案】(1)分布列见解析,()1E X (2)(i )23.4m ;列联表见解析,(ii )能【20题答案】【答案】(1)2p(2)12 【21题答案】【答案】(1)答案见解析.(2)(,3]四、选做题【22题答案】【答案】(1)3π4(2)cos sin 30 【23题答案】【答案】(1),33aa(2)3第8页/共8页。

2010年高考数学全国卷Ⅱ理科第18题的解法研究

2010年高考数学全国卷Ⅱ理科第18题的解法研究

- l-l i m

31 k+
3+ 3


= ‘J“ 卜r ‘ J + l等 j i I a r



>3 .
一__ 。
即/ / , :k+1 ,不等式也成立. 时
【 点评】运用 %= 一 一
收稿 日期 :2 1 - 1 1 0 1O— 8
∈N . )
所 蚤=m L+,3 = . 以 ∞n l / 。 — 1 “ 3 i , ‘
【 点评】运用 Ⅱ= 。 及 %= 一 一 /≥ 2 ∈ I 。 S:6 。( / ,n N)求 ,
出数 列{ } 的通项公 式,再计 算1 .虽然 “ i m 解题长 度” 比解
, 3 ,n
21 0 0年高考数学全 国卷 Ⅱ理科第 l 8题如下 : 已知数列 { } 的前 /项 和 S =( 2 )・ / , n +n 3.
( ) i 1 求l m ;
法 1稍长一 点,但笔者 认为这种 解法较 为贴近 大 多数 学生 的解
题水平.
( 证 : 争+. > 2 明 争+ .+ 3 ) ’ ・
本题 短小精 悍 ,简明扼要 ,易 于读题 ,重点考查 数列 与极 限 、数 列与不等式 的综合 知识 ,特别第 ( ) 2 问证法 的多样性 ,彰 显高考命题 以 “ 能力立意”的宗 旨.因此 ,笔 者对 本题 进行解法 研究 ,仅供 参考 .

二 、第( 问的证法 2)
证法 1( 数学归纳法 : 当n 1 鲁 =q 6 3 不 )① = 时, O: > . ,
所 以 S一=[n一1 /一1 ]・ 。 ( )+(, ) 3一 1

( 一 )・ n ≥ 2 3一 ( ,n∈N., )

高考全国卷数学理科试题及答案详解

高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。

2022年全国甲卷数学(理科)高考真题+答案解析

2022年全国甲卷数学(理科)高考真题+答案解析

2022年普通高等学校招生全国统一考试(全国甲卷)理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若,则( )A . B .C .D .2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.设全集,集合,则()1z =-+1zzz =-1-+1-13-+13-70%85%{2,1,0,1,2,3}U =--{}2{1,2},430A B x x x =-=-+=∣()U A B = ðA .B .C .D .4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A .8B .12C .16D .205.函数在区间的图像大致为( )A . B .C .D .6.当时,函数取得最大值,则( )A .B . C. D .17.在长方体中,已知与平面和平面所成的角均为,则( )A .B .AB 与平面所成的角为C .D .与平面所成的角为8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在上,.“会圆术”给出的弧长的近似值s 的计算公式:.当时,( ){1,3}{0,3}{2,1}-{2,0}-()33cos x xy x -=-ππ,22⎡⎤-⎢⎥⎣⎦1x =()ln bf x a x x=+2-(2)f '=1-12-121111ABCD A B C D -1B D ABCD 11AA B B 30︒2AB AD =11AB C D 30︒1AC CB =1B D 11BB C C 45︒»AB »AB CD AB ⊥»AB 2CD s AB OA=+2,60OA AOB =∠=︒s =ABCD9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )AB .CD10.椭圆的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线的斜率之积为,则C 的离心率为( )ABC .D .11.设函数在区间恰有三个极值点、两个零点,则的取值范围是( )A . B . C . D . 12.已知,则( )A . B . C .D .二、填空题:本题共4小题,每小题5分,共20分。

2023年普通高等学校招生全国统一考试(全国乙卷)理科数学【含答案】

2023年普通高等学校招生全国统一考试(全国乙卷)理科数学【含答案】

A.24B.264.已知e()e1xaxxf x=-是偶函数,则A.2-B.1-5.设O为平面坐标系的坐标原点,在区域为A,则直线OA的倾斜角不大于π4(1)证明://EF平面ADO;(2)证明:平面ADO⊥平面BEF(3)求二面角D AO C--的正弦值20.已知椭圆2222:1( Cbxaa y+=(1)求C的方程;6.D【分析】根据题意分别求出其周期,【详解】因为()sin()f x x ωϕ=+在区间30ABO = ∠,3,232OC AB BC ===显然,,CE DE E CE DE ⋂=因此平面CDE ⊥平面ABC 直线CD ⊂平面CDE ,则直线从而DCE ∠为直线CD 与平面由余弦定理得:当点,A D 位于直线PO 同侧时,设则:PA PD ⋅ =||||cos PA PD α⎛⋅ ⎝12cos cos 4παα⎛⎫=⨯- ⎪⎝⎭22⎛15.2-【分析】根据等比数列公式对24536a a a a a =化简得得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则245a a a 则24a q =,即321a q q =,则11a q =,因为910a a=2于是1//,,/2DE AB DE AB OF=平行四边形,//,EF DO EF DO=,又EF⊄所以//EF平面ADO.(2)法一:由(1)可知//EF(3)法一:过点O 作//OH BF 交由AO BF ⊥,得HO AO ⊥,且FH 又由(2)知,OD AO ⊥,则DOH ∠因为,D E 分别为,PB PA 的中点,因此即有11,33DG AD GE BE ==,又FH法二:平面ADO 的法向量为n平面ACO 的法向量为(30,0,1n = 所以131313cos ,1n n n n n n ⋅==+⋅因为[]13,0,πn n ∈ ,所以sin n【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.(1)()ln 2ln 2x y +-(2)存在11,22a b ==-满足题意,理由见解析1⎛⎫-;23.(1)[2,2](2)8.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答3⎧由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积1|2ABC S =。

专题13 概率统计解答题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编

专题13 概率统计解答题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编
(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分, 表示“甲药的累计得分为 时,最终认为甲药比乙药更有效”的概率,则 ( ),
其中 , , .假设 , .
(i)证明: 为等比数列;
(ii)求 ,并根据 的值解释这种试验方案的合理性.
17.(2018年高考数学课标Ⅲ卷(理)·第18题)(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种生产方式,为比较两咱生产方式的效率,选取 名工人,将他们随机分成两组,每组 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位: )绘制了如下茎叶图:
附:相关系数r= , ≈1.414.
13.(2020年高考数学课标Ⅲ卷理科·第18题)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
第一种生产方式
第二种生产方式
8
6
5
5
6
8
9
9
7
6
2
7
0
1
2
2
3
4
5
6
6
8
9
8
7
7
6
5
4
3
3
2
8
1
4
4
5
2
1
1
0
0
9
0
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

2021年全国新高考Ⅰ卷数学试题变式题18-22题-(学生版)

2021年全国新高考Ⅰ卷数学试题变式题18-22题-(学生版)

2021年全国新高考Ⅰ卷数学试题变式题18-22题原题181.某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛地同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束。

若回答正确则从另一类问题中再随机抽取一个问题回答,不论回答正确与否,该同学比赛结束.A类问题中地每个问题回答正确得20分,否则得0分。

B类问题中地每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题地概率为0.8,能正确回答B类问题地概率为0.6,且能正确回答问题地概率与回答次序无关.(1)若小明先回答A类问题,记X为小明地累计得分,求X地分布列。

(2)为使累计得分地期望最大,小明应选择先回答哪类问题?并说明理由.变式题1基础2.某商店欲购进某种食品(保质期为两天),且该商店每两天购进该食品一次(购进时,该食品是刚生产地).依据市场调查,该食品每份进价8圆,售价12圆,假如两天内无法售出,则食品过期作废,且两天内地销售情况互不影响.为了解市场地需求情况,现统计该食品在本地区100天地销售量,如下表:销售量(份)15161718天数20304010(1)依据该食品在本地区100天地销售量统计表,记两天一共销售该食品地份数为ξ,求ξ地分布列与数学期望。

(视样本频率为概率)(2)以两天内该食品所获得地利润地数学期望为决策依据,若该商店计划一次性购进32份或33份该食品,试判断哪一种获得地利润更高.变式题2基础3.某品牌餐饮企业为满足人们餐饮需求、丰富产品花色、提高企业竞争力,研发了一款新产品.该产品每份成本60圆,售价80圆,产品保质期为两天,若两天内未售出,则产品过期报废.由于烹制工艺复杂,该产品在最初推广阶段由企业每两天统一生产、集中配送一次.该企业为决策每两天地产量,选取旗下地直营连锁店进行试销,统计并整理连续30天地日销量(单位:百份),假定该款新产品每日销量相互独立,得到右侧地柱状图:(1)记两天中销售该新产品地总份数为ξ(单位:百份),求ξ地分布列和数学期望。

理第18题 概率与统计(原卷版)-2022年高三毕业班数学第X题满分练(全国通用)

理第18题  概率与统计(原卷版)-2022年高三毕业班数学第X题满分练(全国通用)

第18题概率与统计高考考点命题分析三年高考探源考查频率概率、随机变量分布列及正态分布高考全国卷每年必有一道概率与统计解答题,该题通常以实际问题为背景,考查考生的数学建模及数据分析等核心素养,可以是较容易的题,也可以是难度较大的题,考查热点是概率的计算、随机变量的分布列、期望与方差的应用、正态分布、用样本估计总体、统计案例.2020课标全国Ⅰ19 2020课标全国Ⅲ18 2019课标全国Ⅱ18 2019课标全国I 21★★★统计与统计案例2021课标全国Ⅰ17 2021课标全国Ⅱ17 2020课标全国Ⅱ18 2020课标全国Ⅲ18 2019课标全国Ⅲ17★★★例题(2021高考全国I )某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备 9.8 10.3 10.0 10.2 9.99.8 10.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5y 21S 和22S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210S S y x +-≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y S S ====;(2)新设备生产产品的该项指标的均值较旧设备有 解:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,(2分)10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,(4分)22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,(8分) 222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==.(8分)(2)依题意,20.320.1520.1520.025y x -==⨯==,0.0360.040.007610+=(10分)2212210s s y x +-≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高. (12分)1.(2022届江苏省泰州市兴化市高三4月模拟)设(),X Y 是一个二维离散型随机变量,它们的一切可能取的值为(),i j a b ,其中,i j N *∈,令(,)ij i j p P X a Y b ===,称(,)ij p i j N *∈是二维离散型随机变量(),X Y 的联合分布列.与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式:(),X Y1b 2b 3b ... 1a 1,1p 1,2p 1,3p (2)a 2,1p 2,2p 2,3p (3)a3,1p3,2p3,3p ·…… … … … …现有()n n N ∈个相同的球等可能的放入编号为1,2,3的三个盒子中,记落下第1号盒子中的球的个数为X ,落入第2号盒子中的球的个数为Y . (1)当n =2时,求(),X Y 的联合分布列;(2)设0(,),nk m p P X k Y m k N ====∈∑且k n ≤计算0nk k kp =∑.2.(陕西省西安市高三下学期二模)某中学对学生进行体质测试(简称体测),随机抽取了100名学生的体测结果等级(“良好以下”或“良好及以上”)进行统计,并制成列联表如下: 良好以下 良好及以上 合计 男 25 女 10 合计70100(2)事先在本次体测等级为“良好及以上”的学生中按照性别采用分层抽样的方式随机抽取了9人.若从这9人中随机抽取3人对其体测指标进行进一步研究,求抽到的3人全是男生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.10 0.05 0.025 0.010 0.001 0k2.7063.8415.0246.63510.828会上参与全民健身活动的人越来越多,小明也有大量好友参与了“健步团”,他随机选取了其中的40人,记录了他们某一天的走路步数,并将数据整理如下:步量性别5001~60006001~70007001~80008001~9000>9000男 1 2 3 6 8 女21062(2)如果每人一天的走路步数超过8000步就会被系统评定为“健步型”,否则为“良好型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关健步型良好型总计男女总计附:参考公式()()()()() 2n ad bcKa b c d a c b d-=++++.临界值表:()2P K k≥0.10 0.05 0.025 0.010 0k 2.706 3.841 5.024 6.635专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊比赛.约定赛制如下:业余队中的两名队员轮流与甲进行比赛............,若甲连续豪两场.....则专业队获胜;若甲连续输两场.....则业余队获胜:若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,乙赢概率为13;甲与丙比赛,丙赢的橱率为p,其中1132p<<.(1)若第一场比赛,业余队可以安接乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金3万元,负队获奖金1.5万元;若平局,两队各获奖金1.8万元.在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X万元,求X的数学期望()E X的取值范围.5.(2022届广东省广州市高三二模)某校为全面加强和改进学校体育工作,推进学校体育评价改革,建立了日常参与,体质监测和专项运动技能测试相结合的考查机制,在一次专项运动技能测试中,该校班机抽取60名学生作为样本进行耐力跑测试,这60名学生的测试成绩等级及频数如下表成绩等级优良合格不合格频数7 11 41 1(1)从这60名学生中随机抽取2名学生,这2名学生中耐力跑测试成绩等级为优或良的人数记为X ,求()1P X =;(2)将样本频率视为概率,从该校的学生中随机抽取3名学生参加野外拉练活动,耐力跑测试成绩等级为优或良的学生能完成该活动,合格或不合格的学生不能完成该活动,能完成活动的每名学生得100分,不能完成活动的每名学生得0分.这3名学生所得总分记为Y ,求Y 的数学期望.6.(2022届重庆市高三质量检测)冰壶被喻为冰上的“国际象棋”,是以团队为单位在冰上进行的投掷性竞赛项目,每场比赛共10局,在每局比赛中,每个团队由多名运动员组成,轮流掷壶、刷冰、指挥.两边队员交替掷壶,可击打本方和对手冰壶,以最终离得分区圆心最近的一方冰壶数量多少计算得分,另外一方计零分,以十局总得分最高的一方获胜.冰壶运动考验参与者的体能与脑力,展现动静之美,取舍之智慧.同时由于冰壶的击打规则,后投掷一方有优势,因此前一局的得分方将作为后一局的先手掷壶.已知甲、乙两队参加冰壶比赛,在某局中若甲方先手掷壶,则该局甲方得分概率为25;若甲方后手掷壶,则该局甲方得分概率为23,每局比赛不考虑平局.在该场比赛中,前面已经比赛了六局,双方各有三局得分,其中第六局乙方得分.(1)求第七局、第八局均为甲方得分的概率; (2)求当十局比完,甲方的得分局多于乙方的概率.7.(2022届内蒙古赤峰市高三模拟)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到下表: 直径/mm 58596061626364 65 66 67686970717273合计个数2 1 13 5 6 1931164 4 2 1 2 2 1 10065μ=σ(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率),()0.6826P X μσμσ-<≤+≥;()220.9545P X μσμσ-<≤+≥;()330.9973P X μσμσ-<≤+≥.评判规则为:若同时满足上述三个不等式,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品.(i )从设备M 的生产流水线上随机抽取3件零件,计算其中次品件数Y 的数学期望()E Y ; (ii )从样本中随机抽取2件零件,计算其中次品件数Z 的概率分布列和数学期望()E Z . 8.(2022届四川省绵阳市高三第三次诊断性考试)随着科技进步,近来年,我国新能源汽车产业迅速发展.以下是中国汽车工业协会2022年2月公布的近六年我国新能源乘用车的年销售量数据:年份 2016 2017 2018 2019 2020 2021 年份代码x1 2 3 4 5 6 新能源乘用车年销售y (万辆)5078126121137352(2)若用e nx y m =模型拟合y 与x 的关系,可得回归方程为0.3337.71e x y =,经计算该模型和第(1)问中模型的2R (2R 为相关指数)分别为0.87和0.71,请分别利用这两个模型,求2022年我国新能源乘用车的年销售量的预测值;(3)你认为(2)中用哪个模型得到的预测值更可靠?请说明理由. 参考数据:设ln u y =,其中ln i i u y =. yu()()61iii x x y y =--∑()()61i ii x x u u =--∑3.63e 5.94e 6.27e144 4.78 841 5.70 37.71 380 528参考公式:对于一组具有线性相关关系的数据()()123i i x y i n =⋅⋅⋅,,,,,,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为()()()121ˆnii i nii xx y ybxx==--=-∑∑,ˆˆay bx =-. 9.(2022届四川省攀枝花市高三第三次统一考试)2022年2月4日,北京冬奥会盛大开幕,这是让全国人民普遍关注的体育盛事,因此每天有很多民众通过手机、电视等方式观看相关比赛.某机构将每天收看相关比赛的时间在2小时以上的人称为“冰雪运动爱好者”,否则称为“非冰雪运动爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人):冰雪运动爱好者非冰雪运动爱好者合计 女性 20 50 男性15合计 100的前提下认为性别与是否为“冰雪运动爱好者”有关?(2)将频率视为概率,现从参与调查的女性人群中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“冰雪运动爱好者”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列、数学期望()E X 和方差()D X . 附:()()()()()22n ad bc K a b c d a c b c -=++++,其中n a b c d =+++. ()20P K k ≥0.05 0.025 0.010 0.005 0.001 0k3.8415.0246.6357.87910.828北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛,比赛规则12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段;小组赛阶段各组采用单循环赛制(小组内任两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组赛成绩进行种子排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中遭遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛? (2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲乙丙丁队)实力相当,假设他们在接下来四分之一决赛、半决赛、铜牌赛、金牌赛中取胜率都依次为34、12、12、12,且每支球队晋级后每场比赛相互独立,试求甲、乙、丙、丁队都没获得冠军的概率.11.(2022届山东省枣庄市高三下学期一模)已知有一道有四个选项的单项选择题和一道有四个选项的多项选择题,小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.(1)如果小明不知道单项选择题的正确答案,就作随机猜测.已知小明知道单项选择题的正确答案和随机猜测的概率都是12,在他做完单项选择题后,从卷面上看,在题答对的情况下,求他知道单项选择题正确答案的概率.(2)假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为12,选择两个选项的概率为13,选择三个选项的概率为16.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记X 表示小明做完该道多项选择题后所得的分数.求: (i )()0P X =;(ii )X 的分布列及数学期望.12.(2022届湖北省高三下学期4月二模)某企业使用新技术对某款芯片进行试生产,在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为123111,,1098P P P ===. (1)求该款芯片生产在进人第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.13.(2022届广西四市高三4月教学质量检测)近期新冠病毒奥密克戎毒株全球蔓延,传染性更强、潜伏期更短、防控难度更大.为落实动态清零政策下的常态化防疫,某高中学校开展了每周的核酸抽检工作:周一至周五,每天中午13:00开始,当天安排450位师生核酸检测,五天时间全员覆盖.(1)该校教职工有410人,高二学生有620人,高三学生有610人, ①用分层抽样的方法,求高一学生每天抽检人数;②高一年级共15个班,该年级每天抽检的学生有两种安排方案,方案一:集中来自部分班级;方案二:分散来自所有班级.你认为哪种方案更合理,并给出理由. (2)学校开展核酸抽检的第一周,周一至周五核酸抽检用时记录如下: 第x 天12 3 4 5 用时y (小时) 1.21.21.11.01.0x y ②根据①中的计算结果,判定变量x 和y 是正相关,还是负相关,并给出可能的原因.10 3.16,相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑14.(2022届北京市通州区高三一模)某单位有A ,B 两个餐厅为员工提供午餐与晚餐服务,甲、乙两位员工每个工作日午餐和晚餐都在单位就餐,近100个工作日选择餐厅就餐情况统计如下:,A A(),A B(),B A(),B B 选择餐厅情况(午餐,晚餐)()甲员工30天20天40天10天乙员工20天25天15天40天(1)分别估计一天中甲员工午餐和晚餐都选择A餐厅就餐的概率,乙员工午餐和晚餐都选择B餐厅就餐的概率;E X;(2)记X为甲、乙两员工在一天中就餐餐厅的个数,求X的分布列和数学期望()(3)试判断甲、乙员工在晚餐选择B餐厅就餐的条件下,哪位员工更有可能午餐选择A餐厅就餐,并说明理由.。

2019年高考真题概率统计专题整理 小题+大题 详细答案解析

2019年高考真题概率统计专题整理 小题+大题 详细答案解析

2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C .2.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫ ⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,故选A .3.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .4.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=.5.(2019年全国卷2,理数5题,满分5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A .【解析】根据一组数据中中位数的找法可知,极端值变化不改变整组数据的中位数,故选A .6.(2019年全国卷3,文数3题,满分5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D .【解析】把两名女同学“捆绑”在一起看成一个特殊的同学有222A =种方法,再与剩下的两名男同学全排列共有336A =种方法,而两男两女四名同学所有的排列方法有4424A =种,故两位女同学相邻的概率23234412A A P A ⋅==,故选D .7.(2019年全国卷3,文数4、理数3题,满分5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C .【解析】阅读过《西游记》且阅读过《红楼梦》的学生共有60位,而阅读过《红楼梦》的学生共有80位,由此可知只阅读过红楼梦的学生有20人。

中考数学专题18 概率-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题18 概率-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题18 概率一、单选题1.(2021·广西玉林市·中考真题)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个白球B .至少有2个白球C .至少有1个黑球D .至少有2个黑球2.(2021·湖北宜昌市·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .163.(2021·浙江衢州市·中考真题)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )A .13B .23C .15D .254.(2021·北京中考真题)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A .14B .13C .12D .235.(2021·湖北随州市·中考真题)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .356.(2021·湖南中考真题)下列说法正确的是( )A .“明天下雨的概率为80%”,意味着明天有80%的时间下雨B .经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C .“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D .小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上7.(2021·江苏扬州市·中考真题)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽8.(2021·湖南长沙市·中考真题)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9 B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4 D.甲同学手里拿的两张卡片上的数字是2和9.9.(2021·湖南长沙市·中考真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是()A.19B.16C.14D.1310.(2021·安徽中考真题)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.4911.(2020·辽宁铁岭市·中考真题)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.16B.13C.12D.2312.(2020·辽宁盘锦市·中考真题)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.8713.(2020·四川绵阳市·中考真题)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.23B.12C.13D.1614.(2020·广西中考真题)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.1215.(2020·辽宁营口市·中考真题)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.8416.(2020·云南中考真题)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360︒是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为2S甲、2乙S.若= x x 甲乙,2=0.4S甲,2=2S乙,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖17.(2020·山西中考真题)如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A.13B.14C.16D.1818.(2020·湖南邵阳市·中考真题)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m19.(2020·湖北武汉市·中考真题)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于620.(2020·湖南长沙市·中考真题)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球,第二次摸出的球不一定是红球D.第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是1921.(2019·贵州贵阳市·中考真题)如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.1322.(2019·江苏泰州市·中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.80023.(2019·辽宁阜新市·中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( )A.12B.10C.8D.624.(2019·台湾中考真题)箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以每次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A.12B.13C.253D.255二、填空题目25.(2021·湖北宜昌市·中考真题)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).26.(2021·湖南岳阳市·中考真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.27.(2021·上海中考真题)有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为______.28.(2021·江苏苏州市·中考真题)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.29.(2021·浙江台州市·中考真题)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机模出一个小球,该小球是红色的概率为_____.30.(2021·浙江宁波市·中考真题)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为________.31.(2021·浙江金华市·中考真题)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是____________.32.(2021·浙江温州市·中考真题)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为______.33.(2021·四川南充市·中考真题)在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是________.34.(2021·四川资阳市·中考真题)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为__________.35.(2021·重庆中考真题)在桌面上放有四张背面完全一样的卡片.卡片的正面分别标有数字﹣1,0,1,3.把四张卡片背面朝上,随机抽取一张,记下数字且放回洗匀,再从中随机抽取一张.则两次抽取卡片上的数字之积为负数的概率是_______.36.(2021·浙江嘉兴市·中考真题)看了《田忌赛马》故事后,小杨用数学模型来分析齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6则田忌能赢得比赛的概率为__________________.37.(2021·四川泸州市·中考真题)不透明袋子重病装有3个红球,5个黑球,4个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是_________.38.(2021·重庆中考真题)不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________.39.(2021·浙江中考真题)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.40.(2021·天津中考真题)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.41.(2020·辽宁锦州市·中考真题)在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a ______.42.(2020·湖南益阳市·中考真题)时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。

2012高考理科数学概率统计 (答案详解)

2012高考理科数学概率统计 (答案详解)

2012年高考试题汇编(理) ---概率统计(一)选择题1、(全国卷大纲版)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )(A )12种 (B )18种 (C )24种 (D )36种 2、(全国卷新课标版)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) (A )12种 (B )10种 (C )9种 (D )8种3、(北京卷)设不等式组⎩⎨⎧≤≤≤≤20,20y x 表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π (B )22π- (C )6π(D )44π-4、(北京卷)从0,2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数。

其中奇数的个数为( )(A ) 24 (B ) 18 (C ) 12 (D ) 65、(福建卷)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )(A )41 (B )51 (C )61 (D )716、(湖北卷)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(A )21π-(B )112π-(C )2π (D )1π7、(辽宁卷)一排9个座位坐了3个三口之家。

若每家人坐在一起,则不同的坐法种数为 (A )!33⨯(B )3)!3(3⨯ (C )4)!3((D )!98、(辽宁卷)在长为12cm 的线段AB 上任取一点C 。

现做一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A )61 (B )31 (C )32 (D )54 9、(山东卷)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C )10 (D )15 10、(山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)48411、(陕西卷)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )(A ) x x <甲乙,m 甲>m 乙 (B ) x x <甲乙,m 甲<m 乙 (C ) x x >甲乙,m 甲>m 乙 (D ) x x >甲乙,m 甲<m 乙12、(陕西卷)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )(A ) 10种 (B )15种 (C ) 20种 (D ) 30种13、(上海卷)设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )(A )21ξξD D > (B )21ξξD D =(C )21ξξD D < (D )1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关14、(浙江卷)若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )(A )60种 (B )63种 (C )65种 (D )66种15、(安徽卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A )甲的成绩的平均数小于乙的成绩的平均数 (B )甲的成绩的中位数等于乙的成绩的中位数 (C )甲的成绩的方差小于乙的成绩的方差 (D )甲的成绩的极差小于乙的成绩的极差 16、(安徽卷))6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品。

高考全国卷理科数学试题及答案

高考全国卷理科数学试题及答案

普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21(B )23 (C)1 (D )3(2)复数3)2321(i +的值是 (A)i - (B )i (C)1- (D)1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B)N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A)0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据 3月5日九届人大五次会议《政府工作报告》:“ 国内生产总值达到95933亿元,比上年增长7。

2024年高考全国甲卷理科数学真题试卷及答案

2024年高考全国甲卷理科数学真题试卷及答案

2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. l.设5z i =+,则()i z z +=( ) A.10iB.2iC.10D.2-2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B =( ) A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为( )A.12B.0C.52-D.72-4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =( ) A.2-B.73C.1D.25.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A.135B.137C.2D.36.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( ) A.16B.13C.12D.237.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为( )A. B.C. D.8. 已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1B. 1C.2D. 19.设向量(1,),(,2)a x x b x =+=,则( ) A.3x =-是a b ⊥的必要条件 B.3x =-是//a b 的必要条件 C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件 10.设,αβ为两个平面,,m n 为两条直线,且.m αβ=下述四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥ ③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥. 其中所有真命题的编号是( ) A.①③B.②④C.①②③D.①③④11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=( ) A.32B.12.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A.1B.2C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________. 15.已知1a >且8115log log 42a a -=-,则a =_______. 16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答. (一)必考题:共60分. 17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下(1)填写如下列联表能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++18.(12分)记n S 为数列{}n a 的前n 项和,已知434n n S a =+ (1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.20.(12分)设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴. (1)求C 的方程.(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 21.(12分)已知函数()(1)ln(1)f x ax x x =-+- (1)若2a =-,求()f x 的极值.(2)当0x 时,()0f x ,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+ (1)写出C 的直角坐标方程.(2)设直线,:(x t l t y t a =⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值. 23.[选修4—5:不等式选讲](10分) 已知实数,a b 满足 3.a b + (1)证明:2222a b a b +>+(2)证明:2222 6.a b b a -+-∣∣∣∣2024年全国甲卷理科数学参考答案 使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. l.设5z i =+,则()i z z +=( ) A.10i B.2iC.10D.2-【答案】A【解析】因为5z i =+,所以()(55)10i z z i i i i +=-++=,故选A. 2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B =( ) A.{1,4,9} B.{3,4,9}C.{1,2,3}D.{2,3,5}【答案】D【解析】因为1,2,3,4,9{}5,A =,{|}{1,4,9,16,25,81}B x A ==所以{}()2,3,5A C A B =,故选D.3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为( )A.12B.0C.52-D.72-【答案】D【解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图由5z x y =-可得1155y x z =- 即z 的几何意义为1155y x z =-的截距的15-则该直线截距取最大值时,z 有最小值 此时直线1155y x z =-过点A 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭ 则min 375122z =-⨯=-. 故选D.4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =( ) A.2- B.73C.1D.2【答案】B【解析】因为510S S =,所以788,0S S a ==,又因为51a =,所以公差1817,733d a a d =-=-=,故选B.5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A.135B.137C.2D.3【答案】C【解析】1221||82||||106F F c e a PF PF ====--,故选C. 6.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( )A.16B.13C.12D.23【答案】A 【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+即该切线方程为13y x -=,即31y x令0x =,则1y =,令0y =,则13x故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为( )A. B.C. D.【答案】B 【解析】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭ 故可排除D. 故选:B.8. 已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1B. 1C.D. 1【答案】B【解析】因为cos cos sin ααα=-所以11tan =-α,tan 1⇒α=所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭故选:B.9.设向量(1,),(,2)a x x b x =+=,则( ) A.3x =-是a b ⊥的必要条件 B.3x =-是//a b 的必要条件 C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件 【答案】C【解析】对A,当a b ⊥时,则0a b ⋅=所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误; 对C,当0x =时,()()1,0,0,2a b ==,故0a b ⋅= 所以a b ⊥,即充分性成立,故C 正确;对B,当//a b 时,则22(1)x x +=,解得1x =±即必要性不成立,故B 错误;对D,当1x =-,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误. 故选:C.10.设,αβ为两个平面,,m n 为两条直线,且.m αβ=下述四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥ ③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥. 其中所有真命题的编号是( ) A.①③ B.②④C.①②③D.①③④【答案】A对①,当n ⊂α,因为//m n ,m β⊂,则//n β 当n β⊂,因为//m n ,m α⊂,则//n α当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对①,若m n ⊥,则n 与,αβ不一定垂直,故①错误;对①,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β 因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,故①正确;对①,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故①错误; 综上只有①①正确 故选:A.11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=( )A.32B.【答案】C 【解析】 因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +== 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=. 故选:C.12.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A.1B.2C.4D.【答案】C因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c 得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩ 故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r = 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________.【解析】由题可得两个圆台的高分别为)12h r r ==-甲)12h r r ==-乙所以((21211313S S h r r V h V h S S h +-====++甲甲甲乙乙乙.故答案为15.已知1a >且8115log log 42a a -=-,则a =_______. 【答案】64【解析】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=2log 1a ⇒=-或2log 6a =,又1a >所以622log 6log 2a ==,故6264a == 故答案为:64.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______. 【答案】715【解析】从6个不同的球中不放回地抽取3次,共有36A 120=种设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤ 故2()3c a b -+≤,故32()3c a b -≤-+≤ 故323a b c a b +-≤≤++若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4()()()()()3,1,4,1,5,1,6,1,4,3,故有10种当3c =,则39a b ≤+≤,则(),a b 为()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5 ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4故有16种当4c =,则511a b ≤+≤,同理有16种 当5c =,则713a b ≤+≤,同理有10种 当6c =,则915a b ≤+≤,同理有2种 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++= 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答. (一)必考题:共60分. 17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++【小问1详解】根据题意可得列联表:可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯因为3.841 4.6875 6.635<<所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150= 用频率估计概率可得0.64p =又因为升级改造前该工厂产品的优级品率0.5p = 则0.50.50.5 1.650.56812.247p +=+≈+⨯≈可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18.(12分)记n S 为数列{}n a 的前n 项和,已知434n n S a =+ (1)求{}n a 的通项公式; 【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=- 而140a =≠,故0n a ≠,故13nn a a -=- ①数列{}n a 是以4为首项,3-为公比的等比数列 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅所以123n n T b b b b =++++0211438312343n n -=⋅+⋅+⋅++⋅故1233438312343n n T n =⋅+⋅+⋅++⋅ 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-(21)31n n T n ∴=-⋅+.(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =M 为AD 的中点.(1)证明://BM 平面CDE (2)求二面角F BM E --的正弦值.【答案】(1)证明见详解 (2【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD = 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDECD ⊂平面CDE ,所以//BM 平面CDE 【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD = 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM = 所以ABM 为等边三角形,O 为AM 中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD = 四边形EFMD 为平行四边形,FM ED AF ==所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系()0,0,3F,)()(),0,1,0,0,2,3BM E ,()()3,1,0,3,0,3BM BF =-=-()2,3BE =-,设平面BFM 的法向量为()111,,m x y z =平面EMB 的法向量为()222,,n x y z =则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =得113,1y z ==,即()3,3,1m =则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==- 即()3,3,1n =-,1111cos ,1313m n m n m n ⋅===⋅⋅,则43sin ,13m n = 故二面角F BM E --.20.(12分) 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴. (1)求C 的方程(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线 MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=. 【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-= 故()()422Δ102443464120k k k =-+->,故1122k -<< 又22121222326412,3434k k x x x x k k-+==++ 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==-- 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=-- ()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-故1Q y y =,即AQ y ⊥轴.21.(12分)已知函数()(1)ln(1)f x ax x x =-+-(1)若2a =-,求()f x 的极值(2)当0x 时,()0f x ,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤- 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++- 故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++ 因为12ln(1),11y x y x =+=-++在()1,∞-+上为增函数 故()f x '在()1,∞-+上为增函数,而(0)0f '=故当10x -<<时,()0f x '<,当0x >时,()0f x '>故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++ 设()()()1ln 1,01a x s x a x x x +=-+->+ 则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+ 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数 故()()00s x s >=,即()0f x '>所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s < 即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数 故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍综上,12a ≤-. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+(1)写出C 的直角坐标方程(2)设直线,:(x t l t y t a=⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值. 【答案】(1)221y x =+(2)34a = 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-且()()22Δ818116160a a a =---=->,故<1a12AB s s ∴=-=2==,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-= ()22Δ(22)41880a a a =---=-+>,解得1a <设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-则AB ==2= 解得34a = 23.[选修4—5:不等式选讲](10分)已知实数,a b 满足 3.a b +(1)证明:2222a b a b +>+(2)证明:2222 6.a b b a -+-∣∣∣∣【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥ 当a b =时等号成立,则22222()a b a b +≥+因为3a b +≥,所以22222()a b a b a b +≥+>+【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

2024年全国高考甲卷理科数学试题及答案

2024年全国高考甲卷理科数学试题及答案

绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A .10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.2D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥ ”的充分条件D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.3212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM平面CDE;(2)求二面角F BM E--的正弦值.20.设椭圆2222:1(0)x yC a ba b+=>>的右焦点为F,点31,2M⎛⎫⎪⎝⎭在C上,且MF x⊥轴.(1)求C的方程;(2)过点()4,0P的直线与C交于,A B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ y⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D3.若实数,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.5B.12C.2-D.7 2-【答案】D【解析】【分析】画出可行域后,利用z的几何意义计算即可得.【详解】实数,x y满足43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.4.等差数列{}n a的前n项和为n S,若510S S=,51a=,则1a=()A.2-B.73 C.1 D.2【答案】B【解析】【分析】由510S S=结合等差中项的性质可得8a=,即可计算出公差,即可得1a的值.【详解】由105678910850S S a a a a a a-=++++==,则8a=,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,3tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B .9.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件D.“1x =-+”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.32【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r-,则两个圆台的体积之比=V V 甲乙______.【答案】4【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((2121163143S S h V h V h S S h ++-===++甲甲甲乙乙乙.故答案为:64.15.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+,结合题意分析判断.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解;(2)4313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,13m n =,故二面角F BM E --的正弦值为4313.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k kk =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=-⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a xs x a x x x +=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

2012年高考试题:理科数学(全国卷)——含答案及解析

2012年高考试题:理科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I 卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. },B ={1,m } ,A B =A , 则m =A. 0B. 0或3C. 1D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m ⋃=∴⊆==∴∈∴=====或舍去Q .【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

2023年全国乙卷理科数学18题

2023年全国乙卷理科数学18题

高考数学试卷一、单选题1.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( ) A .向右平移4π个单位 B .向右平移2π个单位 C .向左平移4π个单位 D .向左平移2π个单位 2.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件3.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.124.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.56.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.函数21x y x +=-的定义域为( )A .{|21}x x x >-≠且B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞8.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120° 9.tan 3π=( )A .33B .32 C .1 D 310.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=--C.()()2111x x x +-=-D.()2211x x -=-11.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.512.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .56二、填空题13.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______14.已知球的体积为36π,则该球大圆的面积等于______.三、解答题 15.已知函数1()2f x x x=+-(1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围16.已知函数2()2sin cos 23sin 3(0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 17.已知x+y=7,xy=-8,求:(1)x2+y2的值;(2)(x-y )2的值.(3)若不等式f (2x )≧m ·2x 对x ЄR 恒成立,求实数m 的取值范围。

2020年全国高考数学Ⅰ卷理科第18题的评析与思考

2020年全国高考数学Ⅰ卷理科第18题的评析与思考

2020年全国高考数学Ⅰ卷理科第18题的评析与思考
卢秀敏
【期刊名称】《福建中学数学》
【年(卷),期】2022()1
【摘要】立体几何能突出数学抽象、逻辑推理、直观想象、数学运算等数学核心素养的考查,是历年各地高考试题的一大阵地,考生在立体几何模块的得分情况很大程度地影响了其在高考中的成绩档次,因而提高立体几何的得分率就显得非常重要.本文以2020年高考全国Ⅰ卷理科第18题为例,谈谈本题的解法及典型错误分析,并提出高三模块复习的教学建议,期望对后续高三复习备考有所帮助.
【总页数】4页(P8-11)
【作者】卢秀敏
【作者单位】福建省永定第一中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.多角度转化立体几何"定型、定量"问题r——从2017年高考数学全国Ⅰ卷理科第18题谈起
2.貌离神合同源切线——全国数学高考Ⅰ卷文、理科第20题评析与思考
3.北师大版高中数学必修2教材中例题解答对学生的误导分析——以2019年高考数学全国卷Ⅰ理科第18题(1)为例
4.2019年全国数学高考卷Ⅰ理科第18题的评析
5.2021年高考数学全国甲卷理科第23题评析
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


如图,面积为S的正方形ABCD中有一个不规则的图形M,可按下面方法估计M 的面积:在正方形ABCD中随机投掷n个点,若n个点中有m个点落入M中,则
M的面积的估计值为m
S
n
,假设正方形ABCD的边长为2,M的面积为1,并
向正方形ABCD中随机投掷10000个点,以X 表示落入M中的点的数目.
(I)求X的均值EX;
(II)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间(0.03)
-0.03
,内的概率.
附表:
10000
10000
()0.250.75
k
t t t t
P k C-
=
=⨯⨯

k2424242525742575
()
P k0.04030.04230.95700.9590

某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(1)求的分布列;
(2)若要求,确定的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:,
1/ 4

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()
2,N μσ.
(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在
()3,3μσμσ-+之外的零件数,求()1P X ≥及X 的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在()3,3μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91
10.13
10.02
9.22
10.04
10.05
9.95




16
1
19.97
16i i x x ===∑,
()1616222
11
11(16)0.2121616i i
i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸, 1,2,,16i =⋅⋅⋅.
用样本平均数x 作为μ的估计值ˆμ
,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除()3,ˆˆˆ3ˆμ
σμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量
Z
服从正态分布
()
2
,N μσ,则
(33)0.9974P Z μσμσ-<<+=,160.99740.9592=, 0.0080.09≈.

18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。

参考数据:


,≈2.646.
参考公式:相关系数
回归方程
中斜率和截距的最小二乘估计公式分别为:
3/ 4
D C
M
B。

相关文档
最新文档