(完整版)大数据介绍ppt
2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。
【最全】大数据ppt.优质PPT
含义:大数据(big data):是指无法在可承
受的时间范围内用常规软件工具进行捕捉、管理和处 理的数据集合。从某种程度上说,大数据是数据分析 的前沿技术。
通俗含义:简言之,大数据就是从各种各样类
型的数据中,运用一定的方法快速获得有价值信息的
能力。
大数据的四个V特征
1 volume:海量化 2 Variety:多样化 3 Velocity:快速化 4 Value:价值密度低
大数据ppt
将从如下几个方面为大家介绍大 数 据 何为大数据?
1
2 技术核心?
安全威胁有哪些? 3 4 现阶段应用? 5 为何选址贵阳?
何为大数据?
首先来了解一下大数据到底有多大?
一组名为“互联网上一天”的数据告 诉我们,一天之中,互联网产生的全部内容 可以刻满1.68亿张DVD;发出的邮件有2940 亿封之多,相当于 两年的纸质信件数量;发出 的社区帖子达200万个,相当于《时代》杂 志770年的文字量。一分钟内,微博推特上 新发的数据量超过10万;社交网络“脸谱” 的浏览量超过600万……由此可见,大数据 不仅量大,而且更新快。
空气清新,达到世界卫生组织设立的清新空气负氧离子标准的上限。 为了使总部能在车辆出现晚点的时候跟踪到车辆的位置和预防引擎事故,在货车上装有传感器、无线适配器和GPS。
大数据的核心技术: 例如实名注册一个社交网站后,用户信息将不再受用户本人支配,攻击者可通过攻击社交网站窃取用户信息。
大数据中用户无法知道数据的确切存放位置,用户对其个人数据的采集、存储、使用、分享无法有效控制。 网络服务提供商就是一朵云 如论坛、博客、微博等为黑客窃取个人信息提供了平台。 厂家可以通过产品的销售情况对产品的销售模式进行调整:如可以根据某款产品在各地的销售量情况可以适时调整供货量。 即从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取出我们想要的、或者有潜在价值的信息的过程。 一分钟内,微博推特上新发的数据量超过10万; 这其实就涉及到了数据的积累。
大数据专题(共43张PPT)
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。
(ppt版)大数据解析
实时分布式数据库
Flume
日志收集工具 数据库ETL工具
Ambari 安装(ānzhuāng)、部署、配置和管理工具
Hive
数据仓库
Pig 数据流处理
(chǔlǐ)
Mahuot
数据流处理
MapReduce
分布式计算框架(kuànɡ jià)
HDFS 分布式文件系统
第十八页,共四十二页。
大数据 解 (shùjù)
析
第一页,共四十二页。
目录(mùlù)
01 02
03
04
大数据概述 大数据相关技术产品 大数据应用 大数据展望
第二页,共四十二页。
什么(shén me)是大数据
大数据(big data)或称巨量资料,指的是所涉及的资料量规模(guīmó) 巨大到无法透过目前主流软件工具,在合理时间内到达撷取、管理、处理、 并整理成为帮助企业经营决策更积极目的的资讯。
电信 大数据 (diànxìn)
网络(wǎngluò)洞察
核心:网络数据 网络规划、优化
用户洞察
核心:用户数据
用户运营/细分/营服
运营(yùnyíng)洞 察
核心:内部运营数据
降低增效/风险控制
第三十三页,共四十二页。
目录(mùlù)
01 02 03 04
2022/1/6
大数据概述 大数据相关技术产品
全体数 据
纷繁复 杂
机器( jī
qì)学
相关
习
关系
相关
(xiāngguān)
分析
聚类分析
神经网络
遗传算法
不是随机样本,而是全体数据
不是精确性,而是混杂性
大数据介绍pptppt课件
01大数据概述Chapter大数据的定义与特点定义特点1 2 3萌芽期发展期成熟期大数据的发展历程物联网物联网产生的海量数据需要大数据技术进行处理和分析,以实现智能化应用。
金融机构利用大数据分析进行风险评估、信用评级、反欺诈等。
医疗健康大数据在医疗健康领域的应用包括疾病预测、个性化医疗、药物研发等。
商业智能通过大数据分析,帮助企业了解市场趋势、客户需求和行为公共服务效率和质量,如交通拥堵预测、大数据的应用领域02大数据技术基础Chapter分布式计算技术MapReduce01Spark02Flink03Hadoop HDFS一个分布式文件系统,设计用来存储和处理大规模数据集,具有高容错性和高吞吐量。
HBase一个高可扩展性的列存储系统,用于存储非结构化和半结构化的稀疏数据。
Cassandra一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障的数据存储服务。
数据挖掘与机器学习通过统计学、计算机视觉、自然语言处理等技术,从数据中提取有用信息和预测未来趋势。
数据清洗与整合对数据进行预处理,包括数据去重、缺失值处理、异常值检测等,以保证数据质量。
SQL 与NoSQL 数据库(如MySQL 、PostgreSQL )和非关系型数据库(如MongoDB 、Redis )。
数据可视化技术TableauPower BID3.js03大数据平台与工具ChapterHadoop平台介绍Hadoop概述Hadoop核心组件Hadoop应用场景Spark概述01Spark核心组件02Spark应用场景03Flink概述Flink核心特性Flink应用场景常用大数据工具介绍Hive HBase Kafka Sqoop04大数据应用案例Chapter风险管理与合规客户洞察投资决策支持精准医疗流行病预测与防控医疗资源优化智能调度预测性维护供应链优化通过实时分析交通状况、货物信息和配送需求,实现智能调度和路线规划。
01020304通过分析学生的学习数据,提供个性化教育资源和教学方法。
(2024年)大数据介绍PPT课件
随着环保意识的提高,如何在保证计算性能的同时降低能 耗成为大数据处理的重要挑战。
39
未来发展趋势预测
2024/3/26
人工智能与机器学习融合
大数据将与人工智能和机器学习更紧密地结合,实现更高级别的数据 分析和预测。
实时数据处理与分析
随着5G、物联网等技术的发展,实时数据处理和分析将成为可能,为 各行业提供更准确、及时的数据支持。
Google Cloud Storage
用于数据存储的对象存储服务
2024/3/26
BigQuery
用于数据仓库和数据分析的完全无服务器 数据仓库
18
数据挖掘与分析工具
2024/3/26
• Apache Spark: 一个快速、通用的大规模数据处 理引擎。
19
数据挖掘与分析工具
01
内存计算
2024/3/26
大数据可视化
处理大规模数据集的可视化技术,如分布式可视化、并行可视化等 。
35
06 大数据挑战与未 来趋势
2024/3/26
36
数据质量与可信度问题
数据来源多样性
大数据来自各种渠道和源头,数 据质量参差不齐,可能存在不准 确、不完整或误导性的数据。
数据清洗与预处理
为确保数据质量,需要进行数据 清洗、去重、异常值处理等预处 理步骤,增加数据处理复杂性和 成本。
缺失值处理
对缺失数据进行填充、插值或删除等操作。
数据转换
将数据转换为适合分析的格式,如数值型、 类别型等。
2024/3/26
异常值处理
识别并处理数据中的异常值,如离群点、噪 声等。
数据规约
降低数据维度,减少数据冗余和复杂性。
大数据ppt课件
改善社会治理和公共服务
2
• 大数据技术可以提升政府服务能力和效率 ,推动公共服务的个性化和精细化。
推动科技创新和进步
3
• 大数据技术为科学研究提供了更加高效和 准确的数据分析工具,推动了科技创新和进
步。
大数据的技术与发展
数据采集与存储技术
数据处理和分析技术
• 大数据的采集和存储需要使用分布式 文件系统、数据库等技术。
分析方法
结论与展望
• 采用自然语言处理、图像识别、情感 分析等方法,对社交媒体数据进行情感分 析,提取其中的情感词汇和情感表达。
• 通过基于社交媒体的情绪分析。我们 可以更好地了解公众对于某个事件或产品 的情感倾向
案例五:金融行业的风控大数据应用
背景与目标
• 金融行业是风险密集的行业,如何 有效地进行风险控制是金融行业的重要 任务之一
市场调研
02
• 通过大数据分析,了解市场趋势和竞争对手情况,制定
市场策略。
客户分析
03
• 通过分析客户数据,了解客户需求和行为,提供个性化
服务。
医疗健康
病患数据分析
• 通过分析病患数据,提高医疗质量和效率。
药物研发
• 通过大数据分析,加速药物研发过程。
健康管理
• 通过分析个人健康数据,提供个性化健康建议。
分析方法
• 采用数据挖掘、空间分析等方法, 对城市数据进行分类、预测、聚类等分 析。
结论与展望
• 通过基于公共数据的城市规划研究 。我们可以提高城市规划的科学性和有 效性
案例四:基于社交媒体的情绪分析
背景与目标
数据来源
• 社交媒体的普及使得人们可以在网络 上公开表达自己的情绪和意见
大数据课件ppt
适用于大规模数据 集处理,具有高效 的数据处理能力和 内存管理。
Flink平台
详细描述
提供丰富的API和工具,如 DataStream API、DataSet API 、Table API等。
总结词:实时流数据处理引擎。
支持基于流的处理和批处理。
适用于实时数据处理和复杂事件 处理场景。
Kafka工具
要点二
发展
大数据的发展经历了三个阶段:第一个阶段是大数据技术 的萌芽期,这个阶段出现了许多大数据技术的基础组件, 如分布式存储和计算系统;第二个阶段是大数据技术的成 熟期,这个阶段出现了许多成熟的大数据产品和解决方案 ;第三个阶段是大数据技术的普及期,这个阶段大数据技 术被广泛应用于各个领域。
大数据的研究与应用
02
大数据处理技术
数据采集与预处理
01
02
03
数据采集
从各种数据源(如数据库 、网络、文件等)获取数 据的过程。
数据清洗
去除重复、无效或错误的 数据,保证数据的质量和 准确性。
数据转换
将数据从一种格式或结构 转换为另一种,以便进行 后续处理。
数据存储与管理
数据存储
使用存储设备(如硬盘、 闪存等)保存数据,以便 长期保存和使用。
数据挖掘与分析
关联规则挖掘
发现数据之间的关联和模式,揭 示潜或属性进行 分组,以便进行分类和识别。
预测分析
利用已有的数据进行预测,对未 来的趋势和结果进行预测和分析
。
03
大数据平台与工具
Hadoop平台
总结词:分布式存储和计算平台,适合 大规模数据处理。
特点
大数据通常具有四个特点,即4V:体量(Volume)指数据 的大小、速度(Velocity)指数据生成或处理的快慢、多样 性(Variety)指数据的种类、真实性(Veracity)指数据的 准确性和可信度。
大数据的介绍PPT课件
所谓大数据,是一个综合性概念,它包括: (1)因具备3V特征而难以进行管理的数据 (2)对这些数据进行存储、处理、分析的技术 (3)以及能够通过分析这些数据获得实用意义和观点的人才和组织
9
麻省理工与通货紧缩预测软件
美国劳工统计局的人员每个月都要公布消费物价指数(CPI),这是用来测试通货膨 胀率的。
30
VISA&MasterCard与商户推荐
像VISA和MasterCard这样的信用卡发行商,它们能够从自己的服务网获取更多的 交易信息和顾客的消费信息
它们的商业模式从单纯的处理支付行为转变成了收集数据
一个称为MasterCard Advisors的部门收集和分析了来自210个国家的15亿信用卡 用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分 析结果卖给其他公司
5
大数据的典型特征(3V)
Volume(容量) 现在基本上是指从几十TB到几PB这样的数量级,未来,可能只有几EB数量级的数
据量才能称得上是大数据了。(1T=1024G,1P=1024T) Variety(多样性)
结构化和非结构化数据 Velocity(速度)
数据产生和更新的频率
6
广义的大数据
如数据代理益百利旗下的网页流量测量公司Hitwise,让客户采集搜索流量来揭示消 费者的喜好。
14
物联网
物联网(Internet of Things,缩写IOT)是一个基于互联网、传统电信网等信息承载 体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。
在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可 以查找出它们的具体位置。
疾控中心得到流感方面的信息往往会有一两周的滞后,这种滞后导致公共卫生机构 在疫情爆发的关键时期反而无所适从。
《大数据介绍》课件
大数据分析应用
• 常用方法 • 商业应用案例 • 发展趋势
大数据安全与隐私保护
• 安全威胁 •前景 • 机遇与挑战 • 创新方向
结论
• 总结大数据的概念和意义 • 强调大数据的发展前景 • 提出未来大数据的需求和发展方向
《大数据介绍》PPT课件
大数据介绍: 了解什么是大数据,它的意义与价值,处理技术,分析应用,安 全与隐私保护,未来发展。
什么是大数据
• 定义解释 • 数据量的大小 • 快速增长的趋势 • 特点和应用
大数据的意义和价值
• 商业价值 • 社会意义 • 行业应用案例
大数据的处理技术
• 分类 • 常用工具和平台 • 优缺点比较
大数据ppt(数据有关文档)共30张
利用流处理技术,实时采集数据源中的数 据。
网络爬虫技术
通过编写爬虫程序,从互联网上抓取指定 网站的数据。
API接口调用
通过调用第三方提供的API接口,获取相 关数据。
数据清洗与预处理
数据清洗
去除重复数据、处理缺失值、异常值 检测与处理、文本清洗(如去除停用 词、特殊符号等)。
数据转换
将数据转换成适合分析的格式,如将 文本数据转换为数值型数据。
常见的NoSQL数据库 列举几种常见的NoSQL数据库,如MongoDB、 Cassandra、Redis等,并简要介绍它们的特点 和应用场景。
NoSQL数据库的选择与使用 探讨如何根据实际需求选择合适的NoSQL数据 库,并给出使用NoSQL数据库的一般步骤和注 意事项。
数据仓库与数据挖掘技术
数据仓库概述
Tableau
专业的数据可视化工具,支持拖拽式操作和 丰富的图表类型。
Python可视化库
如Matplotlib、Seaborn等,提供强大的数 据可视化功能,可定制化程度高。
05
大数据在各领域应用案例
金融行业应用案例
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
的后盾支持。
大数据发展趋势
实时性要求更高
随着业务需求的不断变化,对大数据实时 性要求越来越高。
数据安全备受关注
大数据的快速增长使得数据安全问题日益 凸显,如何保障数据安全成为重要议题。
与人工智能深度融合
大数据与人工智能技术的深度融合将推动 智能化应用的快速发展。
行业应用不断拓展
大数据在各行各业的应用将不断拓展,为 行业转型升级提供有力支持。
大数据介绍ppt
医疗健康
医疗健康领域是大数据应用的重要领域之一。通过大数据技 术,可以对大量的医疗数据进行整合、分析和挖掘,以帮助 医生更好地诊断疾病、制定治疗方案和预测疾病发展趋势。
大数据在医疗健康领域的应用包括电子病历、基因测序、流 行病预测等方面。通过大数据分析,可以更好地了解疾病的 发病机制、传播途径和治疗效果,为医疗科研和公共卫生工 作提供有力支持。
科学研究
科学研究领域也是大数据应用的重点领域之一。通过大数据技术,可以对大量的科学数据进行整合、分析和挖掘,以帮助科 研人员更好地理解自然现象、探索科学规律和推动科技创新。
大数据在科学研究领域的应用包括天文学、生物学、物理学等方面。通过大数据分析,可以更好地揭示宇宙的奥秘、发现新 的生物物种和推动科技进步。同时,大数据在科学研究领域的应用还可以帮助科研人员更好地协作和交流,提高科研效率和 成果质量。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
大数据的应用领域
商业智能
商业智能是指利用大数据技术对企业的业务数据进行收集、整理、分析和呈现,以帮助企业更好地理 解业务、制定战略和做出决策。商业智能的应用领域非常广泛,包括销售、市场营销、供应链管理、 财务分析等。
商业智能可以帮助企业更好地了解客户需求,优化产品设计和营销策略,提高销售业绩和客户满意度 。同时,商业智能还可以帮助企业发现潜在的风险和机会,为企业的战略规划和决策提供有力支持。
法律法规约束
数据安全和隐私保护的法律法规日 益严格,对大数据的处理和应用提 出了更高的合规要求。
数据质量与可信度
数据来源多样 大数据来源多样化,可能导致数据不一致、不准确和冗余,影响 数据质量和可信度。
(完整版)大数据介绍ppt
定义
大数据是指在传统数据处理软件难以处理的庞大的、复杂的数据集。这些数据可 以是结构化的,如数据库里的表格,也可以是非结构化的,如社交媒体上的文字 或图片。
大数据通常涉及对海量数据的采集、存储、管理和分析,以发现数据背后的规律 和趋势,从而帮助企业和组织做出更好的决策。
特性:4V(体量、速度、多样性和价值)
传感器
各种传感器在工业生产、环境监测等领域中广泛应用,能 够实时监测和收集各种数据,如温度、湿度、压力等。
生成方式
社交网络
用户在社交媒体上的互动行为 ,如发布动态、点赞、评论等 ,以及社交网络中的用户关系
数据。
电子商务
在线购物平台上的商品浏览、 添加购物车、下单等行为,以 及用户的购买记录和偏好数据 。
数据治理与元数据管理
加强数据治理和元数据管理,确保数据的统一管理和有效利用。
PART 06
大数据未来发展趋势与展 望
人工智能与大数据的融合
人工智能与大数据的融合将进一步加深,通过数据挖掘、机 器学习和深度学习等技术,实现更高效的数据处理和分析, 为各行业提供更智能的决策支持。
人工智能将进一步提高大数据的处理速度和准确性,同时大 数据也将为人工智能提供更丰富、更真实的训练数据,促进 人工智能技术的不断进步。
疾病诊断与预测
通过分析患者的医疗记录、生理数据 等,辅助医生进行疾病诊断,同时预 测疾病发展趋势和预后情况。
金融
风险评估
通过对企业的财务数据、市场数据等 进行深度分析,评估企业的信用风险 和投资风险,帮助金融机构做出更明 智的决策。
欺诈检测
投资策略
通过分析市场数据、经济数据等,制 定更有效的投资策略和风险管理方案 ,提高投资回报率。
大数据ppt课件
数据清洗的主要技术包括去重技 术、异常值处理、缺失值处理等
。
数据清洗需要考虑数据清洗的质 量和效率。
数据挖掘
数据挖掘是大数据处理流程中 最为核心的部分,主要目的是 从海量数据中提取有用的信息
和知识。
数据挖掘的主要技术包括关 联分析、聚类分析、分类和
预测等。
数据挖掘需要考虑数据挖掘的 准确性和可解释性。
数据可视化
1
数据可视化是大数据处理流程中的重要环节,主 要目的是将复杂的数据以直观的方式呈现给用户 。
2
数据可视化的主要技术包括图表、地图、动画等 。
3
数据可视化需要考虑数据可视化的易用性和美观 性。Biblioteka 03大数据的应用场景
商业智能
总结词
通过大数据技术,企业可以收集、整合和分析海量数据,从而做出更明智的商业决策。
大数据在物联网中的应用
物联网设备产生的大量数据为大数据提供了丰富的数据源,有助于更好地了解用户 需求和行为。
大数据在物联网中的应用包括智能家居、智能交通、智能医疗等领域,将提高生活 和工作的便利性和安全性。
大数据在物联网中的应用将促进各行业的数字化转型,提高生产效率和降低成本。
大数据在云计算中的发展
大数据面临的挑战与解决方案
数据安全与隐私保护
数据安全风险
随着大数据的广泛应用,数据泄 露和恶意攻击的风险也随之增加
。
隐私保护挑战
如何在收集和使用大数据的同时保 护个人隐私,是一个亟待解决的问 题。
解决方案
采用加密技术、访问控制和审计机 制等手段,确保数据安全和隐私权 益。
数据质量与准确性问题
数据来源多样
数据存储
01
数据存储是大数据处理流程中的重要环节,主要解 决如何高效地存储和管理海量数据的问题。
大数据简介PPT课件
通过任务重试和失败转移等机制,确保计算任务的可靠性。
分布式数据库HBase
列式存储
支持高效的数据压缩和快速的数据访问。
可扩展性
可线性扩展存储和计算能力,满足大规模数据处理需求。
实时性
提供实时的数据读写能力,支持在线事务处理。
数据仓库Hive
数据建模
支持复杂的数据结构和数据类型,满足多样 化的数据分析需求。
提升数据处理和分析能力
企业应不断提升自身的数据处理和分析能力 ,充分挖掘大数据的潜在价值。
培养大数据人才
企业应积极培养具备大数据技能和专业素养 的人才,为大数据应用提供有力支持。
THANKS FOR WATCHING
感谢您的观看
理技术和工具。
成熟期
03
2013年至今,大数据技术逐渐成熟,应用领域不断拓展,成为
推动社会进步的重要力量。
大数据应用领域
• 金融行业:大数据在金融领域的应用主要包括风险管理、客户分析、投资决策等方面。通过对海量数据的挖掘 和分析,金融机构可以更加准确地评估风险、了解客户需求、制定投资策略等。
• 医疗行业:大数据在医疗领域的应用主要包括疾病预测、个性化治疗、医疗资源优化等方面。通过对医疗数据 的挖掘和分析,医疗机构可以提高疾病预测的准确性、实现个性化治疗、优化医疗资源配置等。
数据可视化技术
将数据以图形、图像等形式展现出来 ,帮助用户更直观地理解数据和分析 结果。
04 大数据存储与管理
分布式存储原理及实践
分布式存储概念
介绍分布式存储的定义、特点及其与传统存储的区别 。
分布式存储架构
详细阐述分布式存储的架构,包括数据分布、副本管 理、一致性协议等关键技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
2020/4/14
6
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
数据挖掘基本方法
➢预测建模:将已有数据和模型用于对未 知变量的语言。(1)分类,用于预测离 散的目标变量(2)回归,用于预测连续 的目标变量
➢关联分析:反映一个事物与其他事物之 间的相互依存性和关联性。用来发现描述 数据中强关联特征的模式。
➢聚类分析:发现紧密相关的观测值组群, 使得与属于不同簇的观测值相比,属于同 一簇的观测值相互之间尽可能类似
-分布式文件系统(HDFS) -分布式数据库存储系统(Hbase) -分布式计算构架(MapReduce) ➢使用Java编写 ➢运行平台:Linux
HDFS 分布式文件系统
HDFS: - 分布式文件存储系统,存储海量的数 据;
- 数据冗余,硬件容错; - 流式的数据访问; - 存储大文件;
- 适合数据批量读写,吞吐量高;适 一次写入,多次读取,顺序读写。 - 不适合交互式应用,低延迟很难 满足不支持多用户并发写相同文件。
ASG Server ASG Server
Grid Server
Grid Server
ASG Server
Grid Server
移动终端
ASG Server
Grid Server
To Other Grid Nodes
ASG Server
PC用户
移动终端
ASG Server
ASG Server
邮件服务器
HDFS 体系架构
大数据系统 整体架构
Data Value : 数据挖掘与分析
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其 中的、人们事先不知道的、但潜在的有用信息和知识的过程。
数据挖掘与分析
➢知识发现(KDD)是从数据集中识别 出有效的、新颖的、潜在有用的,以及 最终可理解的模式的过程。 ➢数据挖掘是数据库知识发现(KDD) 中不可缺少一部分
大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、 报告等)
实时分析而非批量式分析 数据输入、处理与丢弃 立竿见影而非事后见效
2.什么是云计算?
云计算将计算任务分布在大量计算机构成的资源池上,是各种应用系统能够根据需 要获取计算力、存储空间和各种软件服务。
Task:携程数据库(游客数据、点评记录)
实战项目2—— 数据分析及可视化应用
1.Python—2012年美国总统大选数据分析 2.动态气泡图的实现 3.热力感应图(heatmap.js)
管理大数据“易”,理解大数据“难”
•目前大数据管理多从架构和并行等方面考虑, 解决高并发数据存取的性能要求及数据存储 的横向扩展,但对非结构化数据的内容理解 仍缺乏实质性的突破和进展,这是实现大数 据资源化、知识化、普适化的核心.
作用:
- 成本降低,能用PC机,不用大型机和高端存储 - 软件容错硬件故障视为常态,通过软件保证可靠性 - 简化并行分布式计算,无须控制节点同步和数据交换
技术变革
云计算:把集中的运算分散开来
物联网:把分散的设备连在一起
Hadoop:把大数据切成小模块
大数据处理技术——Hadoop
➢开源Apache项目,灵感来源于Google的三篇论文:BigTable、MapReduce、GFS; ➢Hadoop核心组件包括:
信息管理系统(HIS)
虚拟数据库
实时监控平台
11
Google 大数据处理技术
- Google文件系统GFS(Google File System)
- 并行数据处理MapReduce - 结构化数据表BigTable - 分布式锁管理Chubby
MapReduce
BigTable
GFS
Chubby
邮件服务器
PC用户
PC用户
3.大数据类型:结构化与非结构化数据
数据模型: ➢结构化数据:二维表(关系 型) ➢半结构化数据:树、图 ➢非结构化数据:无
结构化数据:先有结构、再有 数据 半结构化数据:先有数据,再 有结构
关系数据库曾经是万能的
电子病历
CRM客户关系管理
远程监护平台
关系数据模型
销售管理系统 2020/4/14
云计算的“云”就是存在于互联网上的服务器集群上的资源,它包括硬件资源(服 务器、存储器、CPU等)和软件资源(如应用软件、集成开发环境等)本地计算机只需 要通过互联网发送一个需求信息,远端就会有成千上万的计算机为你提供需要的资源并 将结果返回本地计算机。
ASG Server
ASG Server
To Other Grid Nodes
Question
➢大数据从何而来,互联网技术发展现状? ➢什么是大数据、云计算与大数据有什么 关系、大数据类型? ➢大数据如何获取、存储、处理、分析的 技术?发展趋势
风云变幻中……
2020/4/14
4
1.大数据 (Big Data)
所谓“大数据”(big data)指的是这样一种现象:一个公司日常运营所生成和积累用户 行为数据“增长如此之快,以至于难以使用现有的数据库管理工具来驾驭,困难存在于数 据的获取、存储、检索、共享、分析和可视化等方面。”这些数据量是如此之大,已经不 是以我们所熟悉G或T为单位来衡量,而是以P、E或Z为计量单位,所以称之为大数据。