电力电子与现代控制(电机的数学模型与分析)第二部分

合集下载

电力新技术概论 2现代电力系统新技术

电力新技术概论    2现代电力系统新技术
1、北美联合电力系统
2、欧洲互联电力系统 3、俄罗斯统—电力系统
大电网技术
❖ 大电网具有超高压、特高压输电网架,超大输送容量和远距离 输电的基本特征,网内由高压交流输电网、超高压交流输电网 和特高压交流输电网,以及特高压直流输电网、高压直流输电 构成分层、分区、结构清晰的现代化电力系统。
❖ 超大输送容量和远距离输电的界限与其相应电压等级线路的自 然输送功率和波阻抗有关,线路电压等级越高,其输送的自然 功率越大,波阻抗越小,输送距离越远,覆盖范围越大,各电 网或大区电网互联关系越强,联网后整个大电网的稳定性与各 电网间故障时互相支援的能力有关,即各电网或大区电网间联 络线交换功率愈大,联系越紧密,电网运行越稳定。
高压直流输电技术
❖ 高压直流输电技术是利用大功率电力电子元件,如,高电压大功率晶闸管 、可关断可控硅GTO、绝缘栅双极晶体管IGBT等组成整流与逆变设备,以 实现高电压、远距离电力传输。相关技术包括电力电子技术、微电子技术 、计算机控制技术、绝缘新材料、光纤、超导、仿真及电力系统运行、控 制和规划等。
LV
LSW
U1W
iLW
* V12
*
*
T2
*
* *
Pline
Qline
U2U
LRU
U2V
LRV
U2W
LRW
~ URU ~ URV ~ URW
K1
* T1
U'1U L1
i1U
* *
*U'1V L1
i1V
*U'1W L1 i1W
*
UPFC的电气原理图
UShU
idc1
idc2
K2
UShV
CDC +

永磁同步电机的转矩直接控制

永磁同步电机的转矩直接控制

永磁同步电机的转矩直接控制一、本文概述本文旨在探讨永磁同步电机(PMSM)的转矩直接控制策略。

永磁同步电机作为现代电力传动系统中的核心组件,具有高效率、高功率密度和优良的控制性能。

转矩直接控制作为一种先进的电机控制技术,能够实现对电机转矩的快速、精确控制,从而提高电机系统的动态响应性能和稳定性。

本文首先将对永磁同步电机的基本结构和原理进行简要介绍,为后续转矩直接控制策略的研究奠定基础。

随后,将详细阐述转矩直接控制的基本原理和实现方法,包括转矩计算、控制器设计和优化等方面。

在此基础上,本文将重点分析转矩直接控制在永磁同步电机中的应用,探讨其在实际运行中的优势和局限性。

本文还将对转矩直接控制策略的性能进行仿真和实验研究,评估其在不同工况下的控制效果。

通过对比分析,本文将提出改进和优化转矩直接控制策略的方法,以提高永磁同步电机的控制性能和运行效率。

本文将对转矩直接控制在永磁同步电机中的应用前景进行展望,探讨其在新能源汽车、工业自动化等领域的发展潜力。

本文的研究成果将为永磁同步电机的转矩直接控制提供理论支持和实践指导,推动其在现代电力传动系统中的广泛应用。

二、永磁同步电机的基本原理永磁同步电机(PMSM)是一种特殊的同步电机,其磁场源由永磁体提供,无需外部电源供电。

PMSM利用磁场相互作用产生转矩,从而实现电机的旋转运动。

PMSM的定子部分与常规电机相似,由三相绕组构成,用于产生电磁场。

而转子部分则装有永磁体,这些永磁体产生的磁场与定子绕组的电磁场相互作用,产生转矩。

PMSM的转矩大小和方向取决于定子电流的大小、方向以及永磁体与定子绕组磁场之间的相对位置。

PMSM的控制主要依赖于对定子电流的控制。

通过改变定子电流的大小、频率和相位,可以实现对PMSM转矩和转速的精确控制。

与传统的感应电机相比,PMSM具有更高的转矩密度和效率,以及更低的维护成本。

PMSM的工作原理基于法拉第电磁感应定律和安培环路定律。

当定子绕组通电时,会产生一个旋转磁场,这个磁场与转子上的永磁体磁场相互作用,产生转矩。

现代电力电子技术硬件实验 (2)

现代电力电子技术硬件实验 (2)

实验一半桥型开关稳压电源的性能研究实验时间:(10月13日)一、实验目的(1)熟悉典型开关电源主电路的结构,元器件和工作原理。

(2)了解 PWM 控制与驱动电路的原理和常用的集成电路。

二、实验所需挂件及附件序号型号备注1HK01电源控制屏该控制屏包含“三相电源输出”等几个模块。

2PE-18半桥型开关稳压电源3双踪示波器自备4万用表自备三、原理说明(1)半桥型开关直流稳压电源的电路结构原理和各元器件均已画在PE-18挂箱的面板上,并有相应的输入与输出接口和必要的测试点。

主电路结构拓扑图如图1所示。

图1 主电路结构拓扑图(2)逆变电路采用的电力电子器件为美国IR公司生产的全控型电力MOSFET管,其型号为IRFP450,主要参数为:额定电流16A,额定耐压500V,通态电阻0.4Ω。

两只MOSFET管与两只电容C1、C2组成一个逆变桥,在两路PWM信号的控制下实现了逆变,将直流电压变换为脉宽可调的交流电压,并在桥臂两端输出开关频率约为26KHz、占空比可调的矩形脉冲电压。

然后通过变压器降压、整流、滤波后获得可调的直流电源电压输出。

(3)控制与驱动电路:控制电路以SG3525为核心构成,SG3525为美国Silicon General 公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。

调节Vref的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。

它适用于各开关电源、斩波器的控制。

图2 SG3525引脚分布图四、预习思考题(1)开关稳压电源的工作原理是什么?有什么优点?答:开关稳压电源的主要构成部分是一个变压器和一个充当“开和关”功能的开关管,变压器和开关管串联于电路中,直流电经过开关管的“开和关”状态在电路上形成脉冲电压,这个脉冲电压在变压器的磁芯上面形成瞬间变化的磁场,然后在同一个磁场里的另一个线圈上就感应出了脉冲电压,这个脉冲电压经过整流和滤波,即输出直流电压。

现代控制技术在电气工程系统中的应用研究

现代控制技术在电气工程系统中的应用研究

现代控制技术在电气工程系统中的应用研究1. 引言1.1 现代控制技术在电气工程系统中的重要性现代控制技术作为电气工程系统中的关键技术,发挥着至关重要的作用。

随着科技的不断发展,电气工程系统的复杂性和要求也在不断提高,传统的控制方法已无法满足现代电气系统的需求。

现代控制技术的应用愈发凸显其重要性。

现代控制技术能够提高电气系统的性能和稳定性。

通过引入先进的控制算法和技术,可以实现对电气系统的准确控制,精确调节系统参数,提高系统的响应速度和稳定性,确保系统在各种复杂环境下可靠运行。

现代控制技术能够降低系统的能耗和成本。

通过优化控制算法和策略,可以有效减少系统的能量消耗,降低系统运行成本,提高系统的能效性,实现节能减排的目标。

现代控制技术还可以提升电气系统的智能化水平。

结合人工智能和机器学习等技术,可以实现电气系统的智能化控制和自适应调节,提高系统的自主性和智能化程度,为系统的运行和维护提供更加便捷的解决方案。

现代控制技术在电气工程系统中的重要性不言而喻。

它不仅可以提高系统的性能和稳定性,降低系统的能耗和成本,还能够提升系统的智能化水平,为电气工程系统的发展注入新的活力和动力。

深入研究和应用现代控制技术对于提升电气工程系统的整体水平具有重要意义和价值。

1.2 研究背景及意义电气工程系统作为现代工业中不可或缺的一部分,其稳定性、效率和质量直接关系到整个生产系统的运行。

随着科学技术的不断发展,现代控制技术在电气工程系统中的应用越来越广泛,为提高系统的控制性能和稳定性提供了强有力的支持。

研究背景及意义是指现代控制技术在电气工程系统中的应用研究,旨在探索控制技术在电气工程系统中的实际应用效果和发展趋势,在实践中促进系统的智能化、自动化和高效化,提高生产效率和产品质量,降低成本和资源浪费,推动电气工程系统的升级和发展。

研究背景及意义的重要性在于通过对现代控制技术的深入研究和应用探索,提高电气工程系统的设计、运行和维护水平,满足不断变化的生产需求和市场竞争压力,推动电气工程行业的可持续发展。

电力电子转换器的控制策略与实现

电力电子转换器的控制策略与实现

电力电子转换器的控制策略与实现电力电子转换器作为电能的转换和控制的重要设备,在现代电力系统中发挥着关键的作用。

为了实现对电力电子转换器的高效、稳定、可靠的控制,科学家和工程师们不断研究和探索各种控制策略与实现方法。

本文将介绍几种常见的电力电子转换器控制策略及其实现的技术。

一、传统的PID控制策略传统的PID(比例-积分-微分)控制策略是最常见的电力电子转换器控制方法之一。

PID控制器根据电力电子转换器的输入和输出信号,通过比例、积分和微分运算,控制电力电子转换器的开关元件的工作状态,从而实现对电力电子转换器的控制。

为了实现PID控制策略,一种常见的实现方法是基于数字信号处理器(DSP)的控制器。

通过采集电力电子转换器的输入和输出信号,并经过一系列的数学运算和算法,DSP控制器可以准确计算出PID控制器所需的控制参数,并将其反馈给电力电子转换器的开关元件。

二、模型预测控制策略模型预测控制是一种先进的控制策略,它不仅考虑电力电子转换器的当前状态,还预测其未来状态,并根据预测结果制定相应的控制策略。

模型预测控制策略可以提高电力电子转换器的响应速度和控制精度。

模型预测控制的实现方法之一是通过建立电力电子转换器的数学模型,并通过数值计算方法求解该模型,得出电力电子转换器的状态量。

然后,将求解得出的状态量与采样得到的实际状态量进行比较,通过一定的优化算法,得出最优的控制策略,并将其反馈给电力电子转换器。

三、直接功率控制策略直接功率控制是一种基于功率平衡原理的控制策略,它通过直接监测电力电子转换器的功率输入和输出,实现对功率的精确控制。

直接功率控制可用于实现无功功率的控制、有功功率的控制以及无功和有功功率的综合控制。

直接功率控制的实现方法之一是采用功率传感器对电力电子转换器的输入和输出功率进行测量,并通过控制算法计算出最优的功率控制策略。

然后,将计算得出的控制策略反馈给电力电子转换器的开关元件,实现对功率的直接控制。

现代控制理论在电机中的应用

现代控制理论在电机中的应用

现代控制理论与电机控制刘北070301071电气工程及其自动化0703班现代控制理论在电机控制中的具体应用:自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。

这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。

这种控制方法现已较成熟,已经产品化,且产品质量较稳定。

因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。

近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。

伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。

矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。

但是,这种机械上的简化,导致了电机控制上的难度。

为此,需要电机控制技术的进一步提高和创新。

这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。

电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。

一、三相感应电动机的矢量控制1、 定、转子磁动势矢量三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。

因此,磁场是机电能量转换的媒介,是非常重要的物理量。

为此,对各种电动机都要了解磁场在电动机空间内的分布情况。

感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。

对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。

电机控制技术-课件

电机控制技术-课件

1.2 电力传动系统运动方程
1.2.1 运动方程 一. 单轴电力拖动系统的运动方程
研究运动方程,以电动机的轴为研究对象,电动机 运行时的轴受力如图示。
电力拖动系统正方向的规定:先规定转速n的正方 向,然后规定电磁转矩的正方向与n的正方向相同, 规定负载转矩的正方向与n的正方向相反。
生产机械转矩分为:摩擦阻力产生的和重力 作用产生的。
(3)恒功率负载:负载转矩与转速成反比。 (4)粘滞摩擦负载:负载转矩与转速成正比。
1.4 电力传动系统的机械特性
第 电动机机械特性:电动机的转速与转矩的关系。
一 电动机四象限运行状态:正向电动状态、反向电
章 动状态,正向制动状态、反向制动状态。
电动机固有机械特性: 电动机人为机械特性:
第II象限 第I象限 正向制动 正向电动
变压器
变电站
楼宇
照明 B
高压输电线
制冷 小型发电机 变压器
M
电力系统简单结构图
H/C 加 热
工厂
1.1 电力传动系统的发展
第 电力传动系统:以电动机为动力源,驱动各种设 一 备及电器的系统,以 完成一定的生产任务。 章 目前,电能的三分之二用于电力传动系统。
电力传动系统的基本结构:


电源
指令 控制设备
电动机 传动机构 生产机械
1.1 电力传动系统的发展
第 电力传动系统分类: 一 (1)按控制类型:调速系统、位置随动系统。调 章 速系统又分为直流调速和交流调速。
(2)按电动机类型:直流传动系统、交流传动 系统。
概 (3)按机组形式:单台传动系统、多机传动系 述 统。
(4)按运动方式:单向运转不可逆、双向运转 可逆传动系统 (5)按用途形式:主传动系统、辅助传动系统

2024版电力电子技术完整版全套PPT电子课件[2]

2024版电力电子技术完整版全套PPT电子课件[2]
LTspice
适用于模拟电路和数字电路的仿真,提供多种电力电子器 件模型和虚拟示波器功能。
电力电子技术的实验与仿真案例
整流电路实验与仿真
逆变电路实验与仿真
通过搭建整流电路并对其进行仿真,可以研 究整流器的工作原理、波形分析和性能指标。
利用逆变电路实验和仿真,可以探究逆变器 的调制方式、控制策略和输出特性。
逆变电路
逆变电路的工作原理
01
解释逆变电路的基本工作原理,包括电压型逆变电路和电流型
逆变电路等。
逆变电路的类型
02
详细介绍不同类型的逆变电路,如单相逆变电路、三相逆变电
路和多电平逆变电路等。
逆变电路的应用
03
概述逆变电路在电力电子领域的应用,如不间断电源、变频器
和太阳能发电系统等。
直流-直流变流电路
交通运输应用
电动汽车驱动
电力电子技术在电动汽车 的驱动系统中发挥着重要 作用,实现高效、环保的 驱动方式。
轨道交通牵引
电力电子技术为轨道交通 提供了可靠的牵引系统, 保障列车安全、稳定运行。
飞机电源系统
现代飞机电源系统采用电 力电子技术,为飞机提供 稳定、高效的电力供应。
电力系统应用
高压直流输电
半实物仿真实验
结合实验室搭建电路和虚拟仿真实验,通过接口设备将两者连接起 来,实现实时数据交互和联合仿真。
电力电子技术的仿真工具
MATLAB/Simulin k
提供丰富的电力电子元件库和仿真模型,支持多种控制策 略的实现和性能分析。
PSIM
专注于电力电子系统仿真,具备强大的电路分析功能和丰 富的元件库。
整流电路
整流电路的工作原理
介绍整流电路的基本工作原理,包括 半波整流、全波整流和桥式整流等。

电气工程及其自动化专业二级学科介绍

电气工程及其自动化专业二级学科介绍

电气工程及其自动化专业二级学科介绍电气工程及其自动化专业是电气信息领域的一门新兴学科,但由于和人们的日常生活以及工业生产密切相关,发展非常迅速,现在也相对比较成熟。

已经成为高新技术产业的重要组成部分。

电气工程及其自动化的触角伸向各行各业,小到一个开关的设计,大到宇航飞机的研究,都有它的身影。

本专业生能够从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验技术、研制开发、经济管理以及电子与计算机技术应用等领域的工作,是宽口径“复合型” 高级工程技术人才。

一、电力电子与电力传动电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。

它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。

该学科对实践动手能力要求很高,难度较大。

该专业需要的基础是电路基础,模拟电路与数字电路,电机学,单片机技术,计算机控制技术,电力电子技术,电力拖动自动控制系统,数字信号处理。

电力电子器件的原理、制造及其应用技术;电力电子电路、装置、系统及其仿真与计算机辅助设计;电力电子系统故障诊断及可靠性;电力传动及其自动控制系统;电力牵引;电磁测量技术与装置;先进控制技术在电力电子装置中的应用;电力电子技术在电力系统中的应用;电能变换与控制;谐波抑制与无功补偿。

研究方向: 1 )谐波抑制与无功补偿;2 )电力电子电路仿真与设计;3 )计算机控制系统;4 )电气系统智能控制技术;5 )现代控制理论及其在电气传动中的应用;6 )系统故障诊断技术及应用;7 )现代交、直流电机调速技术;8 )功率变换技术的研究。

电力电子与电力传动是一个全新的学科,国内的老师大多电机出身,很有可能不能提供实际的指导,但是导师的重要性在于能够给你提供广阔的研究资源,带领进入这个学科的大门。

电力电子与现代控制(电机数学模型与分析)第一部分课件PPT

电力电子与现代控制(电机数学模型与分析)第一部分课件PPT

不能用于电机动态特性的分析。 电机分析的重要性:
1、用于电机正常工作状态和特殊工 作状态的动静态特性的分析和计算;
2、电机分析所建立的状态方程是现 代电机控制理论的基础。
特殊电动机超直声线波电电机机直 直直线 线线异 同磁步 步阻电 电电机 机机( (短 长定 定子 子) )
电机分析基础
磁耦合电路 机电能量转换 绕组和磁动势(MMF)
鼠笼转子(squirrel cage)异步电动机
通常的异步电动机有两类: 1、绕线转子(wound rotor)异步电动机 2、鼠笼转子(squirrel cage)异步电动机
异步电动机的结构特点
Stator of a large induction motor. (Siemens).
鼠笼转子(squirrel cage)
度差120°电角度的三相绕组(abc)。用矢量图
表示如右图所示。
工作原理:稳态运行时,异步电机定子三相绕组 c轴
流过频率为f1, 幅值相等,相位相差120的三相对
称交流电,这样就会在电机气隙中产生一个匀速
旋转的磁场, 其旋转速度又称为同步角速度,用
ω1=2πf1表示,在该旋转磁场的作用下,异步
电机的转子也随之旋转,旋转电速度用ωr表示,
通常情况下, ωr<ω1,即电机工作于异步方式。
它们之间的差值称为异步电机的滑差角频率,表
示为sω1= ω1- ωr ,异步电机的滑差率定义
为:
s (1 r )1
b轴
u ib2 b2
B轴
uc2 ic2
uc1 ic1
ub1 ib1
ua1 ia1
ua2 ia2
A轴
r a轴
异步电机的空间位置关系

电力电子电路及系统-硕士

电力电子电路及系统-硕士

特点:
• • • • • 功率范围大 应用范围广 涉及到的学科多 理论与实践密切相联 发展迅速(几乎每一项与电气工 程相关的技术进步都会推进电力 电子技术的发展)。
构成基本元素与系统构成
• 构成基本元素:二极管,IGBT等, 电容,电感,电阻,控制电器,导 线。 • 系统构成:主电路及其吸收电路, 控制电路,抗电磁干扰电路。
干扰问题(主要干扰源)
• • • • • • 直流电机换向 接触器与继电器开合 雷电浪涌 静电 白炽灯 大功率用电装置启动
机车辅助电源
• 直交型辅助电源 • 交直交型辅助电源
焊接电源
图2 第三种单端逆变电路
图5焊接时输出电流波形
使用Tek公司A622电流探头,比 例为10mv/A
洁净能源或可再生能源利用:
• • • • 风能发电 太阳能发电 潮汐发电 生物能发电
通讯电源
特殊电源:
• • • • • • 电子模拟负载 交流牵引电机的实验系统 电力测功机 水电解电源 蓄电池充放电机 补偿式交流稳压电源
电子模拟功率负载
交流牵引电机的实验系统
• • • • • 能四象限运行 零转速时保持恒转矩 计算机集中控制及良好的人机接口 各种参变量的实时采集测量 试验分析
系统结构
上位机
DSP
DSP
DSP
DSP
调 压 器
D
F
升压 电路
能馈 逆变
电 网
系统A
系统B
系统C
系统D
主电路结构
调 电 网 压 器 D F 升 压 电 路 能 馈 逆 变
• 第六章
谐振变换器与软开关技术(4学时) 谐振逆变器 零电压开关 零电流开关 零电压(零电流)多象限逆变器 谐振链逆变器 • 第七章 电力电子技术在FACTS技术中的应 用(4学时) 功率因数补偿 谐波补偿 动态电压补偿器 潮流控制器

材料力学教程单祖辉答案

材料力学教程单祖辉答案

材料力学教程单祖辉答案材料力学教程单祖辉答案【篇一:寒旱所考试科目参考书】s=txt>2006年招收硕士学位研究生考试科目参考书中国科学院寒区旱区环境与工程研究所2006年招收硕士学位研究生考试科目参考书【篇二:上海交大考博参考书目】txt>010船舶海洋与建筑工程学院2201流体力学《水动力学基础》,刘岳元等,上海交大出版社2202声学理论《声学基础理论》,何祚庸,国防工业出版社2203高等工程力学(理力、材力、流力、数学物理方法)(四部分任选二部分做)《理论力学》,刘延柱等,高等教育出版社;《材料力学》,单祖辉,北京航空航天大学出版社;《流体力学》,吴望一,北京大学出版社;《数学物理方法》,梁昆淼,高等教育出版社2204结构力学《结构力学教程》,龙驭球,高等教育出版社3301船舶原理《船舶静力学》,盛振邦,上海交大出版社;《船舶推进》,王国强等,上海交大出版社;《船舶耐波性》,陶尧森,上海交大出版社;《船舶阻力》,邵世明,上海交大出版社3302振动理论(i)《机械振动与噪声学》,赵玫等,科技出版社20043303海洋、河口、海岸动力学《河口海岸动力学》,赵公声等,人民交通出版社2000 3304高等流体力学《流体力学》,吴望一,北京大学出版社3305弹性力学《弹性力学》上、下册(第二版),徐芝纶,高等教育出版社3306振动理论(Ⅱ)《振动理论》,刘延柱等,高等教育出版社20023307钢筋混凝土结构《高等钢筋混凝土结构学》,赵国藩编,中国电力出版社3308地基基础《土工原理与计算》(第二版),钱家欢、殷宗泽,水利电力出版社020机械与动力工程学院2205计算方法《计算方法》,李信真,西北工业大学出版社2206核反应堆工程《核反应堆工程设计》,邬国伟3309工程热力学《工程热力学》(第三版),沈维道;《工程热力学学习辅导及习题解答》,童钧耕3310传热学《传热学》(第三版),杨世铭3311机械控制工程《现代控制理论》,刘豹;《现代控制理论》,于长官3312机械振动《机械振动》,季文美3313生产计划与控制《生产计划与控制》,潘尔顺,上海交通大学出版社3314机械制造技术基础《机械制造技术基础》,翁世修等,上海交通大学出版社1999;《现代制造技术导论》,蔡建国等,上海交通大学出版社20003315现代机械设计《高等机械原理》,高等教育出版社1990030电子信息与电气工程学院2207信号与系统《信号与系统》,胡光锐,上海交大出版社2208电子科学与技术概论《电子科学与技术导论》,李哲英,20062209信息处理与控制系统设计《线性系统理论》,郑大钟,清华大学出版社2002;或《数字图像处理》(第二版)《digital image processing》second edition (英文版),r. c. gonzalez, r. e. woods,电子工业出版社2002(从“线性系统理论”或“图像处理”中选考其一)2210计算机科学与技术方法论《数理逻辑与集合论》,石纯一,清华大学出版社2000;《图论与代数结构》,戴一奇,清华大学出版社1995;《组合数学》,richard a. brualdi著,卢开澄等译,机械工业出版社20012211数字信号处理(i)《数字信号处理(上)》,邹理和;《数字信号处理(下)》,吴兆熊,国防工业出版社2212电力系统分析与电力电子技术《电力电子技术基础》,金如麟,机械工业出版社,或《电力系统分析(上册)》,诸骏伟,中国电力出版社1995;《电力系统分析(下册)》,夏道止,中国电力出版社19953316网络与通信《数字通信》(第四版),proakis,电子出版社(必考,占30%):另按照专业加考70%:无线通信方向、信息安全方向,《数字通信》(第四版),proakis,电子出版社;或光通信方向,《光纤通信系统》(第3版), govind p.agrawal,国外大学优秀教材-通信系列(影印版);或数据通信网络方向,《computer networks》(fourth edition),pearson education andrews.tanenbaum,vrije universiteit,amsterdam,the netherlands,翻译版:潘爱民译,书号7302089779,清华大学出版社20043317信号与信息处理信号处理方向:《discrete-time signal processing》(second edition),alan v. oppenheim,prentice-hall,1998;《现代信号处理》(第二版),张贤达,清华大学出版社2002;或图像处理方向:《数字图像处理》,余松煜等,上海交通大学出版社20073319电路与系统《大规模集成电路设计》,陈贵灿,高等教育出版社3320最优控制《最优控制的理论与方法》(第二版),吴沧浦,国防工业出版社20003321模式识别《模式识别》(第二版),边肇祺等,清华大学出版社20003322微机控制与接口技术《微型计算机控制技术》(第三版),谢剑英,国防工业出版社2001 3354运筹学《运筹学》(修订版),运筹学编写组,清华大学出版社20033323计算机软件《程序语言语言编译原理(第3版)》,陈火旺等,国防工业出版社2000;《distributed systems: principles and paradigm》,tanenbaum and steen,prentice hall 2003(清华大学出版社影印出版)3324数据库系统原理《数据库系统概念》(第四版,中译本),silberschatz等著,杨冬青等译,机械工业出版社3325机器学习《机器学习》,曾华军、张银奎译,机械工业出版社20033326计算机网络与系统结构《computer network》(第四版),a. s. taneubaum, 清华大学出版社;《computer architecture: a quantitative approach》(3rd edition),patterson,d.and hennessy,j.,san mateo, california: morgan kaufman publishers2002,机械工业出版社影印出版3327现代控制理论《现代控制理论》,刘豹,机械工业出版社3328现代传感器技术《传感器技术》,贾伯平,东南大学出版社3329电力传动控制系统《电力拖动自动控制系统》,陈伯时,机械工业出版社3330电力网络规划与电压稳定《电力网络规划的方法与应用》,程浩忠、张焰,上海科学技术出版社;或《电力系统无功与电压稳定性》,程浩忠、吴浩,中国电力出版社3331电气绝缘在线监测技术《电力设备在线监测与故障诊断》,肖登明,上海交通大学出版社20043332电机理论《交流电机数学模型及调速系统》,陈坚,国防工业出版社;《交流电机及其系统的分析》(第二版),高景德等,清华大学出版社2005036信息安全学院2213信息安全数学基础《信息安全数学基础》,陈恭亮,清华大学出版社20043333密码学基础《密码学理论与实践》(第二版),d.r. stinson,电子工业出版社2003;《应用密码学》(第二版),bruce schneier,机械工业出版社2000050材料科学与工程学院2214材料科学基础及加工原理《材料科学基础》,胡赓祥等,上海交大出版社2006;《材料科学基础辅导与习题》,蔡珣、戎咏华,上海交大出版社2004;或《材料加工原理》,徐洲等,科学出版社2003;或《材料加工原理》,李言祥等,清华大学出版社2005(材料科学基础、材料加工原理各100分考题,考生任选其一)3334材料热力学与动力学《材料热力学》(第三版),徐祖耀、李麟,科学出版社2005;或《材料热力学与动力学》,徐瑞、荆天辅,哈尔滨工业大学出版社20033335材料微结构分析《分析电子显微学导论》第一、三章,第五章中5.1和5.2节,戎咏华,高等教育出版社2006;或《金属x射线学》,范雄,机械工业出版社19963336凝固或焊接《凝固过程》(中译本),m. c. flemings,冶金工业出版社1981;或《焊接过程现代控制技术》,陈善本等,哈尔滨工业大学出版社2001071数学系2215泛函分析《实变函数论与泛函分析》(第二版),夏道行等,高等教育出版社3337近世代数《代数学基础》(群.环.域.模等部分),孟道骥,南开大学出版社3338微分几何《微分流形初步》(第二版),陈维桓,高等教育出版社;《微分几何讲义》(第二版),陈省身、陈维桓,北京大学出版社072物理系2216量子力学《量子力学》卷i、卷ii (第三版),曾谨言2217物理光学《物理光学》,梁铨廷,机械工业出版社;或《物理光学与应用光学》,石顺祥等,西安电子科学技术大学出版社2000;或《物理光学》,范少卿等,1990;或《应用物理光学》,严瑛白,清华大学出版社19903339高等光学《光学原理》,m. born,世界图书出版公司3340固体物理学《固体物理学》(上、下册),方俊鑫、陆栋,上海科学技术出版社3341电动力学《电动力学》(第二版),郭硕鸿等,高等教育出版社3342半导体物理《半导体物理》,刘恩科等,国防工业出版社;或《半导体物理学》,刘恩科等,电子工业出版社3343工程光学《工程光学》,郁道银、谈恒英,机械工业出版社080生命科学技术学院2218生物化学(i)《生物化学》,沈同,高等教育出版社2219病理学《病理学》(七年制规划教材,临床医学专业用),李甘地,人卫版2240微机原理与微机接口《微型计算机原理与接口技术》,吴秀清,中国科技大学出版社3304高等流体力学《流体力学》,吴望一,北京大学出版社3375细胞生物学《细胞生物学》,翟中和,高等教育出版社3344分子生物学《现代遗传原理》,徐晋麟等,科学出版社3345微生物学(i)《微生物学》,沈萍,高等教育出版社20003346生理学《生理学》(七年制规划教材,临床医学专业用),姚泰,人卫版3347数字信号处理(Ⅱ)《数字信号处理》(上、下),吴兆雄,国防工业出版社090人文学院2220科学史导论《科学史》,w.c.丹皮尔,商务印书馆1979或广西师范大学出版社2001;《科学的历程》(第二版),吴国盛,北京大学出版社2002;《中国科学技术史稿》(上下册),杜石然等,科学出版社1982110化学化工学院2221聚合物材料结构与性能《高聚物的结构与性能》,马德柱等,科学出版社;《高分子物理》,何曼君,复旦大学出版社2222物理化学(含结构与波谱化学)《物理化学》(第四版),傅献彩等,高等教育出版社1990;《结构化学基础》(第三版),周公度,北京大学出版社2002;《有机化合物结构鉴定与有机波谱学》(第二版),宁永成,科学出版社20003349高分子合成化学《高分子化学》,潘祖仁,化学工业出版社;《高分子化学》,自然科学基金委,化学工业出版社3350高等无机化学《普通无机化学》,严宣生,王长富,北京大学出版社1999;《催化原理》,吴越,高等教育出版社20013351化学反应工程与催化《化学反应工程与催化》,李绍芬,化学工业出版社;《催化原理》,吴越,高等教育出版社20013352高等有机化学《高等有机化学》,f. a凯里、r. j 森德伯格,人民教育出版社3376仪器分析《仪器分析教程》,北京大学化学系仪器分析组,北京大学出版社;《仪器分析》(第三版),朱明华,高教出版社2000120安泰经济与管理学院3353统计学《概率论与数理统计教程》,魏宗舒,高等教育出版社1983;《概率论与数理统计》(第三版),盛骤等,高等教育出版社20013354运筹学《运筹学》(修订版),运筹学编写组,清华大学出版社20033355计量经济学《introductory econometrics:a modern approach 》,jeffrey m. wooldridge,south-western college publishing,清华大学出版社(影印本);《计量经济学3374战略管理《战略管理》,王方华、吕巍,机械工业出版社2004130国际与公共事务学院2225中国特色社会主义理论与实践《邓小平文选》(第二、三卷),人民出版社1993/1994;《“三个代表”重要思想概论》,中华人民共和国教育部,中国人民大学出版社20033357当代中国政治与政策《政府过程》,胡伟,浙江人民出版社1998/上海人民出版社2007;《理解公共政策》,托马斯?戴伊,华夏出版社2005140外国语学院1102日语(二外)《日语中级阅读》、《日语高级阅读》,日本语教育教师协会(jaltta),上海外语教育出版社1103法语(二外)《法语》(1—4册),马晓宏,外语教学与研究出版社1104德语(二外)《基础德语》,王志强等;《中级德语》,樊迪生,同济大学出版社2226语言学linguistics: an introduction,andrew radford,外语教学与研究出版社;course in general linguistics,f.de saussure ,外语教学与研究出版社;linguistic theory:the discourse of fundamental works,robert de beaugrande,外语教学与研究出版社3358英语写作不指定参考书目150农业与生物学院2227分子生物学原理《现代分子生物学》(第二版),朱玉贤、李毅,高等教育出版社2002;《基因工程原理》(第二版),吴乃虎,科学出版社20012228植物生物化学与分子生物学《植物生物化学与分子生物学》,b.b.布坎南等主编;瞿礼嘉等主译,科学出版社20042210计算机科学与技术方法论《数理逻辑与集合论》,石纯一,清华大学出版社2000;《图论与。

《现代电路分析》课件

《现代电路分析》课件

THANKS
感谢观看
详细描述
现代电路分析是电子工程和电气工程领域的基础学科之一,主要研究电路中电子、电磁场以及光子的运动和相互 作用。它涉及到电子器件的工作原理、电路的基本定律和定理、信号的传输和处理等方面的知识。现代电路分析 具有理论性强、实践性强、应用广泛等特点,是电子工程和电气工程领域的重要基础。
电路分析的重要性
详细描述
控制电路是实现控制功能的电路,广泛应用于工业自动化、航空航天等领域。控制电路 分析主要研究控制系统的稳定性、响应速度、精度等问题,通过优化电路设计来提高控
制系统的性能和可靠性。
05
现代电路分析的新技术
计算机辅助电路分析
要点一
总结词
利用计算机技术进行电路分析,提高分析效率和精度。
要点二
详细描述
《现代电路分析》ppt课件
• 现代电路分析概述 • 电路分析的基本概念 • 电路分析方法 • 电路分析的应用 • 现代电路分析的新技术 • 现代电路分析的挑战与展望
01
现代电路分析概述
定义与特点
总结词
现代电路分析是一门研究电路中电子、电磁场以及光子等相互作用和相互转换的学科,其特点包括理论性强、实 践性强、应用广泛等。
节点电压法
总结词:实用方法
详细描述:节点电压法是一种求解电路中电压和电流的方法,通过设定节点电压并利用基尔霍夫定律,可以求解出其他节点 的电压和电流。
网孔电流法
总结词:常用方法
详细描述:网孔电流法是一种求解电路中电压和电流的方法 ,通过设定网孔电流并利用基尔霍夫定律,可以求解出其他 网孔的电流和相关支路的电压和电流。
详细描述
电力电子电路主要应用于电力系统、电机控 制、可再生能源等领域,其特点是工作电压 高、电流大。电力电子电路分析主要研究功 率转换、能量传输过程中的电路性能,如电 压、电流、功率等,通过优化电路设计来提

现代电力电子——三相桥式全控整流电路

现代电力电子——三相桥式全控整流电路

现代电力电子技学院:姓名:术目录1 绪论........................................................电力电子实验仿真背景...........................................1.1.1 电力电子技术概述.....................................1.1.2 电力电子技术的应用..................................1.1.3 国内外电力电子技术发展概况..........................计算机仿真的意义...............................................本文研究的主要内容.............................................2 SIMULINK模型库及使用 ....................................... 2.1 SIMULINK的模块库介绍 .....................................2.2 电力系统模块库的介绍......................................2.3 SIMULINK仿真的步骤 .......................................3 交流-直流变流器(整流器) ———三相桥式全控整流电路..........3.1电路结构及工作原理........................................3.2三相桥式全控整流电路建模..................................3.3 仿真与分析................................................4 结论........................................................1 绪论电力电子实验仿真背景1.1.1 电力电子技术概述电能是现代工农业、交通运输、通信和人们日常生活不可缺少的能源。

现代控制理论在电力系统及其自动化中的应用

现代控制理论在电力系统及其自动化中的应用

现代控制理论在电力系统自动化中的应用摘要:本文综述了近年来模糊逻辑控制、神经网络控制、线性最优控制、自适应控制在电力系统稳定,自动发电控制,静止无功补偿及串联补偿控制,燃气轮机控制等方面应用研究的主要成果与方法,并提出若干需要解决的问题。

关键词:电力系统模糊控制神经网络最优控制自适应控制1 前言电力系统能否安全稳定运行关系到国计民生,因此电力系统稳定性控制技术的选择变得尤为重要。

电力系统是一个越来越大,越来越复杂的动态网络,它具有很强的非线性、时变性且参数不确切可知,并含有大量未建模动态部分。

电力系统地域分布广泛,大部分原件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效的控制是极为困难的,国内外因电压不稳导致的停电事故时有发生。

这些都使电力系统的稳定性控制问题变得越来越复杂,也正是因为问题的复杂性而使得现代控制理论得以在这一领域充分发挥其巨大的优势。

随着越来越先进的电力电子器件的出现和计算机技术的发展,先进的现代控制方法在电力系统领域的应用变的越来越广泛。

本文主要介绍了模糊逻辑控制、神经网络控制、最优控制和自适应控制在电力系统中的应用,并提出相关问题的相应解决方法。

2 电力系统的模糊逻辑控制电力系统的模糊逻辑控制就是利用模糊经验知识来解决电力系统中的一类模型问题,弥补了数值方法的不足。

从Zaden L.A.1965年发表了Fuzzy Sets[1]一文以来,模糊控制理论作为一门崭新的学科发展非常迅速,应用非常广泛。

目前国内外对电力系统模糊控制的研究成果越来越多,这显示了模糊理论在解决电力系统问题上的潜力。

模糊逻辑控制是从行为上模拟人的模糊推理和决策过程的一种实用的控制方法,它适于解决因过程本身不确定性、不精确性以及噪声而带来的困难。

模糊控制常用来描述专家系统,专家系统作为一种人工智能方法,其在电力系统中得到应用,弥补了数值方法的诸多不足。

专家系统利用专家知识进行推理,由于系统参数的不确定性,专家知识经常采用模糊描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M afd M afd 0 cos ; M bfd M afd 0 cos( 2 / 3);
M aDd M aDd0 cos ; M bDd M aDd0 cos( 2 / 3);
M aDq M aDq0 sin ; M bDq M aDq0 sin( 2 / 3);
M
aDd
Dq M aDq
M ab Lbb M bc M bfd M bDd M bDq
M ac M bc Lcc M cfd M cDd M cDq
M afd M bfd M cfd L fd M fDd
0
M aDd M bDd M cDd M fDd LDd
0
M aDq ia
M ab M s0 M s2 cos2( / 6); M bc M s0 M s2 cos2( / 2); M ac M s0 M s2 cos2( 5 / 6)
M s0 M ml (Laad Laaq ) / 4 Ls0 / 2; M s2 Ls2
电压方程为: uuqfd
r1iq rfd i fd
p q p fd
d
p
0 rDdiDd p Dd
0 rDqiDq p Dq
c轴
iq q轴
uqiDq
uDq
qs
ub ib
b轴
uc ic
iq
SN
dsr
u uDd iDd u fd ifd d id d轴
行时,d轴和q轴的旋转速度ωr与供电频率一致,即同步角频率ω1,此时,定子三相绕组电流
也为正弦对称系统,其频率为ω1=2πf1,转子励磁绕组的电流为恒定的直流,d轴和q轴阻尼 绕组电流为零。只有当转子旋转角频率ωr≠ ω1时, d轴和q轴阻尼绕组电流才不为零。
同步电动机的数学模型
相坐标系下的数学模型 dq坐标系下的数学模型
隐极转子(Round Rotor)同步电机
通常的同步电动机有两类: 1、凸极转子(Salient Rotor)同步电机(Ld≠Lq) 2、隐极转子(Round Rotor)同步电机(Ld=Lq)
隐极转子结构
大型凸极水轮发电机的定子
凸极转子结构
Fan
Slip rings
Pole
大型凸极水轮发电机的转子
同步电机的矩 角特性
励磁电磁转矩
Tem

3 2
np
(
d
i
q

qid
)


3 2 np
E0 Lqud
(Ld Lq )uduq 12Ld Lq


在上图中,有:ud U sin ,uq U cos
r
则有:Tem

3 2
n
p

E0
U
12Ld
sin

Ld Lq
u
fd
r1iq rfd

i
fd
p q

p
fd
d
p
0

rDdiD d

p
Dd
0

rDqiD q

p
Dq
磁链方程为:
d
q fd
Ld id Ladifd LadiD d
Lqiq LaqiD q

Lad id
DC excitation winding
同步电动机的工作原理
同步电动机的组成,见左图所示: 定子:abc三相对称绕组as、bs和cs; 转子:励磁绕组fd和等效d轴阻尼绕组Dd和等效q轴阻 尼绕组Dq。 励磁绕组所在的轴线称之d轴或横轴,按逆时针方向超 前90度电角度的轴线称之为q轴或交轴。d轴和q轴以同 c轴 步角频率ω1在空间逆时针旋转,定子三相绕组所在轴 线a轴、b轴和c轴在空间上静止不动,a轴与d轴的夹角 为:
Lfd、MfDd、LDd和LDq为常数。 电磁转矩为:
Tem

np

Wm

np 2
IT
L
I
同步电动机在转子dq坐标 系下的数学模型
按照前面介绍坐标转换的知识,将 同步电机定子abc三相绕组转换到 dq坐标系中,分别用一个d轴绕组 ds和一个q轴绕组qs来代替,见右 图所示。转换矩阵如下式所示。此 时同步电机共有五套绕组,即: c轴 定子:ds和qs绕组;
qid
)
从同步电机磁链方程可见:经过变换后同步 电机的电感系数不对称。(采用相对变换)
同步电动机在转子dq坐标 系下的数学模型
按照以下变换关系:
i fd

Lad M afd 0
ifd
; iDd

Lad M aDd0
iD d ;iDq

Laq M aDq0
iD q
u
fd

2 3
Lad M afd 0
u d Ld id M afd 0i fd M i aDd0 Dd
i


q

Lqiq

M i aDq0 Dq
磁链方程为:

fd

3 2
M
afd
0id
L fd i fd
M fDd iDd
Dd

3 2
M
aDd
0id
M
i fDd fd

LDd iDd


Dq

Lad iDd


Dd

Lad id
Ladi fd
LDdiDd
Dq Laqiq LDqiDq
q轴
稳态性能分析

同步电动机的稳态矢量图
稳态时,同步电机的阻尼绕组不起作用,在dq坐
i r1
标系下,同步电机所有量都为直流量,且保持不
变,则有:
ud r1id 1 q
0 rdt
其中θ0为初始时刻d轴与a相轴线的夹角,一般认为零。 ωr为转子旋转角频率,同步旋转时等于ω1。
q轴
iDq
uDq
b轴
ub ib
uc ic
iq
SN

iua a

uDd iDd u fd i fd
d轴
a轴
同步电机的空间位置关系
定子abc三相绕组的供电电压Ua、Ub和Uc为三相对称交流电压,转子励磁绕组供电电压为直流 电压,d轴和q轴阻尼绕组与异步电机的鼠笼条类似,处于短路状态,其供电电压为零。稳态运

3 2
M i aDq0 q

LDqiDq
Ld Lq
a a
a轴
其中:

Ls 0

M s0

3 2
Ls 2

3 2
( Laal

Laad )

Lsl

Lad
33 Ls0 M s0 2 Ls2 2 (Laal Laaq ) Lsl Laq
电磁转矩为:Tem

3 2
np ( diq

Lfd ifd

M
fDd
iD d

Dd

Lad id

M
fDd
ifd

LDdiD d


Dq

Laqiq

LDqiD q
则同步电机的方程可以简化为:
ud r1id p d q p
电压方程:
uuqfd
r1iq rfd i fd同步电动机在相坐标系下的数源自模型q轴电压方程为:
iDq
uDq
b轴
ub ib
ua r1ia p a

ub

r1ib

p
b
iq
uc r1ic p c
c轴
uc ic
SN

iua a
uDd iDd u fd i fd
a轴
其中:Laa Ls0 Ls2 cos2 ;
M cfd M afd 0 cos( 2 / 3) M cDd M aDd0 cos( 2 / 3)
M cDq M aDq0 sin( 2 / 3)
上式中:Laad(Laaq)分别为d轴(q轴)线与a轴线重合时对应的a相绕组的主电感;Mafd0、MaDd0
和MaDq0分别为a相轴线分别与fd、Dd和Dq轴线重合时a相绕组与fd、Dd和Dq绕组的互感系数;
电力电子与现代控制
Power Electronics and Modern Control
中国科学院研究生院
一般结构同步电动机
结构特点和工作原理 数学模型 稳态特性 动态特性
同步电动机的结构特点
BA+
C+
N
A-
S
C-
B+
A+
N
CB+
BC+
S
A-
凸极转子(Salient Rotor)同步电机

uq

r1iq
1 d
u fd rfd i fd

u' j1


d q

Ld id Lqiq

M afd 0i fd
fd

3 2 M afd 0id
Lfd i fd
u
'

uq r1iq 1d

i
Mafd0i fd
Ldid
另有:
212Ld Lq
相关文档
最新文档