(word完整版)五年级奥数速算与巧算(二)
(完整版)奥数知识点速算和巧算
.速算与巧算引导:1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+155+6+7+8+9+104、计算(改变运算序次)10-9+8-7+6-5+4-3+2-15、计算(带着“ + ”、“ -”号乔迁)1-2+3-4+5-6+7-8+9-10+11一、凑十法:利用个位数相加之和都等于10 的技术题1 、计算1+2+3+4+5+6+7+8+9+10这种渐渐相加的方法,好处是能够获得每一步的结果,但缺点是麻烦、简单出错;而且一步出错,今后步步都错。
若是利用凑十法,就能战胜这种缺点。
二、凑整法:同学们还知道,有些数相加之和是整十、整百的数,如:巧用这些结果,能够使那些较大的数相加又快又准。
像 10 、20 、 30 、40 、50 、60 、70 、 80 、90 、100 等等这些整十、整百的数就是凑整的目标。
题2 、计算1+3+5+7+9+11+13+15+17+19解:这是求 1 到 19 共 10 个单数之和,用凑整法做:题3 、计算2+4+6+8+10+12+14+16+18+20解:这是求 2 到 20 共 10 个双数之和,用凑整法做:题4 、计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面对的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的本质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
题5 、计算: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20解:由例 2 和例 3 ,已经知道从 1 开始的前 10 个单数之和及从 2 开始的前 10 个双数之和,巧用这些结果计算这道题就简单了。
小学奥数--速算巧算方法(二)
小学奥数--速算巧算方法目录1 (3) (5) (8) (10) (14) (16)181920222323252729 注:《速算技巧》 (33)第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1)拆成两个分数相减。
例如又如(2)拆成两个分数相加。
例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如(注意:分数减法要用减数的原分母减去被减数的原分母。
)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。
例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。
例如做这道题,按先通分后相加的一般办法,势必影响解题速度。
现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。
第六讲常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。
(1)分母相同的所有真分数相加。
求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。
比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。
比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。
五年级奥数速算与巧算
速算与巧算知识导航我们在进行运算时,除了熟练掌握好运算法则外,还要通过观察和分析,找出题目中数的特点,合理、有效地进行计算。
分数、小数四则混合运算常用的方法、技巧如下:1.运算法则:先乘除后加减;先算小括号,再算中括号;同级运算从左到右依次计算。
2.运算定律与性质: 加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++; 乘法交换律:a b b a ⨯=⨯ 乘法结合律:)(c b a c b a ⨯⨯=⨯⨯ 乘法分配律:c a b a c b a ⨯±⨯=±⨯)( 减法的性质:)(c b a c b a +-=--除法的性质:)(c b a c b a ⨯÷=÷÷3.灵活运用通分和约分4.分数、小数化成统一的形式再计算,一般是分数化成小数。
5.凑整法:运用运算定律,使式子中一些数凑成整十、整百或整千的数再计算。
我们通常是利用运算律将一些数凑成整一、整十或整百再计算。
凑整技巧主要有:①分组凑整;②加补凑整;③基准凑整。
6.分组分解法:利用交换律和结合律对式子进行分组求解,最后再综合求解。
7.综合方法:计算比较复杂的式子时要多种方法一起用。
精典例题例1:25.697241283675.01000÷⎥⎦⎤⎢⎣⎡⨯+-⨯)(计算: 思路点拨注意运算的先后顺序,同时要注意乘法分配律的应用。
模仿练习125.019158861915886625.025.01915886194113⨯+⨯+⨯+计算:例2:计算:⎪⎭⎫⎝⎛+++÷⎪⎭⎫ ⎝⎛+++649537425313654543432321思路点拨先将带分数化成假分数,再利用乘法分配律。
模仿练习)()计算:(111933139911115933539951++÷++例3:9.0195105375.119484⨯+⨯计算: 思路点拨84和105有公因数21,可以把84和105分解,然后计算。
五年级奥数(教案)第1讲:速算与巧算(二)
=2×3×3
=18
练习2:[8分]
计算:
[1]16÷3.2÷2.5
[2]12.5×36.8÷3.68
[3][7.5×5.1×8.4]÷[1.7×4.2×2.5]
[4]9.3×3.2÷3.23×6.46÷1.6÷3.1
分析:
[1][2]两个题目主要是利用除法的性质来解题。[3][4]两个题目跟例题的类型也是一样的,先变成有倍数关系的两个数相除,然后再把结果相乘,最后得出结果。
是不是也需要花相当长的时间呢?那么对于这种类型的题目有没有更简便
的方法呢?思考一下。
生:老师我发现,被除数里数字与除数里的数字存在着倍数关系。
师:谁和谁存在倍数关系?
生:4.8与2.4,7.5与2.5,8.1与2.7。
师:是的,正好存在三对倍数关系的数。从这里出发,我们可以怎么去思考呢?
生:我们可以分别相除,然后再把结果相乘,这样和原来的结果是一样的。
一、复习导入[3分]
师:同学们,上节课我们学了什么?
生:速算与巧算。
师:是的,主要学了哪些速算的方法呢?
生:特殊的数字相乘能够凑整。
师:是的,特殊的数字,比如说25和4相乘等于100,125和8相乘等于1000。
这些特殊的数字,其实在小数里也是适用的。所以当看到特殊数字的时候,
我们可以直接将它们凑在一起,使计算变得简便,如果没有这样的两个数,
师:这个就是解题的关键。现在会做了吗?
生:最后我们可以利用乘法分配律的逆运算来解答,[7.2+2.8]×11.11=10×
11.11=111.1。
师:这是第一小题,接下来看第二小题,不仅有乘法,加法,还有减法,对吗?
(完整版)小学五年级奥数速算与技巧、包含与排除.doc
小学五年级奥数题——速算与巧算在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法 ,但如果善于观察、勤于思考 ,计算中还能找到更多的巧妙的计算方法 ,不仅使你能算得好、算得快 ,还可以让你变得聪明和机敏 .例 1:计算: 9.996+ 29.98+ 169.9+ 3999.5算式中的加法看来无法用数学课中学过的简算方法计算,但是 ,这几个数每个数只要增加一点 ,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了.当然要记住 ,“凑整”时增加了多少要减回去.9.996+ 29.98+ 169.9+ 3999.5=10+ 30+ 170+ 4000-( 0.004+ 0.02+ 0.1+ 0.5)=4210- 0.624=4209.376例 2:计算: 1+ 0.99- 0.98- 0.97+ 0.96+ 0.95- 0.94-0.93 ++ 0.04+ 0.03- 0.02- 0.01 式子的数是从 1 开始 ,依次减少0.01, 直到最后一个数是0.01, 因此 ,式中共有100 个数而式子中的运算都是两个数相加接着减两个数,再加两个数 ,再减两个数这样的顺序排列的 .由于数的排列、运算的排列都很有规律,按照规律可以考虑每 4 个数为一组添上括号 ,每组数的运算结果是否也有一定的规律?可以看到把每组数中第 1 个数减第 3 个数 ,第 2 个数减第 4 个数 ,各得 0.02, 合起来是 0.04,那么 ,每组数(即每个括号)运算的结果都是0.04,整个算式 100 个数正好分成 25 组 ,它的结果就是25 个 0.04 的和 .1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01 =( 1+ 0.99- 0.98- 0.97)+( 0.96+ 0.95 -0.94- 0.93 )++( 0.04+ 0.03- 0.02- 0.01 )=0.04× 25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01 =1+( 0.99- 0.98- 0.97+ 0.96)+(0.95 -0.94- 0.93 + 0.92)++( 0.03- 0.02- 0.01 )=1例 3:计算: 0.1+ 0.2+ 0.3++ 0.8 +0.9+0.10 + 0.11+ 0.12++ 0.19+ 0.20这个算式的数的排列像一个等差数列,但仔细观察 ,它实际上由两个等差数列组成,0.1+0.2+ 0.3++ 0.8+ 0.9 是第一个等差数列,后面每一个数都比前一个数多0.1,而 0.10+ 0.11+0.12++ 0.19+ 0.20 是第二个等差数列,后面每一个数都比前一个数多0.01, 所以 ,应分为两段按等差数列求和的方法来计算.0.1+ 0.2+ 0.3++ 0.8+0.9+ 0.10+ 0.11 + 0.12++0.19+ 0.20=( 0.1+ 0.9)×9÷ 2+( 0.10+0.20 )× 11÷2=4.5+ 1.65=6.15例 4:计算: 9.9× 9.9+ 1.99算式中的 9.9× 9.9 两个因数中一个因数扩大10 倍 ,另一个因数缩小10 倍 ,积不变 ,即这个乘法可变为99× 0.99; 1.99 可以分成0.99+ 1 的和 ,这样变化以后 ,计算比较简便.9.9× 9.9+ 1.99=99× 0.99+ 0.99+ 1=( 99+ 1)× 0.99 +1=100例 5:计算: 2.437× 36.54+ 243.7× 0.6346虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的 2.437 和后一个乘法的243.7 两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点.按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了2.437× 36.54+ 243.7× 0.6346=2.437× 36.54+ 2.437× 63.46=2.437×( 36.54+ 63.46)=243.7* 例 6:计算: 1.1×1.2 ×1.3× 1.4×1.5算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果.平时注意积累计算经验的同学也许会注意到7、 11 和 13 这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如 578× 1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数.1.1× 1.2× 1.3× 1.4× 1.5=1.1× 1.3× 0.7× 2× 1.2× 1.5=1.001× 3.6=3.6036计算下列各题并写出简算过程:1. 5.467+ 3.814+ 7.533+ 4.1862. 6.25× 1.25× 6.43. 3.997+ 19.96+ 1.9998 + 199.74. 0.1+ 0.3++ 0.9+ 0.11+ 0.13+ 0.15++ 0.97+ 0.995. 199.9× 19.98- 199.8× 19.976. 23.75× 3.987+ 6.013× 92.07+ 6.832× 39.87*7 . 20042005 × 20052004 - 20042004 ×20052005 *8 .(1+ 0.12+ 0.23)×( 0.12+ 0.23+ 0.34)-( 1+ 0.12+ 0.23+ 0.34)×( 0.12+ 0.23 )计算下列各题并写出简算过程:1. 6.734- 1.536+ 3.266- 4.4642. 0.8÷ 0.1253. 89.1+ 90.3+ 88.6+ 92.1+ 88.9+ 90.84. 4.83× 0.59+ 0.41× 1.59- 0.324× 5.95. 37.5× 21.5× 0.112+ 35.5× 12.5× 0.112包含与排除1、某班有40 名学生 ,其中有 15 人参加数学小组,18 人参加航模小组,有 10 人两个小组都参加. 那么有多少人两个小组都不参加?两个小组共有(15+18) -10=23 (人) ,都不参加的有40-23=17(人)答:有 17 人两个小组都不参加 .--2、某班45 个学生参加期末考试,成绩公布后 ,数学得满分的有 10 人 ,数学及语文成绩均得满分的有 3 人 ,这两科都没有得满分的有29 人.那么语文成绩得满分的有多少人?45-29-10+3=9 (人)答:语文成绩得满分的有9 人 .3、 50 名同学面向老师站成一行.老师先让大家从左至右按1,2,3,,49,50 依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转 .问:现在面向老师的同学还有多少名 ?4 的倍数有 50/4 商 12 个 ,6 的倍数有 50/6 商 8个,既是 4又是 6的倍数有 50/12 商 4 个.4 的倍数向后转人数 =12,6 的倍数向后转共8 人 ,其中 4 人向后 ,4 人从后转回 .面向老师的人数 =50-12=38(人)答:现在面向老师的同学还有38 名.4、在游艺会上 ,有 100 名同学抽到了标签分别为 1 至 100 的奖券 .按奖券标签号发放奖品的规则如下:( 1)标签号为 2 的倍数 ,奖 2 支铅笔;( 2)标签号为 3 的倍数 ,奖 3 支铅笔;( 3 )标签号既是 2 的倍数 ,又是 3 的倍数可重复领奖;( 4)其他标签号均奖 1 支铅笔 .那么游艺会为该项活动准备的奖品铅笔共有多少支?2 的倍数有100/2 商 50 个 ,3 的倍数有100/3 商 33 个 ,2 和 3 人倍数有100/6 商 16 个 .领 2 支的共准备( 50— 16)*2=68, 领 3 支的共准备( 33— 16)*3=51, 重复领的共准备16*( 2+3)=80,其余准备100-( 50+33-16 ) *1=33共需要 68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232 支.5、有一根长为180 厘米的绳子 ,从一端开始每隔后将标有记号的地方剪断.问绳子共被剪成了多少段3 厘米作一记号?,每隔 4 厘米也作一记号,然3 厘米的记号:180/3=60, 最后到头了不划,60-1=59 个4 厘米记号: 180/4=45,45-1=44 个 ,重复的记号:180/12=15,15-1=14 个 ,所以绳子中间实际有记号 59+44-14=89 个 .剪 89 次 ,变成 89+1=90 段答:绳子共被剪成了 90 段 .6、东河小学画展上展出了许多幅画,其中有 16 幅画不是六年级的 ,有 15 幅画不是五年级的 . 现知道五、六年级共有25 幅画 ,那么其他年级的画共有多少幅?1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有 25所以总共有( 16+15+25) /2=28 (幅) ,1,2,3,4 年级共有28-25=3 (幅)答:其他年级的画共有 3 幅.---7、有若干卡片 ,每张卡片上写着一个数 ,它是 3 的倍数或 4 的倍数 ,其中标有 3 的倍数的卡片占 2/3, 标有 4 的倍数的卡片占 3/4, 标有 12 的倍数的卡片有15 张 .那么 ,这些卡片一共有多少张?12 的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36 张.----8、在从 1 至 1000 的自然数中 ,既不能被 5 除尽 ,又不能被7 除尽的数有多少个?5 的倍数有1000/5 商 200 个 ,7 的倍数有 1000/7 商 142 个,既是 5 又是 7 的倍数有1000/35商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不能被 5 除尽 ,又不能被 7 除尽的数有686 个.---9、五年级三班学生参加课外兴趣小组,每人至少参加一项 .其中有 25 人参加自然兴趣小组 ,35 人参加美术兴趣小组 ,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人, 参加自然同时又参加美术兴趣小组的有8 人 ,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人 .求这个班的学生人数 .25+35+27-( 8+12+9) +4=62(人)答:这个班的学生人数是62 人.-- --10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为 30,甲与乙、乙与丙、甲与丙重合部分的面积分别为 6,8,5,而 3 个圆覆盖的总面积为 73.求阴影部分的面积 .甲、乙、丙三者重合部分面积=73+( 6+8+5) -3*30=2阴影部分面积=73-( 6+8+5) +2*2=58答:阴影部分的面积是58.11、四年级一班有 46 名学生参加 3 项课外活动 .其中有 24 人参加了数学小组 ,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的 7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数 .设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.________________________________________-12、图书室有 100 本书 ,借阅图书者需要在图书上签名.已知在 100 本书中有甲、乙、丙签名的分别有 33,44 和 55 本 ,其中同时有甲、乙签名的图书为29 本 ,同时有甲、丙签名的图书有25 本,同时有乙、丙签名的图书有36 本 .问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过 ?三个人一共看过的书的本数是:甲 +乙 +丙(-甲乙 +甲丙 +乙丙)+甲乙丙 =33+44+55(- 29+25+36)+甲乙丙 =42+甲乙丙 ,当甲乙丙最大时 ,三人看过的书最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本.三人总共看过最多有42+25=67(本) ,都没看过的书最少有100-67=33 (本)答:这批图书中最少有33 本没有被甲、乙、丙中的任何一人借阅过.________________________________________13、如图 8-2,5 条同样长的线段拼成了一个五角星.如果每条线段上恰有1994 个点被染成红色,那么在这个五角星上红色点最少有多少个?五条线上右发有 5*1994=9970 个红点 ,如果所有交叉点上都放一个红点,则红点最少 ,这五条线有 10 个交叉点 ,所以最少有9970-10=9960 个红点答:在这个五角星上红色点最少有9960 个 .14、甲、乙、丙同时给100 盆花浇水 .已知甲浇了 78 盆 ,乙浇了 68 盆 ,丙浇了 58 盆 ,那么 3 人都浇过的花最少有多少盆?甲和乙必有 78+68-100=46 盆共同浇过 ,丙有 100-58=42 没浇过 ,所以 3 人都浇过的最少有46-42=4(盆)答: 3 人都浇过的花最少有 4 盆 .15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每个人都从某一个故事开始,按顺序往后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最少有多少个?乙和丙共同读过的故事至少有60+52-100=12(个) ,甲无论从哪里开始都必定要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最少有12 个.15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每个人都从某一个故事开始,按顺序往后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最少有多少个?乙和丙共同读过的故事至少有60+52-100=12(个) ,甲无论从哪里开始都必定要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最少有12 个.________________________________________-8、在从 1 至 1000 的自然数中 ,既不能被 5 除尽 ,又不能被 7 除尽的数有多少个 ?5 的倍数有 1000/5 商 200 个 ,7 的倍数有1000/7 商 142 个,既是 5 又是 7 的倍数有 1000/35 商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不能被 5 除尽 ,又不能被7 除尽的数有686 个 .题中的除尽应该是整除吧.11、四年级一班有46 名学生参加 3 项课外活动 .其中有 24 人参加了数学小组,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数.设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.。
速算与巧算2
练习4 2、1000÷(125÷4) 3、(13×8×5×6)÷(4×5×6) 4、241×345÷678÷345×(678÷241)
例:804+0+1400+250+196+1750
此题要利用加法的什么运算定律?
加法交换律:
例:804+600+1400+250+196+1750 =(804+196)+(600+1400)+(250+1750) =1000+2000+2000 =5000
例2: 75+86+83+72+78+80+81+79+87
运用运算定律及性质
速算与巧算
(2)
对上一节课所学内容进行复习
1、加法的运算定律和减法的性质是什么?
加法的运算定律和减法性质:
1、加法交换律:a+b=b+a 2、加法结合律:(a+b)+c=a+(b+c) 3、减法性质:一个数连续减去两个数, 等于这个数减去两个数的和。 a-b-c=a-(b+c)
2.分解因数,凑整先乘。 例2计算①24×25 ②56×125 ③125×5×32 解:①式=6×(4×25) =6×100=600 ②式=7×8×125 =7×(8×125)=7×1000=7 ③式=125×5×4×8×5 =(125×8)×(5×5×4) =1000×100=100000 习题2计算(1)16×25 (2)40×25
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.为此, 要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000 例1计算①123×4×25 ②125×2×8×25×5×4 解:①式=123×(4×25) =123×100 =12300 ②式=(125×8)×(25×4)×(5×2) =1000×100×10 =1000000 习题1计算①63×5×2 ②25×125×8×9×4
奥数中的速算与巧算
速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5习题一解答1.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78。
五年级《速算与巧算》奥数教案
( 五年级 ) 备课教员:第一讲 速算与巧算一、教学目标: 知识目标 1. 学会运用整数加法的运算定律让分数加减更简便。
2. 掌握分数加减的简便计算。
能力目标 1. 培养观察、推理能力。
2. 培养仔细、认真的学习习惯。
情感目标进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
二、教学重点:发现分数加减法也可以应用减法的性质和加法交换律、结合律来简算。
三、教学难点: 能正确应用运算律或运算性质进行一些分数加减法的简便运算四、教学准备: PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:让学生自己回忆之前所学的分数加减计算的方法,通过小组讨论交流,发现加法交换律、结合律对分数的加法计算同样适用。
】师:同学们,你们还记得同分母分数加减是如何计算的吗?生:……师:非常好,那异分母呢?生:……师:同学们都掌握得非常好,那我们一起来看看这几道题可以如何计算? (出示PPT )生:……师:有的式子中分数的分母是相同的,而有些分数的分母是不同的,若全部进行通分,我们很容易算错,那么有没有什么简便方法呢?这就是我们今天 要学习的分数的加减简便计算。
【探究新知,引入新课:我们已经学过了同分母及异分母加减法的计算,那么这节课要让学生掌握分数加减法的简便计算,并将整数加减与分数加减联系起来。
】【板书课题:速算与巧算】二、探索发现授课(40分)(一)例题1:(10分)计算:32+94-31-91讲解重点:整数的加法交换律和结合律对分数加法同样适用。
师:同学们,仔细观察这个算式,这些分数有什么特点?生:32和31的分母相同,94和91的分母相同。
师:是的,那我们可不可以把分母相同的分数放在一起先计算呢? 生:……师:我们之前学过整数加法的交换律a+b=b+a 和结合律a+b+c=a+(b+c),那么 同学们先按照通分的方法计算一遍,结果是多少?生:……师:再用加法的运算定律计算一遍,结果是多少?生:……师:同学们,你们有什么发现吗?生:……师:是的,所以整数的加法运算定律对分数加法的计算是同样适用的。
第2课时 速算与巧算(乘法)
在速算与巧算中常用的三大基本 思想: 思想:
3、乘法交换律: 乘法交换律:
两个数相乘,交换乘数的位置,它们的积不变。 b=b× 两个数相乘,交换乘数的位置,它们的积不变。即:a×b=b×a 一般地,多个数相乘,任意改变相乘的次序,其积不变。 一般地,多个数相乘,任意改变相乘的次序,其积不变。 d=d× 即:a×b×c×d=d×b×a×c
4、乘法结合律: 乘法结合律:
2、加法结合律: 加法结合律:
几个数相加,先把前两个数相加, 几个数相加,先把前两个数相加,再加上第 三个数;或者,先把后两个数相加, 三个数;或者,先把后两个数相加,再与第一个 数相加,它们的和不变。 数相加,它们的和不变。即: a+b+c=(a+b)+c=a+(b+c)
常见运算定律及其方法: 常见运算定律及其方法:
两个数相加(或相减)再乘另一个数, 两个数相加(或相减)再乘另一个数,等于把这个数分别同两 个加数或减数相乘,再把两个积相加或相减,得数不变。 个加数或减数相乘,再把两个积相加或相减,得数不变。 (b+c)=a×b+b× (a+b)×c=a×c+b× 即: a×(b+c)=a×b+b×c, (a+b)×c=a×c+b×c, (b-c)=a× (a-b)×c=a× a×(b-c)=a×b-b×c, (a-b)×c=a×c-b×c,
3、几种常见的特殊因数乘积的巧算 、
(8)尾同头合十的两个两位数的乘法:先用 )尾同头合十的两个两位数的乘法: 两个因数的个位数字相乘, 两个因数的个位数字相乘,并把积直接写在 末尾,如果积不满10,十位上补0, 末尾,如果积不满 ,十位上补 ,然后再将 两个因数的十位数字相乘的积加上个位数字 的和,写在两个数字相乘的积的前面。 的和,写在两个数字相乘的积的前面。 计算( ) 例11计算(1) 45×65 计算 × (2) 59×59 ) × (3) 26×86 ) × (4) 81×21 ) × 解: (1) 45×65=2925 ) × (2) 59×59=3481 ) × (3) 26×86=2236 ) × (4) 81×21=1701 ) ×
(完整版)奥数知识点速算与巧算
速算与巧算引导:1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+155+6+7+8+9+104、计算(改变运算顺序)10-9+8-7+6-5+4-3+2-15、计算(带着“+”、“-”号搬家)1-2+3-4+5-6+7-8+9-10+11一、凑十法:利用个位数相加之和都等于10的技术题1、计算1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法:同学们还知道,有些数相加之和是整十、整百的数,如:巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
题2、计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:题3、计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:题4、计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
题5、计算:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 解:由例2和例3,已经知道从1开始的前10个单数之和及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了。
第三讲 速算与巧算(2)-小学奥数
第三讲 遗算与巧算(2)告诉你本讲酌重点、难点整数四则混合运算的性质对于小数四则混合运算、分数四则混合运算同样适用.对于分数四则混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧.看老师画龙点晴,教给你解题诀窍【例1】计算:82.1564.7782.2536.22-++分析与解 通过观察可以发现22.36和77.64两个加数可以“凑整”,25.82和15.82的末尾相同,相减之后可以成为整数,于是可以根据加法的交换律,加减法的运算性质调换数字的位置使计算简便.原式)82.1582.25()64.7736.22(-++=10100+=110=【例2】计算:25.02.35.12⨯⨯分析与解 这一题是三个数连乘,可以运用乘法交换律和结合律进行简算.再从几个数的特点来看,3.2可以拆成0.8和4相乘,分别与12.5和0.25先相乘,原式25.0)48.0(5.12⨯⨯⨯=)25.04()8.05.12(⨯⨯⨯=110⨯=10=【例3】计算:6.45988.22+⨯分析与解 仔细观察发现第一个乘数中有一个因数是22.8,第二个加数,28.226.45⨯=这样 正好和第一个乘式拥有相同的因数22.8,然后运用乘法分配律进行简便计算.原式28.22988.22⨯+⨯=)298(8.22+⨯=⋅⨯=1008.222280=【例4】计算:95558463462558463-⨯⨯+ 分析与解,观察分子与分母,其中有一个算式很接近,分子中是,462558⨯分母中是⨯463,558可以利用乘法分配律把558463⨯改成,558558462+⨯再减去原来的95, 发现分子与分母相等, 原式95558558462462558463-+⨯⨯+= 463558462465584632+⨯⨯+= 1=【例5】计算:5614213012011216121++++++分析与解 根据dn n d n n d +-=+⨯11)((其中n ,d 是自然数),在计算若干个分数之和时,若能将每个分数都分解成两个分数之差并且使中间的分数互相抵消,则能使计算大大简化. 原式7616515414313211211⨯+⨯+⨯+⨯+⨯--⨯= 71616151514141313121211-+-+-+-+-+-= 711-= 76⋅=抉来试一试你的身手吧!计算下列各题:017.2)44.0017.2(56.23.1+--25.1162.053.325.0.2⨯⨯⨯⨯120122011201220102011.3-⨯⨯+ 9017215614213012011216121.4++++++++做题也有小窍门噢!在分数的乘除法运算中,要充分运用约分;在加减法中,有时要将分数分拆.分数分拆、常用约数法,通往初中名校酌班车计算下列各题:114458.035.68.451.2558.4.1⨯+⨯+⨯3403.40340123.0123123.1233.40.2⨯-⨯3.计算:634928181489744921141464732÷÷+÷÷+÷÷÷÷+÷÷+÷÷ 2112119219172171521513213112.4+⨯+⨯+⨯+⨯+⨯ 3333333339.08.07.06.05.04.03.02.01.0.5++++++++提示:233333)4321(4321n n +++++=+++++答 案。
奥数题 速算与巧算
四则混合运算的巧算【基础再现】四则混合运算要算得好、算得巧,既合理又灵活,就要掌握一定的方法技巧:当四则混合运算中有括号时,运算顺序是“先算括号内的,后算括号外的;先乘除,后加减”。
在具体计算过程中,我们还应该注意根据算式中运算符号及数字的特征,运用运算定律、性质以使运算简捷。
【重难考点】掌握四则混合运算的运算法则【知识扩展】1、加减法运算的性质①a+b-c=a-c+b ②a+(b-c)=a+b-c③a-b-c=a-c-b ④a-(b+c)=a-b-c ⑤a-(b-c)=a-b+c=a+c-b2、乘除法运算的性质①a÷b÷c=a÷c÷b=a÷(b×c)②a×b÷c=a÷c×b=b÷c×a③(a×b)÷c=a÷c×b=b÷c×a)④a×(b÷c)=a×b÷c⑤a÷(b÷c)=a÷b×c=a×c÷b⑥a÷b=(a×n)÷(b×n)=(a÷n)÷(b÷n)(n≠0)3、乘除分配的性质①(a-b)×c=a×c-b×c②(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c【典型例题】例一、计算。
1、843+78-432、843-86+157例二、计算下列各题。
1、25×96×1252、75000÷125÷53、81+791×94、53×50+50×475、395×27+395×72+395例三、计算下列各题。
五年级奥数- 巧算与速算
速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。
二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。
奥数 速算与巧算
奥数速算与巧算求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。
对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。
有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。
所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。
下面通过例题来说明这一方法。
例3 求292和822的值。
解:292=29×29=(29+1)×(29-1)+12=30×28+1=840+1=841。
822=82×82=(82-2)×(82+2)+22=80×84+4=6720+4=6724。
由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。
因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。
本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。
最后,还要加上“移多补少”的数的平方。
由凑整补零法计算352,得35×35=40×30+52=1225。
这与三年级学的个位数是5的数的平方的速算方法结果相同。
这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。
例4求9932和20042的值。
解:9932=993×993=(993+7)×(993-7)+72=1000×986+49=986000+49=986049。
20042=2004×2004=(2004-4)×(2004+4)+42=2000×2008+16=4016000+16=4016016。
下面,我们介绍一类特殊情况的乘法的速算方法。
小学奥数专题之速算与巧算(二)
小学奥数专题之——————速算与巧算整数与小数乘除法部分《二》必记与熟练运用基本公式a+b+c=a+c+b=b+c+a=b+(c+a)=a+(b+c)=……a+b-c=a-c+b=(a+b)-c=a+(b-c)=a-(c-b)……a-b-c-d-e-……=a-(b+c+d+e+……)a×b×c=a×c×b=a×(b×c)=……a×b÷c=a×(b÷c)=b×(a÷c)=……a÷b÷c=a÷(b×c)a×(b+c)= a×b+a×ca×(b-c)=a×b-a×c基本简便算法训练(写出简算过程)456+897+103 587+684-484 654-387+287 5121+6573+4879 5634+4366-8765 6543+854-1543 5646+9997 6545-1996 6587+59947865-347-1653 7958-(958+162)4795-(355+1795)345-279+655-321 6544+8953-4544-5953 4673-897-26735647+8956-4603 78×99 68×101867×999 567×1001 125×3225×36 125×432×8 76×25×425×32×125 4×83×25 84000÷125÷87800÷25÷4 25×(80+4)125×(80-4)379 ×58+42×379 965×176-965×76 163×175-163×34-163×41利用乘法分配律口算100以内两位数的乘法例23×25=(20+3)×25=(24-1)×25=(25-2)×25=(30-7)×25= 23×(20+5)= 23×(30-5) =23×(27-2)=23×100÷4=23×50÷2=……38×47 96×56 87×54 63×5123×25 75×43 79×64 38×6289×99 21×53 48×56 51×79十位相同个位相加刚好满十的规律(头同尾补)十位乘十位加一的和,并个位。
word完整版本小学五年级奥数速算及巧算二
第二讲小数的速算与巧算(二)【知识概括】若干个数排成一列称为“数列”,数列中的每一个数称为一项,此中第一项称为首项(a1),最后一项称为末项(an)。
从第二项开始,后项与前项之差都相等的数列称为“等差数列”,后项与前项之差称为公差(d),数列中的数的个数称为项数(n)。
关于等差数列,我们要娴熟运用三个公式:通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+ 1乞降公式:和=(首项+末项)×项数÷ 21、关于一个数除以两个或许两个以上的数,我们能够把多个除数先用乘积的方式算出结果,再用被除数除以所求的结果,获得最后的商例1计算÷÷分析:除以再除以也就是除以与的乘积练习计算÷÷2、一个数除以另一个数就等于这个数乘以这个数的倒数,即a÷b=a×1/b=a/b例2计算(××)÷(××)分析:由于乘除是同一级运算,我们能够把式子打开,看作是(÷)×(÷)×(÷)练习÷(÷)÷(÷)÷(÷)数列通项公式:第n项=首项+(项数-1)×公差,项数公式:项数=(末项-首项)÷公差+1,乞降公式:和=(首项+末项)×项数÷ 2等差数列就是一列数,后边的数减去前方的数所得的差都是相等的例3已知等差数列,,,,,。
(1)这个数列的第13项是多少?(2)是此中的第几项?(分析:第13项等于首项+(n-1)×公差=0.2+(13-1)×0.3,4.7=0.2+(n-1)×0.3,求得的n就是第几项((((((((练习:有一列数,,,,,。
((1)它的第1000项数是多少?((2)是它的第几项?一只小虫沿着笔挺的树干往上跳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 小数的速算与巧算(二)
【知识概述】
若干个数排成一列称为“数列”,数列中的每一个数称为一项,其中第一项称为首项(1a ),最后一项称为末项(n a )。
从第二项开始,后项与前项之差都相等的数列称为“等差数列”,后项与前项之差称为公差(d ),数列中的数的个数称为项数(n )。
对于等差数列,我们要熟练运用三个公式:
通项公式:第n 项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:和=(首项+末项)×项数÷2
1、对于一个数除以两个或者两个以上的数,我们可以把多个除数先用乘积的方式算出结果,再用被除数除以所求的结果,得到最后的商
例1 计算8.376÷3.2÷2.5
解析:8.376除以3.2再除以2.5也就是8.376除以3.2与2.5的乘积
练习 计算7.68÷2.5÷0.4
2、 一个数除以另一个数就等于这个数乘以这个数的倒数,即a ÷b=a ×1/b=a/b 例2 计算(4.8×7.5×8.1)÷(2.4×2.5×2.7)
解析 :因为乘除是同一级运算,我们可以把式子拆开,看作是(4.8÷
2.4)×(7.5÷2.5)×(8.1÷2.7)
练习 1.1÷(1.1÷1.2)÷(1.2÷1.3)÷(1.3÷1.4)
3.数列通项公式:第n项=首项+(项数-1)×公差,
项数公式:项数=(末项-首项)÷公差+1,
求和公式:和=(首项+末项)×项数÷2
等差数列就是一列数,后面的数减去前面的数所得的差都是相等的例3 已知等差数列0.2,0.5,0.8,1.1,1.4,…。
(1)这个数列的第13项是多少?
(2)4.7是其中的第几项?
解析:第13项等于首项+(n-1)×公差=0.2+(13-1)×0.3, 4.7=0.2+(n-1) ×0.3,求得的n就是第几项
练习:有一列数0.1,0.5,0.9,1.3,1.7,…。
(1)它的第1000项数是多少?
(2)492.1是它的第几项?
一只小虫沿着笔直的树干往上跳。
它每跳一次都能升高0.04米。
它从离地面0.1米处开始跳,如果把这一处称为小虫的第一次落脚点,那么它第100个落脚点正好是树梢。
这棵树高多少米?
4,等差求和
例4 计算:0.3+0.7+1.1+…+9.9
练习:计算:200-0.3-0.6-0.9-1.2-1.5-……-5.1-5.
训练A
(1)判断下面的数列哪些是等差数列。
① 0.88,0.77,0.66,0.55,0.44,0.33,0.22,0.11 ()
② 1×1,2×2,3×3,4×4,…()
③ 0.1×0.2,0.2×0.3,0.3×0.4,0.4×0.5,…()
④ 19.99×1,19.99×2,19.99×3,19.99×4,…()
⑤ 0.2,0.5,0.2,0.5,0.2,0.5,…()
(2)有一个等差数列0.5,0.9,1.3,1.7,…。
①它的第2008项是多少?
② 79.3是其中的第几项?
训练B
(1)求首项是0.5,末项是9.3,公差是0.4的等差数列的和。
(2)计算1.8+2.5+3.2+3.9+…+71.1
(3)求数列1.1,1.7,2.3,2.9,…前100个数的和。
(4)计算19.94-19.91+19.88-19.85+19.82-…+1.04-1.01
训练C
(1)29.36÷12.5÷0.8 (2)0.525÷13.125÷4×85.2 (3) 4.27÷28.6×3.59÷42.7×2.86÷35.9。