余热发电油系统介绍

余热发电油系统介绍
余热发电油系统介绍

余热发电汽轮机组油系统工艺知识介绍

一、油系统的作用及工艺流程

1. 油系统的作用

(1)减少轴承的摩擦损失,并带走因磨擦产生的热量和由转子传来的热量;

(2)向调节系统和保护系统装置供油,以保证其正常工作;(3)供给传动机构的润滑用油

(4)供油过程中对管道及轴承起到清洗和防腐蚀的作用。

2.供油的工艺流程

由主油泵或高压交流油泵打出的油被送到润滑油过滤器和油冷却器处,控制油压力调节阀将使油压保持在0. 8MPa以上,另外调整油冷却器入口冷却水量,控制油温度调节阀使汽机、发电机各处轴承入口处供油温度保持在35-45℃之间。

油路在润滑油过滤器入口处分为两条支路:

(1)一路到控制系统部分,控制油送到调节器主伺服电机,紧急停车阀及超速调节器导引阀等停车设施,为使控制油压波动最小,在管线上装有过压阀:注入润滑油压力为0.6MPa压力;(2)另一路为润滑路线,0.8MPa高压油由双重孔板及润滑油压调节阀来降至0.1~0.13MPa左右,润滑油被送至汽机的每个轴承、减速机与发电机、减速啮合齿轮及盘车设施。

二、供油系统的设备组成及作用

1.余热发电油系统的组成:主油泵、高压交流油泵、润滑交流油泵、直流油泵、注油器、油过滤器、冷油器、油净化器、低压油过压阀、启动排油阀、油雾风扇、油箱、单向阀及相关的管道和阀门。

2.作用

1、主油泵:离心式油泵,位于减速机齿轮轴的前向端,由主减速齿轮通过一套泵驱动齿轮来驱动,离心泵由主轴直接带动,设备简单,系统紧凑,但自吸能力差,需使用注油器向油泵供油。

2. 高压交流油泵:又称启动油泵或调速油泵,其作用是在主油泵不能正常工作时向调节、保护、润滑系统供油。自动启动连锁条件:润滑油压≤1MPa时高压油泵自动启动;

3. 润滑交流油泵、直流油泵:润滑交流油泵和直流油泵又称低压辅助油泵或事故油泵,作用是在主油泵不能供给系统润滑油时向各轴承及盘车装置提供润滑油。自动启动连锁条件:润滑油压≤0.05MPa时润滑交流油泵自动启动;润滑油压≤0.04MPa时直流油泵自动启动;

4.冷油器:对润滑油进行降温冷却的设备,控制润滑油温度在35°C~45°C之间,属于表面式换热器。油从上而下沿若干隔板构成的弯曲流道流动,冷却水则是自上而下在铜管中流动。要求油侧压力要高于水侧压力,防止铜管破裂时由内进水而使油质恶化。

5.润滑油过滤器、调速油过滤器在切换时:

(1)应先打开两单元之间的平衡阀进行油压平衡,方可进行切换;

(2)慢慢切换手柄(有锁紧装置的应先打开锁紧手柄),以防止可能出现的油压低而停车,手柄指向何侧,即何侧投入运行(3)慢慢关闭平衡阀,确认油压稳定、无波动。

6. 低压油过压阀:安装在冷油器出口油管道上,起稳定润滑油压的作用。阀门是弹簧力型的,以送返回油至油箱的方法来保持油压。在其执行机构上有一个波纹管腔,上侧备有弹簧。当入口压力过高时,阀门逐步打开,进行减压;当入口压力过低时,阀门逐步关闭,进行增压。

7. 启动排油阀:确保副主油泵与主油泵切换过程中,系统稳定供油。当机组启动时,主油泵的出口压力低于启动油泵的出口压力,主油泵的油通过排油阀上的排油口流至油箱,带走主油泵内的部分热量,当启动油泵停止后,主油泵投入工作时,主油泵有的压力将排油阀活塞推下,主油泵出口油与排油口断开。

三、汽轮机启动时油压的建立

汽轮机的启动过程其实就是打开主汽门和高调门,使汽轮机进汽的过程,而这都是通过油压的建立来实现的,而建立油压的顺序是:安全油压——AST油压——OPC油压——DDV油压。先启动高压油泵通过挂闸建立安全油压,打开主汽门,在建立AST油压和OPC油压后建立DDV油压,DDV伺服阀控制高调门开度,从而实现汽轮机的进汽,冲转。

四、汽轮机组油系统常见故障现象及处理方法

1. 轴承油温过高:油润滑油温基准值35℃~45℃,报警50℃

轴承润滑油温度基准<65℃,报警75℃

处理方法:

(1)检查过滤器内是否有白金属;

(2)增加通过冷却器的冷却水流量;

(3)如油温仍持续偏高,振动上升,则应缓慢地减速,停汽轮机,进行检查

可能原因:1)检查油温调节阀,是否存在故障;

2)油中有脏物,清洗滤油器;

3)油冷却器水或油侧存在气隔―――打开排气阀;

4)检查油冷却器是否堵塞;

5)轴承烧坏,检查确认后更换

2. 润滑油过滤器中有杂质

检查:(1)确认物料的类型—如果是大量的白色金属则紧急停机。(2)不是白色金属,为一般杂质(包括片状管道防锈漆)

处理方法:

(1)经常更换过滤器筒

(2)操作油净化器

(3)检查油压,油温是否在正常范围内

3.润滑油过滤器中有轴承白色金属

处理方法:(1)准备停汽轮机

(2)检查油温、油压、振动及汽轮机轴向位移情况

(3)确认某处轴承,可能原因有轴承白色金属发现

1)轴承间隙有变化出现磨损

2)轴承油膜过薄,油流对轴承冷却效果不佳,容易发生干擦

和烧瓦现象

3)汽轮机严重振动(如水冲击现象)

4.油箱油位显示过高或过低

(1)油中进水(油位显示高)

(2)油滤筛有堵塞现象

(3)油位计不正常

(4)系统漏油或排污阀打开

(5)油冷却器头部或冷却管有泄漏现象(油位显示低)

5.润滑油压力异常下降

现象:(1)压力表上低油压

(2)润滑油压力低报警

(3)辅助油泵自动启动

(4)汽轮机跳闸(润滑油压力低于0.02Mpa汽轮机跳闸)

处理方法:

(1)准备汽轮机停机,如有可能,恢复油压(检查辅助油泵的启动情况)

(2)检查油压开关和油压检测管路。

(3)检查油系统管路是否有泄漏,及时处理;

(4)切换润滑油过滤器磨

余热发电系统工艺流程

生产工艺流程: (19)余热发电系统 本方案拟采用单压纯低温余热发电技术,与双压系统和闪蒸系统相比,单压系统流程相对较简单,当设计选择的锅炉能完全吸收烟气放出的热量时,采用单压设计更为合理,系统内不同参数的工质较少,控制操作都更简单,窑头锅炉和汽轮机设备造价降低,系统管路减少,投资相对更省。 结合本工程的生产规模及投资环境,拟采用单压纯低温余热发电技术。该技术不使用燃料来补燃,因此不对环境产生附加污染,是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑本工程2500t/d熟料新型干法水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下:系统主机包括一台PH余热锅炉、一台AQC余热锅炉和一套凝汽式汽轮发电机组。 据2500t/d水泥熟料生产线窑头冷却机废气排放温度的分布,在满足熟料冷却及工艺用热的前提下,采驭中部取气,从而提高进入窑头余热锅炉-AQC炉的废气温度,减少废气流量,在缩小 AQC炉体积的同时增大了换热量。并且提高了整个系统的循环热效率。 在窑头冷却机中部废气出口设置窑头余热锅炉 AQC炉,该锅炉分 2段设置,其中I段为蒸汽段,II段为热水段。AQC炉 II段生产的 150° C 热水提供给AQC炉 I段及PH锅炉°AQC炉I段生产的 1.6MPa- 3 2 0。C 的过热蒸汽作为主蒸汽与窑尾余热锅炉 P H炉生产的同参数过热蒸汽合并后,一并进入汽轮机作功。汽轮机的凝结水进入余热锅炉AQC炉I工段,加热后分别作为锅炉给水进入余热锅炉 SP炉、余热锅炉A QC炉的I

段。 ②PH余热锅炉:在窑尾预热器的废气出口管道上设置PH余热锅炉,该锅炉包括过热器和蒸发器,生产 1.6MPa-32 0C的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出 P H余热锅炉废气温度降到18 0 —200C,供生料粉磨烘干使用。P H锅炉热效率可达35%以上。 ③汽轮发电机组:上述二台余热锅炉生产的蒸汽共可发电 4100kW 因此配置4500kW凝汽式汽轮机组一套。 整个工艺流程是:40 C左右的给水经过除氧,由锅炉给水泵加压进入 AQC 锅炉省煤器后加热成135 C左右的热水,热水分成两部分,一部分送往AQC锅炉,另一部分送往SP锅炉;然后依次经过各自锅炉的蒸发器、过热器产生1.6MPa-320C和1.6MPa-320C的过热蒸汽,在蒸汽母管汇合后进入汽轮发电机组做功,做功后的乏汽进入凝汽器成为冷凝水,冷凝水和补充纯水经除氧器除氧再进行下一个热力循环。 PH锅炉出口废气温度180-200 C左右,用于烘干生料。 表2-6主要余热发电设备一览表

(完整版)钢铁行业余热回收

烧结线余热 烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电300kW,折合标煤120kg/h。 转炉余热 转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。每炼1t钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。 转炉煤气经过汽化冷却烟道冷却后温度仍高达800~900℃,采用我公司的干法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。 电炉余热 电炉冶炼过程中产生200~1000℃的高温含尘废气,采用余热锅炉将其回收,电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。 加热炉余热 加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是烟道高温烟气。根据炉型不同,加热炉的烟气量在7000~300000Nm3/h,若用来发电,以烟气量10万Nm3,烟气温度400℃计算,发电量约2000kWh,折合标煤0.8t;汽化冷却系统可生产 0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。 高炉冲渣水 用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。每吨铁排出约0.3t渣,每吨渣可产生80~95℃,5~10t的冲渣水,将这部分热水减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。每吨90℃热水可发电 1.5kWh,折标煤0.6kg,80℃热水可发电1kWh,折标煤0.4kg。

余热利用钢铁节能主战场

余热利用钢铁节能主战场 2010年06月21日12:51证券导刊【大中小】【打印】共有评论0条 点击图片查看详细数据 进入申银万国机构主页>> 矫健齐琦 钢铁行业余热资源丰富,余热利用将是钢铁业节能主战场。工业余热资源约占其燃料总热量的17-67%,可回收率达60%。钢铁行业能耗约占全国工业总能耗的15%,其中余热资源约占37%,节能空间大。 近日,国务院办公厅下发《关于进一步加大节能减排力度加快钢铁工业结构调整的若干意见》,将钢铁工业列为节能减排潜力最大的行业,在强调淘汰落后产能的同时,提出了鼓励钢铁工业节能的具体措施:(1)提高行业准入门槛,强化环保、能耗、清洁生产等指标约束作用;(2)大幅提高差别电价的加价标准,提高落后产能的生产成本;(3)实现节能减排将控制总量、淘汰落后、技术改造结合起来。大力推广高温高压干熄焦、干法除尘、煤气余热余压回收利用、烧结烟气脱硫等循环经济和节能减排新技术新工艺。要尽快出台鼓励余热余压发电上网政策;(4)要强化节能减排计量管理,提高能耗和排放计量检测的准确性和数据分析能力;(5)强化环境准入、执法监管、考核问责等工作机制,加强环保监测、减排核查、清洁生产审核、能耗限额标准执行监察,推动重污染企业退出;(6)统筹研究有利于钢铁工业节能减排的进出口措施,相应调整产品进出口政策。

《意见》对推动钢厂节能设备采购具有非常积极的作用,具体体现在:(1)提高门槛和落后产能能耗成本将促使采购节能设备成为新建钢厂标准;(2)总量控制和考核问责制度将迫使现有钢厂加快技术改造步伐,加快高温高压干熄焦和煤气余热余压利用改造;(3)出台上网电价政策将提升余热余压发电的经济效益;(4)强化能耗计量将有利于充分利用合同能源管理的方式撬动节能设备采购。 钢铁行业余热资源丰富 钢铁行业能耗约占全国工业总能耗的15%,其中余热资源约占37%,节能空间大。据统计,我国大中型企业吨钢产生的余热总量为8.44GJ,约占吨钢能耗的37%,其中最终产品或中间产品所携带的显热约占余热总量的39%,各种熔渣的显热约占9%,各种废(烟)气占37%,冷却水携带的物理热约占15%,余热资源丰富。 我国大型钢铁企业余热利用率约为30-50%,国外先进企业余热利用率达90%,未来提升空间大。我国大中型钢铁企业余热资源的利用率大约为30-50%,如果加上其他中小型钢铁厂,全国平均水平则更低;而国外先进钢铁企业余热余能的回收利用率平均达80%,有的在90%以上,如日本新日铁高达92%。 钢铁是余热利用主战场 在钢铁行业中,余热可回收利用的部位有7处,是余热利用的主战场,其中重点部位有氧气转炉余热发电、烧结余热发电和与干熄焦余热发电。 氧气转炉余热锅炉:根据国家统计局统计数据,2009年中国粗钢和钢材产量分别为56803.3万吨和69626.3万吨,同比分别增长12.9%和15.2%。氧气转炉余热锅炉的运行环境较恶劣,使用寿命较短,平均3-5年就需要更新。目前国内有1000家钢铁厂,根据估算氧气转炉余热锅炉的国内需求量每年约350台/套;按照每套250万元的价格测算,每年约8.75亿元,未来5年国内市场容量约44亿元。 烧结余热锅炉:工信部计划用3年时间,投资超过50亿元,在全国37家重点钢铁企业对82台烧结机推广实施烧结余热发电技术,加上其他钢铁企业需求,预计烧结余热锅炉需求量每年约50台/套,按每套800万元测算,未来5年烧结余热锅炉市场容量约20亿元。 干熄焦余热锅炉:干熄焦余热回收系统可回收红焦显热83%左右,使炼焦过程的热效率提高10%以上。全国焦化企业数量在1000家左右,目前干熄焦锅炉配置比例约20%,未来提升空间大。预计未来5年我国干熄焦余热锅炉的总需求量约为200台,按照1300万元/台的价格测算,未来5年市场容量约26亿元。

中信重工余热发电技术简介

中信重工余热发电技术简介 1.1 概述 水泥生产线纯低温余热发电技术是利用从篦冷机中部抽出的热烟气和窑尾预热器排出的热烟气,通过余热锅炉产生过热蒸汽,过热蒸汽推动汽轮机做功发电。其优点在于完全利用废气余热,无外加热源,生产成本低廉。 水泥生产线配套建设纯低温余热电站,社会效益显著。在水泥生产线上配套建设纯低温余热电站可产生良好的社会效益,在环保的同时可以给水泥生产企业带来很可观的经济效益。如果在全国水泥行业广泛推广纯低温余热发电技术,将产生不可估量的企业效益和社会效益。按2009年统计数据,全国干法水泥全年熟料生产能力约为8.6亿多吨,其中,2009年投产的水泥熟料生产线为176条,熟料生产能力为19500万吨。近两年投运电站的生产线每年按250条计,届时投运电站的生产线预计为760余条,全部实施纯低温余热发电技术后,装机容量将达到5200MW,年可节标煤1136万吨;减排二氧化碳3216万吨、二氧化硫238万吨。在3200t/d水泥线建成的余热发电站拟装机6.5MW,可实现年供电量4152万kwh,根据2008年全国6000KW以上火电平均标准煤耗每千瓦时349g计算,年节约1.4万吨标煤。同时每年少向大气排放二氧化碳约3.9万吨,并可减少二氧化硫的排放,提高了环保水平。 综合利用大型干法水泥生产线大量的低温废气进行纯低温余热发电是贯彻落实科学发展观,推行循环经济的具体实践;是水泥工业实现节能降耗、清洁生产、资源综合利用和可持续发展的必由之路;推广纯低温余热发电技术适应水泥行业发展的需求,符合国家产业政策和发展趋势,具有广阔的发展空间,市场潜力巨大。 1.2中信重工纯低温余热发电技术介绍 作为中国水泥装备制造的龙头企业,中信重工长期致力于水泥线余热发电技术的研究。1991年,与国家建材局、西安交通大学、南京热管技术开发中心、天津大学等共同承担国家“八五”攻关项目“水泥厂中、低温余热发电工艺及装备的研究开发”,不断完善优化汽轮机设计制造工作,逐步形成了满足不同行业需求的不同参数的小型气轮机系列产品,主要有抽汽、背压、冷凝、背抽等各种型号。2004年中信重工积极响应国家政策,积极开展水泥线纯低温余热发电技术

余热发电的工艺流程、主要设备和工作原理简单介绍

纯低温余热发电工艺流程、主机设备和工作原理简介 直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。 工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到炉汽包炉汽包和.1闪蒸器内。进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。 主机设备性能特点: 一、余热锅炉: 炉和炉 锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。锅炉前设置一预除尘器(沉

降室),降低入炉粉尘。废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。 过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。 蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。 省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。 沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收集,避免粉尘对锅炉受热面的冲刷、磨损。 锅炉的设计特点如下: 锅炉型式为卧式,锅炉由蒸发器、过热器、汽包及热力管道构成,废气流动方向为水平流动,换热管采用蛇形光管,以防止积灰。因生料具有粘附性,故锅炉设置振打装置进行除灰,工质循环为采用循环泵进行强制循环方式。 二、汽轮机 汽轮机是用具有一定温度和压力的蒸汽来做功的回转式原动机。依其做功原理的不同,可分为冲动式汽轮机和反动式汽轮

干熄焦余热发电技术

干熄焦余热发电技术 目录 一、基本原理和工艺流程 1、干熄焦概念:所谓干熄焦是相对于湿熄焦而言的,干熄焦是采用惰性气体将红焦在无氧的环境下降温冷却的一种熄焦方法。 2、干熄焦流程:在干熄焦过程中,红焦从干熄炉的顶部装入,低温惰性气体由循环风机鼓入干熄炉冷却段红焦层内,冷却后的焦炭从干熄炉底部排除;吸收红焦潜热后温度升高的惰性循环气体从干熄炉环形烟道排出后,进入干熄焦余热锅炉进行换热,锅炉产生的蒸汽进入汽轮机带动发电机发电,从干熄焦余热锅炉冷却后的低温惰性气体进入循环风机重新鼓入干熄炉。 二、干熄焦技术优势及与湿熄焦的比较 1、干法熄焦能够提高焦炭强度和降低焦炭反应性,与传统湿法熄焦相比,M40可以提高3~5%,入炉焦比降低2~5%,高炉的常能可以提高1%; 2、同湿法熄焦相比,干熄焦可回收83%的红焦显热,采用干法熄焦,每处理1t焦炭,可以回收约为1.35GJ的热量,每干熄1t焦炭可以产生压力为3.8MPa,450℃的蒸汽0.54t.而传统的湿法熄焦不论采用低水分熄焦还是压力蒸汽熄焦的方法,都不能把这部分热量回收回来; 3、湿法熄焦过程中,红焦和水基础产生大量的酚、氰化合物和硫化物等有害物质,熄焦产生的蒸汽也被自由排放,严重腐蚀周围设备并污染大气,而干法熄焦采用惰性气体在密闭的系统中循环使用,可以有效降低排放污染; 4、利用熄焦产生的大量余热可以用来发电,降低企业电耗,发电后的蒸汽还可以作为参与到其它生产工序中; 三、应用条件及案例 对于年产100万吨焦炭,2.3亿立方米燃气的原工艺采用湿法熄焦,总投资约1.4亿元,建设处理能力为125T/H干熄焦工程项目并配套12MW次

密封油说明书解析

目录 1 密封油特性 (2) 1.1概要 (2) 1.2一般资料 (2) 1.3一般特性 (2) 1.4尺寸特性 (3) 1.5电气特性 (3) 1.6油特性 (4) 2 密封油系统的功能 (4) 2.1轴密封功能 (6) 2.2回油的回收与处理 (9) 2.3监测(见附图) (12) 3 密封油系统的运行 (13) 3.1密封油系统投产所需的辅助装置 (13) 3.2密封油系统投入前的准备工作 (14) 3.3密封油系统投运 (17) 3.4密封油系统运行 (19) 3.5密封油系统停止运行 (24) 4 密封油系统的维护 (25) 4.1维修工程说明 (25) 4.2防护性的维修 (26) 4.3正常运行时的维修工作 (28) 4.4处置和储存 (31) 附图 (32)

1 密封油特性 1.1 概要 北京北重汽轮电机有限责任公司提醒各用户注意: 1.严格按照手册里给出的准则执行; 2.如有违背本手册的操作,我厂将不负任何责任。 1.2 一般资料 大功率发电机一般是靠带有压力的氢气流动循环保证冷却的。此压力介于最低的临界值(发电机损耗允许的最低临界值)和由系统的机械阻力构成的最高临界值之间的值。 要防止空气进入发电机,以免导致: 1.由于摩擦和通风而增加损失; 2.降低冷却效率(由于提高载荷损失而降低流量); 3.可能造成空气和氢气混合物的爆炸。 正常的发电机系统应做到: 1.在机座和支承点,采用焊接; 2.在机座和支承之间,以及和半支承之间,在带压的状况下喷射绝缘混合剂。 3.在机座与冷却器之间,用特殊的橡胶密封,并应允许其自由膨胀。 4.在转子传动轴出口处,用带压的油循环进行密封,此时应形成密封的油系统。 此密封油系统能够做到: 1.长期供给每个密封处以冷却的液体,此冷却的液体应过滤,并经常性地保持一定的压力, 此压力应高于在发电机系统中的氢气的压力; 2.回收和处理密封回油,以便排除此液体或气体的杂质; 3.长期监测和维修供油状况,注意在运行时可能发生的事故。 1.3 一般特性 1.正常密封进油油压……………………0.45 MPa 2.发电机运行时密封处正常油流量……3000 /h 3.发电机运行时密封进油油温…………40 ℃ 4.发电机壳内氢压………………………0.4 MPa 5.油氢压差………………………………0.05 MPa

余热发电工艺参数

余热发电运行数据参数 油系统规

汽水系统 暖管 1汽机一切检查准备工作就绪后,值班长通知热机操作员,稍开AQC(SP炉汽门的旁路门,保持压力维持在0.2?0.3Mpa,以温升速度为5?10C/min暖管;当管壁温度达130?140C后,以0.25 Mpa/min的速度提升管压力至额定后(1.2 5Mpa),全开AQC (SP)炉并汽门,关闭旁路门。 2开始暖管时,疏水门应全开,随着管壁温度和管压力的升高,应逐渐关小疏水门,以防大量蒸汽漏出;

3在升压过程中若发生管道振动,应立即降压直至振动消除,经充分疏水后, 方可继续升压。 4在暖管中完成保安系统的静态试验; 5为防止在调节保安系统进行试验时有蒸汽漏入汽缸引起转子变形,在试验 过程中要持续盘车;转子未转动之前,严禁蒸汽漏入汽缸及用任何方式预热汽轮机; 6暖管同时,首先启动循环水泵,再向凝汽器灌水;启动凝结水泵并开启再循环门,使凝结水在凝汽器之间循环,维持好热井水位。 7在升压过程中随时注意检查管道膨胀和支吊状况,在暖管过程中随着温度 压力升高,注意调整控制旁路门及疏水门的开启。 凝结器抽真空 1启动射水泵,使真空迅速提高; 2当真空升高到-0.085Mpa后,可以扣上危急遮断油门; 3当润滑油温达到35~38 C时,逐渐进行低速暖机. 汽轮机下列条件禁止启动 1主要表计或任一保安装置失灵; 2电动主汽门、自动主汽门有卡涩现象; 3调速系统不能维持汽轮机空负荷运行或甩去全负荷后不能控制转速; 4交流高压油泵、交流润滑油泵、直流油泵均不正常; 5油质不合格,或润滑油压低于正常值; 6汽轮发电机组振动超过0.05mm ; 7汽轮发电机组转动部分有明显摩擦声;

余热发电工艺流程大纲纲要及主机设备具体工作原理.doc

纯低温余热发电工艺流程及主机设备工作原理 工艺流程 :凝汽器热水井内的凝结水经凝结水泵泵入闪蒸器出 水集箱,与出水汇合 , 然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热 , 经省煤器加热后的水(167 ℃ ) 分三路分别送到AQC炉汽包,PH 炉汽包和闪蒸器内。进入两炉汽包内的水在锅炉内循环受热, 最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功 . 进入闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮 机后三级做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参 与热力循环。生产过程中消耗掉的水由纯水装置制取出的纯水经补给 水泵打入热水井。 主机设备性能及原理: 一、余热锅炉 : AQC 炉和 PH炉 AQC锅炉的设计特点如下 :锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。锅炉前设置一预除尘器(沉降室),降低入炉粉尘。废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。锅炉内不易积灰,由 烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。 过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的 再加热,提高其过热度(温度之差),提高其单位工质的做功能力。 蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。 省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高

给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽 包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后 形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。 沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收 集,避免粉尘对锅炉受热面的冲刷、磨损。 PH 锅炉的设计特点如下: 锅炉型式为卧式, 锅炉由蒸发器、过热器、汽包及热力管道构成,废气流动方向为水平流动, 换热管采用蛇形光管 , 以防止积灰。因生料具有粘附性,故锅炉设置振打装置进行除灰 , 工质循环为采用循环泵进行强制循环方式。 锅炉工作原理:利用废气加热蒸发设备,使设备内的水变成蒸汽 , 为气轮机提供气源。 二、汽机系统 汽轮机是用具有一定温度和压力的蒸汽来做功的回转式原动机。 依其做功原理的不同,可分为冲动式汽轮机和反动式汽轮机两种类 型。两种型式汽轮机各具特点,各有其发展的空间。 冲动式汽轮机:蒸汽的热能转变为动能的过程,仅在喷嘴中发生,而工作叶片只是把蒸汽的动能转变成机械能的汽轮机。即蒸汽仅在喷嘴中产生压力降,而在叶片中不产生压力降。 反动式汽轮机:蒸汽的热能转变为动能的过程,不仅在喷嘴中发生,而且在叶片中也同样发生的汽轮机。即蒸汽不仅在喷嘴中进行膨胀,产生压力降,而且在叶片中也进行膨胀,产生压力降。 冲动式与反动式在构造上的主要区别在于:

余热发电DCS系统应用介绍

余热发电DCS系统 应用介绍

目录 第一章工业生产中余热发电背景介绍 (1) 第一节工业生产中能源综合利用现状 (1) 第二节我国冶金行业余能综合利用发展前景 (1) 第三节余热发电发展趋势 (2) 第四节工业生产过程中的余热综合利用概况 (2) 第二章水泥厂余热发电介绍 (3) 第一节水泥厂余热发电项目的兴起 (3) 第二节水泥厂余热发电的工作过程 (3) 第三节应用和推广前景 (3) 第三章集散控制系统(DCS)简介 (5) 第一节DCS网络 (5) 第二节DCS节点和系统组态 (5) 第三节DCS系统的发展 (5) 第四节DCS系统的应用 (6) 第四章项目现场设备介绍 (8) 第一节现场锅炉、汽机、主要辅机设备及现场仪表 (8) 一、监控中心二楼 (9) 二、一楼凝汽器、冷油器、泵房、循环水管等。 .................................... 错误!未定义书签。 三、监控中心楼下的配电屏柜.................................................................... 错误!未定义书签。 第二节中控室控制设备 ............................................................................... 错误!未定义书签。 一、常规监控系统屏柜与后台系统............................................................ 错误!未定义书签。 二、余热发电控制器及IO屏...................................................................... 错误!未定义书签。

密封油系统说明书

发电机密封油系统 1、密封油系统的工作原理 密封油系统采用双流双环式密封瓦,其密封原理见下面图1 。 图3—1:密封瓦结构 由于氢冷汽轮发电机的转子轴伸必须穿出发电机的端盖,因此这部分成了氢内冷发电机密封的关键。密封油分空侧和氢侧二个油路将油供应给轴密封瓦上的两个环状配油槽,油沿转轴轴向穿过密封瓦内径与转轴之间的间隙流出。如果这二个油路中的供油油压在密封瓦处恰好相等,油就不会在二条配油槽之间的间隙中串流。通常只要密封油压始终保持高于机内气体压力,便可防止氢气从发电机内逸出。氢侧油路供给的油则将沿轴和密封瓦之间的间隙,流向氢侧并流入消泡箱。而空侧油路供给的油则将沿轴和密封瓦之间的间隙流往轴承侧,并汇同轴承回油一起进入空侧回油密封箱,从而防止空气与潮汽侵入发电机内部。 1)密封油系统的功能和特点: A )向密封瓦提供二个独立循环的空、氢侧油源。防止发电机内压力气体沿转轴逸出。

B )保证空侧密封油压始终高于机内气体压力某一个规定值,并确保密封瓦内氢侧与空侧的油压维持相等,其压差限定在允许变动的范围之内。 C )通过热交换器冷却密封油,从而带走因密封瓦与轴之间的相对运动而产生的的热量,确保瓦温与油温控制在要求的范围之内。 D )通过油过滤器,去除油中杂物,保证密封油的清洁度。 E )通过发电机消泡箱和氢侧回油控制箱,释放掉溶于密封油中的饱和机氢气。 F )空侧油路备有多路备用油源,以确保发电机安全、连续运行。 G )利川压差开关、压力开关及压差变送器等,自动监测密封油系统的运行。 H )空、氢侧油路各装有一套加热器,以保证密封油的运行油温始终保持所要求的范围之中。 I )密封油系统采用集装式,便于运行操作和维修。 2)密封油系统的工作原理 密封油系统是一个比较完善的供油系统,其系统原理见图2,图中显示密封油系统分空侧油路和氢侧油路两个部分。

余热发电油系统介绍

余热发电汽轮机组油系统工艺知识介绍 一、油系统的作用及工艺流程 1. 油系统的作用 (1)减少轴承的摩擦损失,并带走因磨擦产生的热量和由转子传来的热量; (2)向调节系统和保护系统装置供油,以保证其正常工作;(3)供给传动机构的润滑用油 (4)供油过程中对管道及轴承起到清洗和防腐蚀的作用。 2.供油的工艺流程 由主油泵或高压交流油泵打出的油被送到润滑油过滤器和油冷却器处,控制油压力调节阀将使油压保持在0. 8MPa以上,另外调整油冷却器入口冷却水量,控制油温度调节阀使汽机、发电机各处轴承入口处供油温度保持在35-45℃之间。 油路在润滑油过滤器入口处分为两条支路: (1)一路到控制系统部分,控制油送到调节器主伺服电机,紧急停车阀及超速调节器导引阀等停车设施,为使控制油压波动最小,在管线上装有过压阀:注入润滑油压力为0.6MPa压力;(2)另一路为润滑路线,0.8MPa高压油由双重孔板及润滑油压调节阀来降至0.1~0.13MPa左右,润滑油被送至汽机的每个轴承、减速机与发电机、减速啮合齿轮及盘车设施。 二、供油系统的设备组成及作用

1.余热发电油系统的组成:主油泵、高压交流油泵、润滑交流油泵、直流油泵、注油器、油过滤器、冷油器、油净化器、低压油过压阀、启动排油阀、油雾风扇、油箱、单向阀及相关的管道和阀门。 2.作用 1、主油泵:离心式油泵,位于减速机齿轮轴的前向端,由主减速齿轮通过一套泵驱动齿轮来驱动,离心泵由主轴直接带动,设备简单,系统紧凑,但自吸能力差,需使用注油器向油泵供油。 2. 高压交流油泵:又称启动油泵或调速油泵,其作用是在主油泵不能正常工作时向调节、保护、润滑系统供油。自动启动连锁条件:润滑油压≤1MPa时高压油泵自动启动; 3. 润滑交流油泵、直流油泵:润滑交流油泵和直流油泵又称低压辅助油泵或事故油泵,作用是在主油泵不能供给系统润滑油时向各轴承及盘车装置提供润滑油。自动启动连锁条件:润滑油压≤0.05MPa时润滑交流油泵自动启动;润滑油压≤0.04MPa时直流油泵自动启动; 4.冷油器:对润滑油进行降温冷却的设备,控制润滑油温度在35°C~45°C之间,属于表面式换热器。油从上而下沿若干隔板构成的弯曲流道流动,冷却水则是自上而下在铜管中流动。要求油侧压力要高于水侧压力,防止铜管破裂时由内进水而使油质恶化。 5.润滑油过滤器、调速油过滤器在切换时:

余热发电工艺流程讲解

余热发电工艺流程讲解

余热发电工艺流程讲解 授课人:孙飞 原水箱 纯水装置 凝汽器 凝结水泵 锅炉给水泵 AQC 炉省煤器 AQC 炉汽包 AQC 蒸发器 AQC 炉过热器 汽轮机 发电机 PH 炉汽包 PH 炉过热器 PH 炉蒸发器 闪蒸器 纯水箱 纯低温水泥窑余热发电技术是直接利用窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何

污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。 工艺流程(见附图): 余热电站的热力循环是基本的蒸汽动力循环,即汽、水之间的往复循环过程。蒸汽进入汽轮机做功后,经凝汽器冷却成凝结水,凝结水经凝结水泵(150A/B)泵入闪蒸器出水集箱,与闪蒸器出水汇合,然后通过锅炉给水泵(230A/B)升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的高温水(167℃)分三路分别送到AQC炉汽包,PH炉汽包和闪蒸器内。进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入闪蒸器内的高温水通过闪蒸原理产生一定压力下的饱和蒸汽送入汽轮机第七级起辅助做功作用,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵(511)打入热水井(凝汽器140)。 水泥厂余热资源的特点是:流量大,品位较低。以宁国水泥厂4000t/d生产线为例,PH(预热器)和AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、350℃和306600Nm3/h、238℃,余热发电便是充分利用这两部分余热资源进行热能回收。 1)热力系统 整个热力系统设计力求经济、高效、安全,系统工艺流程是

低温余热发电系统设计方案

低温余热发电系统设计方案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

低温余热发电系统设计方案 1. 需考虑的问题 低温余热发电系统的窑尾余热锅炉(SP炉)和篦冷机余热锅炉(AQC炉)串联于熟料生产线上,两锅炉阻力均小于1000Pa。设计时,必须考虑下列问题:(1)窑尾主排风机和窑头、窑尾电除尘器及其风机的能力是否适应增设窑尾余热锅炉和篦冷机余热锅炉的条件; (2) 原料磨的热风系统能否满足工艺要求; (3) 该两台锅炉系统的安装是否不破坏原生产厂房。 经对窑系统设计资料认真复核,确认增设两台锅炉系统后所涉及的上述设备能力可以满足要求,不须作任何改造;两台锅炉系统的布置可以不破坏原生产厂房;出窑尾锅炉废气被送至生料原系统作为烘干热源,经核算,只要控制出窑尾锅炉废气温度≥240℃~℃260就可满足入磨原料综合水份≤5%的烘干要求。 双压纯低温余热发电技术介绍 双压余热发电技术就是按照能量梯级利用的原理,在同一台余热锅炉中设置2个不同压力等级的汽水系统,分别进行汽水循环,产生高压和低压两种过热蒸汽;高压过热蒸汽作为主蒸汽、低压过热蒸汽作为补汽分别进入补汽凝汽式汽轮机,推动汽轮机做功发电,双压余热发电系统使能量得到合理利用,热回收效率高。 余热资源参数不同,余热锅炉的低压受热面与高压受热面有不同的布置方式。根据辽源金刚水泥厂窑头(AQC)和窑尾(SP)的余热特点和工艺要求,经过余热利用后,要使AQC余热锅炉排烟温度降到100℃左右。使窑尾SP余热锅炉排烟温度降低到220℃左右后进入原料磨烘干原料,其设置的双压余热发电系统简图如图1。

密封油系统工作原理、作用及运行调整

密封油系统工作原理、作用及运行调整 一、密封油流程 空侧来油一路就是主油箱,一路就是润滑油,经空侧密封油泵升压通过滤网、压差阀进入空侧密封瓦。其中油泵出口引出一路向密封油箱补油用.压差阀取样:氢侧取自氢压,油侧取自空侧密封瓦入口处油管.空侧密封瓦回油经氢油分离器回至主油箱,在氢油分离器内析出得氢气及油烟排至机房顶部。 氢侧来油:密封油箱引出后经氢侧密封油泵升压后通冷油器、过滤网、平衡阀进入氢侧密封瓦.平衡阀取样:一路取自空侧密封瓦入处口油管,一路取自氢侧密封瓦入口处油管.氢侧密封瓦回油回至密封油箱。 发电机内氢气与密封油箱内氢气有连通管相连。 发电机密封油系统得作用就是防止外界气体进入发电机内部及阻止氢气从机内漏出,以保证电机内部气体得纯度与压力不变.我厂发电机采用双流环式密封. 双流环式密封采用双流环式密封瓦,它有两套独立得循环供油系统,一为空侧油系统,另一为氢侧油系统.其主要特点有:1)氢侧与空侧各有一股油注入密封瓦,氢侧油自成一个闭式循环系统,一方面避免了溶有空气得空侧油流入氢侧,影响机内得氢气纯度;另一方面氢侧回油中得氢气在任何时候也不排向大气,都将回到机壳内。氢侧油流中溶有得氢气如达到饱与后就不再继续溶入,氢气也就不致被油无**地带走。因此即使在高氢压下,也不会出现耗氢过多得问题;2)在氢侧进油管上加装油压自动平衡阀,调节氢侧与空侧之间得油压,使之保持恒定与压差在规定范围之内(氢侧与空侧密封油差压≤±1、5KP a),从而使两个回路之间得油量交换达到最小,大大减少空气对氢气得污染及降低耗氢量;3)双流环式密封瓦中任一股油因故暂时断油时,另一股油仍可维持向密封瓦供油,从而提高了运行得可靠性。 主要部件得作用及动作原理: 1、氢侧密封油箱得作用:(1)封住氢气,使氢系统与油系统隔离。这样既可以防止氢气跑入油系统,保证机内氢气压力又可以避免氢气与空气混合,带来爆炸危险;(2)对密封瓦得氢侧回油起到沉淀与分离作用。使油中所含得氢气分离出来,返回机壳,从而减少了氢气得消耗量;(3)还能起到调节油量得作用. 2、差压调节阀:稳定地维持某一油氢压差值,这个压差值尽可能小,以减小氢侧油量与减轻对机内得污染。 工作原理:压差阀得活塞上面引入机内氢气压力(压力为p1),活塞下面引入被调节并输出得空侧密封油(压力为p),活塞自重及其配重片重量(或调节弹簧)之与为p2(可调节),则使p=p1+p2(上下力平衡)。 当机内氢气压力p1上升时,作用于活塞上面得总压力(p1+p2)增大,使活塞向下移动,加大三角形工作油孔得开度,使空侧油量增加,则进入空侧密封瓦得油压随之增加,直到达到新得平衡;当机内氢气压力p1下降时,作用于活塞上面得总压力(p1+p2)减少,使活塞上移,减少三角形油孔得开度,使空侧油量减少,压力p随之减少,直到达到新得平衡。(见图)

余热发电系统

2.6 余热发电系统 概述 本工程拟利用垃圾焚烧余热锅炉产生的过热蒸汽,供凝汽式汽轮发电机组发电。 垃圾焚烧余热锅炉产生的过热蒸汽参数为4.1MPa 400C。考虑 到由余热锅炉过热器出口至汽轮机蒸汽入口间管路上的温度、压力损失,本工程汽机进汽参数确定为3.8MPa 390C。在设计条件下3台焚 烧余热锅炉产汽108.51t/h ,供汽轮机用汽。按照全厂处理能力 8 1200t/d,全年运行8000h计算,汽轮机组年发电约:1.787 X 10 KWh 全厂热效率约为:18.68%,厂用电率:21%。 选用2台12MW最大15MW凝汽式汽轮发电机组。一段非调整抽汽 供焚烧炉空气预热器,二段非调整抽汽共除氧及采暖用。 热力系统及辅助设备选择 根据垃圾焚烧发电厂以处理垃圾为主的特点,汽轮发电机组采用“机随炉”的运行方式。为保证在汽轮机故障或检修期间垃圾焚烧炉的稳定运行,设置了汽机旁路系统,用于汽机停机时将主蒸汽通过两级减温减压后送入凝汽器,凝结水送至除氧器,在除氧器除氧加热后用给水泵送至余热锅炉,维持垃圾焚烧锅炉的正常运行。凝汽式机组的抽汽为非调整抽汽,抽汽压力和流量随着机组负荷的变化而变化。 在汽轮机负荷较低时,一、二级抽汽量不能满足空气预热器和 除氧器的加热蒸汽的要求,设置主蒸汽减温减压器,补充抽气量的不足。在汽机检修而焚烧炉仍然运行时,通过减温减压器全部或部分提供空气预热器和除氧器加热蒸汽。 热力发电系统主要有下列四种运行工况: 1) 正常发电工况

在正常焚烧发电工况下,3炉2机运行。3台余热余热锅炉产生的过热 蒸汽送往汽轮发电机组,汽轮机一级抽汽送至焚烧炉空气预热器用于加热一次风,其疏水回收送至除氧器;二级抽汽进入除氧器加热给水。三级抽汽进入低压加热器,加热从凝汽器经凝结水泵加压后经汽封加热器预热的凝结水。此工况下,汽轮机的进汽按照余热锅炉产汽量调节。汽机检修与锅炉检修同时进行。 2) 停机不停炉工况 1台汽轮机检修或故障停机,3台垃圾焚烧锅炉正常运行,产汽量为 108.51t/h 。扣除汽水损失,剩余汽量为105.3t/h, 在此工况下,另一台汽轮机在最大工况下运行,发电15MWV进汽量约为71.04t/h,剩余 34.26t/h ,一部分通过减温减压器用于空气预热器和除氧器,其余进入检修汽机的旁路蒸汽冷凝系统,旁路蒸汽冷凝系统的一、二级减温减压器和待修汽机的冷凝器投入运行。 3) 机炉检修工况 当1台垃圾焚烧锅炉检修时,另1台运行的锅炉以最大产气量运行,供 1 台汽轮机在最大工况下运行,故可同时安排另1 台汽轮机检修。因此,在每年大修时应同时安排锅炉与汽机检修,以提高经济效益。 主蒸汽系统(含旁路蒸汽冷凝系统) 余热锅炉过热蒸汽集汽联箱出口到汽轮机进口的蒸汽母管,以

余热发电系统安全操作规程通用范本

内部编号:AN-QP-HT397 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 余热发电系统安全操作规程通用范本

余热发电系统安全操作规程通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 一、加药装置安全操作规程 1、上岗人员必须正确穿戴好劳动保护用品,女同志应将头发盘起禁止带病或酒后上岗。 2、上岗人员应熟悉设备的工作原理、工艺流程、操作规程及运行参数。 3、严格按照《加药规程》及临时药品补充变更通知单进行药液的补充、稀释作业。 4、当药箱液位在低于搅拌机叶片以下时,禁止搅拌运行,以免发生振动或传动轴偏摆造成传动轴的永久变形。 5、严格按照设计加药量来调整加药泵的柱

余热发电工艺流程讲解

余热发电工艺流程讲解 授课人:孙飞 纯低温水泥窑余热发电技术是直接利用窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何

污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。 工艺流程(见附图): 余热电站的热力循环是基本的蒸汽动力循环,即汽、水之间的往复循环过程。蒸汽进入汽轮机做功后,经凝汽器冷却成凝结水,凝结水经凝结水泵(150A/B)泵入闪蒸器出水集箱,与闪蒸器出水汇合,然后通过锅炉给水泵(230A/B)升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的高温水(167℃)分三路分别送到AQC炉汽包,PH炉汽包和闪蒸器内。进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入闪蒸器内的高温水通过闪蒸原理产生一定压力下的饱和蒸汽送入汽轮机第七级起辅助做功作用,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵(511)打入热水井(凝汽器140)。 水泥厂余热资源的特点是:流量大,品位较低。以宁国水泥厂4000t/d生产线为例,PH(预热器)和AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、350℃和306600Nm3/h、238℃,余热发电便是充分利用这两部分余热资源进行热能回收。 1)热力系统 整个热力系统设计力求经济、高效、安全,系统工艺流程是由两台高效余热锅炉AQC、PH?锅炉闪蒸器和一套汽轮发电机

组组成,辅之以冷却水系统、纯水制取系统、锅炉给水系统及锅炉粉尘输送系统。余热锅炉内进行热交换产生压力为25kg/cm2、温度为335℃~350℃、额定蒸发量为101t/h的过热蒸汽通入汽轮机,进行能量转换,拖动发电机向电网输送电力。 (1)采用凝汽式混汽式汽轮机。凝汽式是指做过功的蒸汽充分冷凝成凝结水,重新进入系统循环,减少系统补充水量。混汽式是指汽轮机除主蒸汽外,另有一路低压饱和蒸汽导入汽轮机做功,从而提高汽轮机相对内效率,提高发电机输出功率。 (2)设置具有专利技术、高热效率的余热PH锅炉,采用特殊设计的机械振打装置进行受热面除灰,保证锅炉很高的传热效率。 (3)应用热水闪蒸技术(高压热水进入低压空间瞬间汽化现象),设置一台低压闪蒸器,一方面将闪蒸出的饱和蒸汽导入汽轮机做功,进一步提高汽轮机做功功率,另一方面形成锅炉给水系统循环,可以有效地控制AQC炉省煤器段出口水温,保证锅炉给水工况稳定。 (4)由于PH出口废气还要用于原料烘干,所以PH锅炉无省煤器,只设蒸发器和过热器,控制出炉烟温在250℃,仍可满足水泥生产线工艺需求。 (5)采用热水闪蒸自除氧结合化学除氧的办法进行除氧,不另设除氧器,减少了工艺设备,简化了工艺流程。

中国余热发电市场概述

中国余热发电市场概述 我国工业余热资源丰富,特别是在钢铁、有色、化工、水泥、建材、石油与石化、轻工、煤炭等行业,余热资源约占其燃料消耗总量的17%-67%,其中可回收利用的余热资源约占余热总资源的60%。目前我国余热资源利用比例低,大型钢铁企业余热利用率约为30%~50%,其他行业则更低,低温余热发电利用的提升潜力大。 (1)钢铁、冶金、化工等行业的余热发电市场容量为1100亿元 钢铁工业是我国重点的耗能大户,钢铁行业能耗约占全国总能耗的15%,其中余热资源约占37%,节能空间大。据统计,05年我国大中型企业吨钢产生的余热总量为8.44GJ,约占吨钢能耗的37%,其中最终产品或中间产品所携带的显热约占余热总量的39%,各种熔渣的显热约占9%,各种废(烟)气占37%,冷却水携带的物理热约占15%,余热资源十分的丰富。钢铁生产工艺流程长,工序多,且主要以高温冶炼、加工为主,生产过程中产生大量余热能源,主要来自烧结机烟气显热、红焦显热、转炉烟气及加热炉炉底的余热回收装置等,各种余热资源约占全部生产能耗的68%,说明在目前钢铁生产过程中2/3以上的能量是以废气、废渣和产品余热形式消耗。我国大中型钢铁企业余热资源的利用率大约为30%~50%,如果加上其他中小型钢铁厂,全国平均水平则更低;而国外先进钢铁企业余热余能的回收利用率平均达到了80%,有的在90%以上,如日本新日铁高达92%。在余热发电技术的研发应用方面,与日本、德国等发达国家钢铁工业相比,我国钢铁行业的余热发电技术起步较晚。目前,钢铁工业余热发电主要有以下三种方式,一是利用焦化、烧结工序烟气余热换热产生过热蒸汽发电;二是利用炼钢、轧钢工序烟气余热换热产生饱和蒸汽发电;第三种是利用高炉的冲渣热水发电。 近年来从事水泥窑余热发电技术的设计公司开始向钢铁、冶金、化工、钢铁厂各种余热资源及潜力等行业拓展。目前以水泥窑余热发电技术为基础,在钢铁、化工、玻璃等行业的多家生产厂建设投运了余热电站。钢铁行业各生产工序如焦炭、烧结机、高炉、转炉的余热均可以回收进行余热发电,焦炉的余热利用较好,废热发电仅达到37%,其他工序回收比例更低。预计在“十二五”期间,随着钢铁行业余热利用技术的逐步成熟,国家对节能要求的进一步提高,钢铁行业的余热电站市场空间十分广阔。 国内钢铁业余热利用比例低,余热利用发电将是钢铁业节能主战场。工业余热资源约占其燃料总热量的17%-67%,可回收率达60%。钢铁行业能耗约占全国工业总能的15%,其中余热资源约占37%,节能空间大(如图所示)。目前我国余热资源利用比例低,宝钢等大型钢铁企业余热利用率仅在30%-50%,远低于日本的90%,而其他企业则更低。钢厂余热、余压利用部位仅干熄焦、转炉和烧结余热发电的市场可达到1000亿。在钢铁行业中,余热可回收利用的重点部位有氧气转炉余热发电、烧结余热发电和与干熄焦余热发电。

相关文档
最新文档