数控插补原理
第三章 数控插补原理
![第三章 数控插补原理](https://img.taocdn.com/s3/m/c62b03816529647d27285229.png)
解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。
第5章 数控插补原理
![第5章 数控插补原理](https://img.taocdn.com/s3/m/2d9fc22dccbff121dd368347.png)
3.时间分割法插补精度 直线插补时,轮廓步长与被加工直线重合,没有插 补误差。
圆弧插补时,轮廓步长作为弦线或割线对圆弧进行 逼近,存在半径误差。
Y A(Xe,Ye) l l △X β O l △Y
α
第5章 数控装置的轨迹控制原理
FT l er 8r 8r
2
2
式中 er——最大径向误差; r——圆弧半径。 圆弧插补时的半径误差er与圆弧半径r成反比,与插补周期T和进 给速度F 的平方成正比。 插补周期是固定的,该误差取决于进给速度和圆弧半径。 当加工圆弧半径确定后,为了使径向误差不超过允许值,对进给 速度有一个限制。 例如:当要求er≤1μ m,插补周期为T=8ms,则进给速度为:
第5章 数控装置的轨迹控制原理
5.2 脉冲增量插补
-------逐点比较法
插补原理:每次仅向一个坐标轴输 出一个进给脉冲,每走一步都要通 过偏差计算,判断偏差点的瞬时坐 标同规定加工轨迹之间的偏差,然 后决定下一步的进给方向。 每个插补循环由四个步骤组成。
Y P1 P2 B
A 0
P0(x,y)
X 终点到?
设刀具由A点移动到B点,A(Xi-1,Yi-1 )为圆弧上一插补 点, B(Xi,Yi)为下一插补点。AP为A点的切线,AB为本次插补的合成 进给量,AB=f。M为AB之中点。 通过计算可以求得下一插补点B点的坐标值
X i X i1 X
Yi Yi 1 Y
第5章 数控装置的轨迹控制原理
∑=5-1=4 ∑=4-1=3 ∑=3-1=2
9
10
F8>0
F9>0
-X
-X
F9=4-2×2+1=1,X9=2-1=1,Y9=5
数控机床插补原理
![数控机床插补原理](https://img.taocdn.com/s3/m/34c950768e9951e79b8927bf.png)
3.4.3.偏差计算 3.4.3.
进给一步后,计算新加工点与规定的 轮 廓的新偏差,为下一次偏差判别做准备, 根据偏差判别的结果给出计算方法. 当F≥0时,为F-Y,即沿+X方向走一步; 当F<0时,为F+X,即沿方+Y向走一步;
宋成伟
3.4.4.终点判别 3.4.4.
判断加工点是否到达终点,若已到 终点,则停止插补,否则再继续按此四 个节拍继续进行插补. 1.讨论累计步数∑的问题. 2.讨论终点坐标时所要完成的插补步数 的问题.
宋成伟
逐点比较法既可以实现直线 插补也可以实现圆弧等插补,它 的特点是运算直观,插补误差小 于一个脉冲当量,输出脉冲均匀 ,速度变化小,调节方便,因此 在两个坐标开环的CNC系统中应 用比较普遍.
宋成伟
该方法一般不用于多轴联动,应用范围 有一定限制.它的算法特点是: 3.2.1.1.每次插补的结果仅产生一个单 位的位移增量(一个脉冲当量),以一个 脉冲的方式输出给步进电机,采用以用折 线逼近曲线的思维方式.
宋成伟
3.2.3.3.该算法比脉冲增量插补算 法较为复杂,对计算机运算速度有 一定要求. 它主要用于交,直流伺服电机驱 动的闭环,半闭环CNC系统.也可 用于步进电动机开环系统.
宋成伟
3.4.直线插补计算 Y .
这种插补方法是以 阶梯折线来逼近直线和Ye 圆弧等曲线的,而阶梯 折线与规定的加工直线 或圆弧之间的最大误差 不超过一个脉冲当量,Ym 因此如果数控机床的脉 冲当量足够小,就能够 满足一定的加工精度的 0.0 要求.
宋成伟
使用数据采样插补的数控系统, 其位置伺服通过计算机及测量装置 构成闭环.计算机定时地对反馈回 路采样,采样的数据与插补程序所 产生的指令数据相比较,用其误差 信号输出去驱动伺服电动机.采样 周期一般为10ms左右.
数控机床插补原理
![数控机床插补原理](https://img.taocdn.com/s3/m/2e0394f3aeaad1f346933feb.png)
X轴实际位置 X轴位置
比较
X坐标轴的位置增量/本周期
插 补 程 序
X轴位置 跟踪误差
Y坐标轴的位置增量/本周期
Y轴位置
采样反馈
比较
Y轴位置 跟踪误差
Y轴实际位置
伺 服 位 置 控 制 软 件
X轴 速度
X 驱 动 Y 驱 动
Y轴 速度
2插补的分类
2.4数据采样插补算法分类
1、直接函数法
数 据 采 样 插 补 算 法
Σ =5
Σ =4 Σ =3
6
7 8
F5<0
F6>0 F7<0
+y
-x -x
F6=F5+2y5+1=4
F7=F6-2x6+1=1 F8=F7-2x7+1=0
x6=4, y6=0
x7=4, y7=0 x8=4, y8=0
Σ =2
Σ =1 Σ =0
四、总结
插补原理,就是根据加工要求,确定出起 点和终点坐标之间的中间点,进而控制刀具 沿规定的轨迹运动,以加工出规定的轮廓的 方法。
X i 1 X i 1 2 2 2 Fi 1 ( X i 1) Yi R Fi 2 X i 1
3.3.4终点判别
双向计数:Σ=|Xb-Xa|+|Yb-Ya|,Σ=0停止 单向计数:Σ=max{|Xb-Xa|,|Yb-Ya|},Σ=0停止 分别计数:Σ1=|Xb-Xa|,Σ2=|Yb-Ya|,Σ1&Σ2=0停止
y
4 2 2 3
E(4,2)
o
1 1
x
2.投影法(单向计数) 取X方向和Y方向最多的步数作为计 数长度,此方向每走一步减一,直 到减为0停止。 Σ=max{|Xe|,|Ye|} Σ=0插补停止
数控机床的插补原
![数控机床的插补原](https://img.taocdn.com/s3/m/d6b7d04603020740be1e650e52ea551810a6c98c.png)
多项式插补的优缺点
优点
多项式插补能够生成光滑的曲线,适用于复杂形状的加工;可以通过增加控制点来提高插补精度;可以处理多种 类型的插补需求。
缺点
计算量大,需要较高的计算能力;对于某些特殊形状的加工,可能需要特殊的多项式函数形式;需要精确的已知 数据点,否则可能导致插补误差较大。
05
样条插补
样条插补的定义
样条曲线法
样条曲线法是一种更加高级的插补方法,它使用多项式样 条曲线来描述加工路径,能够实现更加复杂的形状加工, 并提高加工精度和表面质量。
插补算法的精度和效率
精度
插补算法的精度是衡量其性能的重要指标之一。高精度的插 补算法能够生成更加精确的路径,从而提高加工精度和表面 质量。
效率
插补算法的效率也是需要考虑的因素之一。高效的插补算法 能够缩短加工时间,从而提高生产效率。在实际应用中,需 要根据具体需求选择精度和效率之间的平衡点。
确定已知数据点
首先需要确定起始点和终止点的坐标位置,以及可能的其他控制点。
构造多项式函数
根据已知数据点,选择合适的多项式函数形式,如线性函数、二次函 数或更高次的多项式。
求解插值方程
通过求解插值方程,得到多项式函数的系数,使得该函数在已知数据 点处的值与实际值相等。
生成加工路径
将多项式函数与机床的坐标系统关联起来,生成加工路径,控制机床 的运动轨迹。
04
多项式插补
多项式插补的定义
多项式插补是一种数学方法,用于在 两个已知数据点之间生成一条光滑曲 线。它通过构造一个多项式函数来逼 近给定的数据点,使得该函数在数据 点处的值与实际值尽可能接近。
VS
在数控机床中,多项式插补被用于生 成零件加工的路径,使得加工过程更 加精确和光滑。
数控的插补原理
![数控的插补原理](https://img.taocdn.com/s3/m/6d68067a1711cc7931b71684.png)
2)零件轮廓必须符合X轴、Z轴方向同时单调增大或单调减少。
外圆粗车循环 FANUC-0T 数控车床编程:在复合固定循环中,对零件的轮廓定义之后,即可完成从粗加工到精加工的全过程,使程序得到进一步简化。外圆粗切循环是一种复合固定循环。适用于外圆柱面需多次走刀才能完成的粗加工,编程格式:G71 U(△d) R(e) G71 P(ns) Q(nf) U(△u) W(△w) F(f) S(s) T(t) 式中:△d-背吃刀量;e--退刀量;ns--精加工轮廓程序段中开始程序段的段号;nf--精加工轮廓程序段中结束程序段的段号;△u--X轴向精加工余量;△w--Z轴向精加工余量;f、s、t--F、S、T代码。
复合螺纹切削循环指令 FANUC-0T 数控车床编程:复合螺纹切削循环指令可以完成一个螺纹段的全部加工任务。它的进刀方法有利于改善刀具的切削条件,在编程中应优先考虑应用该指令,
精加工循环 FANUC-0T 数控车床编程:精加工循环复合固定循环由G71、G72、G73完成粗加工后,可以用G70进行精加工。精加工时,G71、G72、G73程序段中的F、S、T指令无效,只有在 ns----nf程序段中的F、S、T才有效。编程格式 G70 P(ns) Q(nf) 式中:ns-精加工轮廓程序段中开始程序段的段号;nf-精加工轮廓程序段中结束程序段的段号。
数控插补
![数控插补](https://img.taocdn.com/s3/m/4266851952d380eb62946d1d.png)
运动轨迹的插补原理
三、逐点比较法
逐点比较法又称区域判别法或醉步式近似法。
原理:被控制对象在数控装置的控制下,按要求的轨
迹运动时,每走一步都要和规定的轨迹比较,根据 比较的结果决定下一步的移动方向。 逐点比较法可以实现直线和圆弧插补。 逐点比较法的应用对象主要在两坐标开环CNC系统 中应用。
(一) 原理
第1章 数控插补与刀补计算原理
学习目标
• 数控插补 • 刀补计算原理
1.1 数控插补 -- 运动轨迹的插补原理
1、运动轨迹插补的概念 在数控加工中,一般已知运动轨迹的起点 坐标、终点坐标和曲线方程,如何使切削加 工运动沿着预定轨迹移动呢?
数控系统根据这些信息实时地计算出各个 中间点的坐标,通常把这个过程称为“插 补”。 插补实质上是根据有限的信息完成“数据 点的密化”工作。
1)判别函数及判别条件 • 若P点在圆弧上,则: • X2+Y2=R2 • 若P点在圆弧外,则: • X2+Y2>R2 • 若P点在圆弧内,则: • X2+Y2<R2 定义F= X2+Y2-R2为偏差函数, 则 可得到如下结论: • F=0 动点在圆弧上 • F> 0 动点在圆弧外 • F<0 动点在圆弧内
i=3<N
i=4<N i=5<N i=6<N i=7<N i=8=N 到达 终点
Y A(5,3) 8
5
4 3
6
7
2
O 1
X
逐点比较法直线插补轨迹
4、四个象限直线插补进给方向
以II象限为例,直线起点在原点O,
终点位于A(-Xe,Ye)。 设点P(-Xi,Yi)为任一动点。 F≥0时向-X轴进给, Xi+1= Xi +1 , Yi+1 = Yi Fi+1= XeYi – Xi+1Ye= XeYi – (Xi+1)Ye = XeYi – XiYe - Ye=Fi – Ye F<0时向+Y轴进给, Xi+1= Xi, Yi+1 = Yi +1 Fi+1= XeYi+1 – XiYe= Xe(Yi+1) – XiYe = XeYi – XiYe +Xe=Fi + Xe
数控技术 第三章 插补原理
![数控技术 第三章 插补原理](https://img.taocdn.com/s3/m/1c434a7527284b73f2425077.png)
一.逐点比较法直线插补算法
⑴判别函数及判别条件 如图所示,对XY平面第一象限直线段进 行插补。直线段起点位于坐标原点O,终点位 于A(Xe,Ye)。设点P(Xi,Yi)为任一动点。 若P点在直线OA上,则: Y XeYi – XiYe = 0 A (X Y ) 若P点在直线OA上方,则: F>0 P (X Y ) XeYi – XiYe > 0 若P点在直线OA下方,则: F<0 XeYi – XiYe < 0 X
2013-8-13
Y E(Xe,Ye) ) O X
15
四个象限直线的偏差符号和插补进给方向如下图所示, 用L1、L2、L3、L4分别表示第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的直线。 为适用于四个象限直线插补,插补运算时用∣X∣, ∣Y∣代替X,Y,偏差符号确定可将其转化到第一象限, 动点与直线的位置关系按第一象限判别方式进行判别。
2013-8-13
4
脉冲增量插补法比较适用于步进电机作 为驱动电机的系统。有下列常见的几种:
( 1 )数字脉冲乘法器 ( 2 )逐点比较方法 ( 3 )数字积分方法 ( 4 )比较积分方法 (5)最小偏差方法 ( 6 )直接函数方法
2013-8-13
5
(二)数字增量(数据采样)插补算法
1.数字增量插补的特点 数字增量插补也称数据采样插补,它为时间标量插 补,这类插补算法的特点是插补运算分两步完成:第 一步是粗插补:计算出插补周期内各坐标轴的增量值。 第二步是精插补:根据采样得到的实际位置增量值, 计算跟随误差,得到速度指令,输出给伺服系统,通 常称为精插补。这种方法比较适用于伺服电机作为驱 动电机的系统 ⑴粗插补 它是在给定起点和终点的曲线之间插入若干个点, 即用若干条微小直线段来逼近给定的曲线,这些微小 直线段的长度ΔL相等且与给定的进给速度有关。由于 粗插补在每个插补周期内之计算一次,因此每一微小 直线段的长度ΔL与进给速度F和插补周期T的关系如下: ΔL=FT。粗插补在每个插补周期内计算出坐标位置增 量值。
数控技术-第3讲-插补原理
![数控技术-第3讲-插补原理](https://img.taocdn.com/s3/m/0a8b0cdb360cba1aa911da0c.png)
xi2 y 2 j
2 2 x0 y0
F>0
2 2 圆弧外 xi2 y 2 x y j 0 0
圆弧内
xi2 y 2 j
2 2 x0 y0
o
F<0
P(x0,y0)
x
0点在圆弧上 2 2 偏差判别函数 Fij ( xi2 x0 ) ( y2 y j 0 ) 0点在圆弧外 0点在圆弧内
44
6.数字积分法
数字积分器具有运算速度快、脉冲分配 均匀、易于实现多坐标联动,进行空间直线 插补及描给平面各种函数曲线的特点。其缺 点是速度调节不便,插补精度需要采取一定
措施才能满足要求。
ห้องสมุดไป่ตู้
45
6.数字积分法
函数 y = f (t) ,从时刻 t=0 到 t 求函数 y = f (t) 积 分可用如下积分公式计算:
35
5.插逐点比较法
1)逐点比较法直线插补的象限处理:
A2 (Xe ,Ye )
Y
F 0
F 0
A1 ( X e , Y e )
F 0
F 0
F 0
F 0 F 0
F 0
F 0
O
F 0
F 0
X
F 0
F 0 F 0
F 0 F 0
A3 ( X e ,Ye )
A4 ( X e ,Ye )
插补(Interpolation):数控装置依据 编程时的有限数据,按照一定计算方 法,用基本线型(直线、圆弧等)拟合出 所需要轮廓轨迹。边计算边根据计算 结果向各坐标发出进给指令。
机床导轨是互相垂直的,并且单个导轨只能走直 线,因此,加工平面斜线、曲线时就需要两个导轨 按照一定的一一对应关系协调进给;若要求加工曲 面时就需要三个或三个以上导轨协调进给。
数控技术数控机床的插补原理直线插补与圆弧插补计算原理
![数控技术数控机床的插补原理直线插补与圆弧插补计算原理](https://img.taocdn.com/s3/m/6aaa68c2cf84b9d529ea7a39.png)
就结束该插补运算;如未到达再重复上述的 循环步骤。
(七)直线插补例题
图中的OA是要加工的直线。直线的起点在坐标原 点,终点为A(5,3)。试用逐点比较法对该直线 段进行插补,并画出补轨迹。
Y A(5,3)
O X
图2-5 逐点比较法直线插补轨迹
插补分类:(插补采用的原理和计算方法)
基准脉冲插补:(又称为行程标量插补或脉冲增量插补) 每次插补结束,向每个运动坐标输出基准脉冲序列。 脉冲序列的频率代表了运动速度,而脉冲的数量表示 移动量。
①逐点比较法;②数字积分法;③数字脉冲乘法器插补法;④矢 量判别法;⑤比较积分法;⑥最小偏差法;⑦目标点跟踪法;⑧ 单步追踪法;⑨直接函数法。
(五)逐点比较法直线插补源自2. 算法分析(第Ⅰ象限) 总结
第一拍 判别 第二拍 进给 第三拍 运算 第四拍 比较
Fm≥0 Fm<0
+△x +△y
Fm+1=Fm-ye Fm+1=Fm+xe
m=m+1
(六)插补运算过程
方向判定:根据偏差值判定进给方向; 坐标进给:根据判定的方向,向该坐标方向
发一进给脉冲; 偏差计算:每走一步到达新的坐标点,按偏
特点:以折线逼近直线、圆弧或各类曲线。
精度高:最大偏差不超过一个脉冲当量。
(四)逐点比较法
插补开始 方向判定
逐点比较法 工作循环过程
坐标进给
偏差计算
终点到?
N
插补结束
Y
(五)逐点比较法直线插补
y A(xe,ye)
o
x
每次插补计算输出一个脉冲,不是进给到X轴 方向,就是进给到Y轴方向,不可能两个坐标轴都进给
插补的原理
![插补的原理](https://img.taocdn.com/s3/m/e281d02c26d3240c844769eae009581b6ad9bd6f.png)
插补的原理插补是数控加工中的重要概念,它是指在机床进行加工过程中,根据加工轨迹的要求,通过控制机床的运动轴进行插补运动,从而实现复杂曲线的加工。
插补的原理是数控加工中的核心内容之一,下面将从插补的基本原理、插补的分类以及插补的应用等方面进行详细介绍。
首先,插补的基本原理是数控加工中的基础知识,它包括直线插补和圆弧插补两种基本插补方式。
直线插补是指机床在直线轨迹上进行插补运动,而圆弧插补则是指机床在圆弧轨迹上进行插补运动。
在数控加工中,插补运动是通过控制机床各个坐标轴的运动来实现的,通过对各个坐标轴的速度、加速度和位置进行合理的控制,可以实现复杂曲线的加工。
其次,插补可以根据其运动方式的不同进行分类,主要包括直线插补、圆弧插补、螺旋线插补等。
直线插补是最简单的插补方式,它是通过控制机床的各个坐标轴,使其在直线轨迹上进行插补运动。
圆弧插补则是在圆弧轨迹上进行插补运动,它需要通过对圆弧的半径、起点和终点等参数进行合理的控制。
螺旋线插补则是在三维空间中进行插补运动,它需要对螺旋线的半径、螺距、起点和终点等参数进行合理的控制。
不同的插补方式可以实现不同形状的曲线加工,从而满足不同加工要求。
最后,插补在数控加工中有着广泛的应用,它可以实现复杂曲线的加工,提高加工精度和效率。
在实际加工中,通过合理的插补运动,可以实现各种复杂曲线的加工,如汽车零部件、航空航天零部件、模具等领域的加工。
同时,插补运动还可以实现多轴联动,从而实现更加复杂的加工要求,如五轴联动加工、六轴联动加工等。
因此,插补在数控加工中具有非常重要的意义,它是实现复杂曲线加工的关键技术之一。
综上所述,插补是数控加工中的重要概念,它通过合理的运动控制,实现复杂曲线的加工。
插补的基本原理包括直线插补和圆弧插补,可以根据其运动方式的不同进行分类。
插补在数控加工中有着广泛的应用,可以实现各种复杂曲线的加工,提高加工精度和效率。
因此,深入理解插补的原理对于提高数控加工的质量和效率具有重要意义。
数控技术数控机床的插补原理直线插补与圆弧插补计算原理
![数控技术数控机床的插补原理直线插补与圆弧插补计算原理](https://img.taocdn.com/s3/m/6aaa68c2cf84b9d529ea7a39.png)
(三)、插补方法的种类与特点
插补器: 插补是数控系统必备功能, NC中由硬件完成,
CNC中由软件实现,两者原理相同。
硬件 通过硬件逻辑电路 插补速度快 插补器 来实现插补
软件 利用CNC系统的微 插补器 处理器执行相应的
插补程序来实现
结构简单、灵活易变、可
靠性好,大部分CNC系统 采用了软件插补方式
偏差判别函数:Fm = ymxe-xmye
(五)逐点比较法直线插补
2. 算法分析(第Ⅰ象限)
终点比较:
判别是否到达终点,若到达终点就结束该插 补运算;如未到达再重复上述的循环步骤。
方法一 方法二
用Xe+Ye作为计数器,每走一步对计 数器进行减 1计算,直到计数器为零 时,便到达终点。
用通常根据刀具沿X、Y两轴所走的 总步数m来判断直线是否加工完毕, 总步数为:N=|xA|+|yA|
部分高档CNC:软件插补实现粗插补,硬件插补实现精插补
(三)、插补方法的种类与特点
插补分类:(插补采用的原理和计算方法)
基准脉冲插补:(又称为行程标量插补或脉冲增量插补) 每次插补结束,向每个运动坐标输出基准脉冲序列。 脉冲序列的频率代表了运动速度,而脉冲的数量表示 移动量。
①逐点比较法;②数字积分法;③数字脉冲乘法器插补法;④矢 量判别法;⑤比较积分法;⑥最小偏差法;⑦目标点跟踪法;⑧ 单步追踪法;⑨直接函数法。
Fm Fm
(五)逐点比较法直线插补
2. 算法分析(第Ⅰ象限)
新偏差计算:
每走一步到达新的坐标点,按偏差公 式计算新的偏差
+△x进给 +△y进给
xm+1 = xm+1, ym+1 =ym Fm+1=ym+1xe-xm+1ye=ymxe-(xm+1)ye=Fm-ye
插补原理及控制方法
![插补原理及控制方法](https://img.taocdn.com/s3/m/562562a918e8b8f67c1cfad6195f312b3169ebb7.png)
插补原理及控制方法插补原理是指在数控机床运动控制系统中,通过对多个轴同时进行定长或定角度的运动控制,实现复杂曲线的加工。
插补控制方法包括线性插补和圆弧插补两种。
一、线性插补线性插补是指在工件加工中,沿直线轨迹进行直线段的插补控制方法。
线性插补的原理是通过控制系统对多个轴的运动速度和方向进行精确控制,使得工件能够沿着设定的直线路径进行加工。
线性插补的控制方法包括点位控制和连续控制两种。
1.点位控制点位控制是将每个插补段分解成多个线性插补点,通过对每个点的坐标进行控制,实现工件的加工。
点位控制方式适用于工件形状简单、精度要求不高的情况下。
2.连续控制连续控制是通过对每个时间段内的轴位置进行插补计算,实现工件的连续运动。
此命令适用于工件形状复杂、精度要求较高的场景。
在连续控制中,通常使用插补算法进行计算,将每个时间段内需要插补的线性段分割成多个小段,并根据小段的长度和速度来确定每个小段的运动规律。
二、圆弧插补圆弧插补是指在数控机床加工中,通过对多个轴的运动进行控制,实现工件上圆弧曲线的加工。
圆弧插补的原理是通过对多个轴进行同步运动,控制圆弧路径的切线和加工速度,使得工件能够按照设定的半径和圆弧角度进行加工。
圆弧插补的控制方法包括圆心插补法和半径插补法。
1.圆心插补法圆心插补法是通过控制系统中的插补算法,计算每个时间段内轴的位置和速度,实现工件画圆弧的加工。
在圆心插补中,需要手动指定圆心的坐标位置和圆弧的半径、角度来实现加工。
2.半径插补法半径插补法是指通过在控制系统中指定圆弧的起点、终点和半径来实现工件圆弧的加工。
在半径插补中,插补算法会根据起始点和终点的位置,计算出圆心的位置和圆弧的角度,从而实现工件的加工。
总结:插补原理及控制方法是数控机床系统中非常重要的部分,通过对多个轴的运动进行精确控制,实现工件曲线轨迹的加工。
线性插补适用于直线段的加工,圆弧插补适用于曲线段的加工。
掌握插补原理及控制方法,对于数控机床加工精度的提高和加工效率的提高具有重要意义。