工程力学---应力状态分析

合集下载

工程力学第21讲 应力状态分析:求斜截面应力

工程力学第21讲 应力状态分析:求斜截面应力

工程力学第21讲应力状态分析:求斜截面应力在工程力学中,应力状态分析是研究物体受到外力作用后内部应力分布的一门学科。

在实际工程中,经常需要求解物体内部某一点的应力值。

在本文中,我们将着重介绍如何求解斜截面上的应力值。

斜截面应力状态的分析是典型的三维问题,但在一些实际应用中,我们只需要在某一平面上求解应力分量。

为了方便分析,我们通常假设物体是等截面的,其剖面可以看成一个平面截形,如下图所示。

![image.png](attachment:image.png)假设物体受到一个外作用力F,我们需要分析该力作用在斜截面xy上,求解点P处的应力状态(包括法向应力σn和切应力τxy)。

点P的坐标可以表示为(x,y,z)。

截面上的任一元素dA的面积可以表示为dA=dxdy,其对应的法向为b。

为了求解点P处的应力状态,我们可以采用以下的步骤:### 第一步:求解对x分量的力和对y分量的力为了便于分析,我们可以将作用力F分解成两个分量F_x和F_y,如下图所示。

在这里,我们需要注意F_x和F_y的方向。

如图所示,F_x沿x轴正方向,F_y沿y轴正方向,因为较难确定夹角a和b的正负号,所以F_x和F_y以及后面的应力分量都是以箭头的方向表示。

同时我们还需要注意到式中的F_z。

如下图所示,我们可以建立一个平面一对应着力分解后的F_x,F_y和截面。

然后我们可以求解在x和y方向上的应力分量。

对应的应力分量为:$$\sigma_x=\frac{F_x}{A_x}$$$$\sigma_y=\frac{F_y}{A_y}$$其中,Ax和Ay分别是上图中标注的x和y方向上的面积。

由于F_x和F_y都垂直于z 轴,所以在z方向上不存在应力分量。

### 第三步:求解点P处的应力状态现在我们已经求解了对x分量的力和对y分量的力在x和y方向上的应力分量,接下来我们需要求解点P处的应力状态。

如下图所示,我们需要确定切线方向上的应力σ_t和法线方向上的应力σ_n。

《工程力学》实验应力分析

《工程力学》实验应力分析

r 1 2 3 4 2(1 )M
上下表面
M
r 2(1 )
E M
E r 2(1 )
R3 R4
R2 t2
R1
B
R1
R2
A
C
R4
R3
D
21
13.3 测量电桥的接法及其应用
例2 通过应变测量(1)求偏心载荷F;(2) 求e.试确定
布片、接桥方案。截面bh
y
e
y
解:(1)测F
z x
F Fe F 分析:
Me
Me
25
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
R3
D
解: 应力分析
1 3
沿与轴线成450方向为主方向,
故沿主应力方向布片.
采用全桥接法.
r 1 2 3 4 41
1
r
4
26
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
工程力学
第13章 实 验 应 力 分 析
1
第13章 实验应力分析
§13.1 概述 §13.2 电测应力分析的基本原理 §13.3 测量电桥的接法及应用 §13.4 二向应力状态下主应力已知时
的应力测定 §13.5 二向应力状态下主应力未知时
的应力测定
2
13.1 概 述
一. 为什么要进行实验应力分析
例1 已知E, , 测定max, 试确定布片、接桥方案。
M
R1
M
解:第一方案,
R2

工程力学7第七章应力状态和应变状态分析

工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布





• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y

y

y
y
y
n
y

x
a
x

e
d
x

x
x
bz
x
x

x
e
x
x




y


f
yy
x
x

b


c
y

y

y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

工程力学-10应力状态分析和强度计算

工程力学-10应力状态分析和强度计算

边的长度变化,所以广义胡克定律为:
y yx
z
x zy yz xz x
zx xy
z
y
x
1 E
[ x
( y
z)
]
y
1 E
[
y
( x
z) ]
14z
1 E
[
z
( x
y) ]
—— 广义胡克定律
在平面应力状态下,胡克定律变为:
x
1 E
( x
y )
y
y
1 E
( y
x )
z
E
( x

90 x y 10
90
——平面应力状态分析
过一点总存在三对相互垂直的主平面,对应三 个主应力
主应力排列规定:按代数值由大到 小。
剪应力为零的面为主平面; 主平面上的正应力为主应力; 全部由主平面构成的单元体 为主单元体。
1 2 3
10
50 单位:MPa
1 50; 30 2 10;
主 讲:谭宁 副教授 办公室:教1楼北305
——概 述
(1)、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的?
P 铸铁拉伸
铸铁压缩
M
P
低碳钢
铸铁
P
P
(2)、组合变形杆将怎样破坏?
2
M
过一点有无数的截面
——概 述
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
过一点不同方位截面上应力的集合,称为一点的应力状态(State of the Stresses of a Given Point)。
(1)各个面上的应力均匀分布; (2)相互平行的平面上,应力大小和性质完全相同。 (3) 相邻垂直面上的切应力根据切应力互等定理确定.

工程力学中的应力和应变分析

工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。

应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。

本文将就工程力学中的应力和应变进行详细分析。

一、应力分析应力是指物体单位面积上的内部分子间相互作用力。

根据作用平面的不同,可以分为法向应力和剪切应力两种。

1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。

根据物体受力状态的不同,可以分为拉应力和压应力两种。

- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。

拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。

- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。

压应力的计算公式与拉应力类似。

2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。

剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。

二、应变分析应变是指物体由于外力的作用而产生的形变程度。

根据变形情况,可以分为线性弹性应变和非线性应变。

1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。

线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。

2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。

非线性应变的计算公式较为复杂,需要根据具体情况进行分析。

三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。

1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。

根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。

2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。

工程力学第13章应力状态分析

工程力学第13章应力状态分析
解:⑴ 求C 点所在截面的剪力、弯矩 F
FS 2 50kN MFl 25kNm
8 ⑵ 求C 点在横截面上的正应力、切应力
M y 2 5 1 0 3 6 0 0 1 0 3/4
CIz 2 0 0 6 0 0 3 1 0 1 2/1 21 .0 4 M P a
C 3 2 F b h S(14 h y 2 2)2 2 3 0 0 5 0 6 0 0 1 0 3 1 0 6(14 6 0 1 0 5 2 0 2 1 0 1 0 6 6)
63.7sin240o( 76.4)cos240o 2
10.7MPa
x 63.7MPa y 0 x76.4MPa
⑶ 求D 点的主应力和主方向及最大切应力
m m a in x x 2y (x 2y)2x 2
63.7 2
(63.7)2(76.4)2 2
114.6M P a
50.9M
Pa
1 1 1 4 . 6 M P a2 03 5 0 . 9 M P a
D63.7MPa D76.4MPa
⑵ 作出D点的应力状态图
x 63.7MPa y 0 x76.4MPa
120o
x 2 y x 2 yc o s2 xsin 2
6 3 .7 6 3 .7 c o s2 4 0 o ( 7 6 .4 ) sin 2 4 0 o 22
50.3M Pa
x 2ysin2xcos2
同理:平行于主应力σ2和σ3方向的任意斜面 II 和 III 上的正 应力和切应力分别与σ2和σ3无关,可分别由应力圆 II 和 III 表
示。
三向应力状态中空间任 意方向面上的正应力和切 应力对应于应力圆I、II、 III所围阴影区域内某一点 的坐标值。

工程力学-应力状态

工程力学-应力状态
σ 30 100 50 2 100 50 2
sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院

工程力学第2节 二向应力状态分析

工程力学第2节 二向应力状态分析

例12-1 已知构件内某点处的应力单元体如图所示,
试求斜截面上的正应力 和切应力 。
解:按正负号规定则有:
x 60 MPa x 120 MPa y 80 MPa 300
代入公式得:


x
y
2
x
y
2
cos2
x
sin 2
78.9MPa
低碳钢试件扭转破坏是被剪断的,且其抗剪能力
低于其抗拉能力。
铸铁试件扭转破坏是被拉断的,且其抗拉能力低 于其抗剪能力。
例12-3 图示单元体,x=100MPa,x= –20MPa,
y=30MPa。试求:1) = 40º的斜截面上的 和 ; 2)确定A点处的max、max和它们所在的位置。


x
y
2
sin 2
x
cos2

121MPa
二、主应力和极限切应力
1、主应力和主平面


x
y
2
x
y
2
cos2
x
sin 2


x
y
2
sin 2
x
cos2
将公式 对 求一阶导数、并令其为0:
d d


x

2
y
(2 sin
由切应力互等定理有x=y,并利用三角关系:
sin2 1 cos2 、 cos2 1 cos2 及
2
2
ቤተ መጻሕፍቲ ባይዱ
2sin cos sin 2 对以上二式进行整理得到:


x
y
2

x
y
2

工程力学-应力状态与应力状态分析

工程力学-应力状态与应力状态分析

8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。

(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位y x xytg σστα--=2204、主应变12122x y xyx y()tg εεεεγϕεε⎡=+±⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1x z y y E σσμσε+-=)]([1y x z z E σσμσε+-=G zxzx τγ=G yzyz τγ=,G xyxy τγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。

”8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。

图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。

再取A 点偏上和偏下的一对与xz 平行的平面。

截取出的单元体如图8.1(d)所示。

(2)分析单元体各面上的应力:A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:z M y I σ=bI QS z z*=τ由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。

工程力学材料力学之应力应变状态分析

工程力学材料力学之应力应变状态分析
工程力学材料力学之应力应变状态分 析
二、材料破坏的两种类型(常温、静载荷) (Two failure types for materials in normal temperature and static loads)
1. 断裂失效(Fracture failure) (1)脆性断裂 : 无明显的变形下突然断裂. (2)韧性断裂 : 产生大量塑性变形后断裂.
剪切
扭转
工程力学材料力学之应力应变状态分 析
上述强度条件具有如下特点: (1)危险点处于单向应力状态或纯剪切应力状态; (2)材料的许用应力 ,是通过拉(压)试验或纯剪试验测定试 件在破坏时其横截面上的极限应力,以此极限应力作为强度指 标,除以适当的安全系数而得,即根据相应的试验结果建立的 强度条件.
胡克(1635-1703)
波义耳(1627-1691)
惠更斯(1629-1695)工程力学材料力学牛析之顿应力(应1变64状3态-分1727)
复杂应力状态的应变能密度
三向应力状态
体积改变能密度 畸变能密度
工程力学材料力学之应力应变状态分 析
§7-8 强度理论(The failure criteria)
构件每单位体积的体积变化, 称为体积应变用θ表示.
各向同性材料在三向应力状态下的体应变
如图所示的单元体,三个边长为 a1 , a2 , a3 变形后的边长分别为
a1(1+,a2(1+2 ,a3(1+3
变形后单元体的体积为
2
a2
1
3
a1
a3
V1=a1(1+·a2(1+2 ·a3(1+3
工程力学材料力学之应力应变状态分 析
二向应力状态下(In plane stress-state) 设 3= 0

工程力学第13章应力状态分析和强度理论

工程力学第13章应力状态分析和强度理论

max
m in

x
y
2


(
x

2
y
)2


2 xy
——主应力的大小
3)、 切应力 的极值及所在截面



x
y
2
sin 2
xy cos 2 ,
令 d
0
d 1
tan
21


x 2 xy
y
(1 ; 1 1 900 )
——最大切应力 所在的位置
z
x
y y
x
z x
2
I 3 1
(1)求平行于σ1的方向面的应力σα 、 τα ,其上之应力与σ1 无关.
1
3
II 2
(2)求平行于σ2的方向面的应力σα、 τα ,其上之应力与σ2 无关.
2
III 1 3
2
(3)求平行于σ3的方向面的应力σα 、 τα ,其上之应力与σ3 无关.
例2、槽形刚体内放置一边长为a = 10 cm 正方形钢块,试求钢 块的三个主应力。F = 8 kN,E = 200 GPa, μ = 0.3。
Fy
解:1) 研究对象ຫໍສະໝຸດ 正方形钢块y F 80 MPa, A
x
?,
z 0.
x 0, y ?, z ? .
y
x b
a
c x x
y
b x


x

a y
c
y t
n 单元体各面面积
x bc : dA
ab: dAcos ac : dAsin
设:斜截面面积为dA,由分离体平衡得:

工程力学中的应力和应变的分析

工程力学中的应力和应变的分析

工程力学中的应力和应变的分析工程力学是研究物体在外力作用下受力与变形规律的学科。

在工程力学中,应力和应变是两个重要的概念,用于描述物体受到外力作用后的力学响应和变形情况。

本文将对工程力学中的应力和应变进行深入的分析和探讨。

一、应力的概念和分类应力是描述物体单位面积内的内力或外力的物理量,用σ表示。

在力的作用下,物体的形状、大小和方向都会发生变化,而应力则用来描述物体内部各点受力状态的大小和方向。

应力可以分为正应力和剪应力两种类型。

1. 正应力:正应力是指垂直于物体截面的力在该截面上的作用效果。

正应力可分为拉应力和压应力两种情况。

拉应力是指垂直于物体截面的力使得截面上的物质向外扩张,压应力则是指垂直于物体截面的力使得截面上的物质向内收缩。

2. 剪应力:剪应力是指与物体截面平行的力在该截面上的作用效果。

剪应力是由于物体受到外部力的平行作用而引起的变形。

剪应力会使得物体的截面发生平行于力的方向的切变变形。

二、应变的概念和分类应变是描述物体相对于原始形状发生变形时各点之间相对位置的改变程度的物理量,用ε表示。

应变描述了物体受到外力作用后的变形程度和特征。

应变可分为线性应变和剪切应变两种类型。

1. 线性应变:线性应变是一种改变物体长度的应变形式,也称为伸长应变。

线性应变正比于物体所受力的大小,并与物体原始长度之比成正比。

线性应变的表达式为ε = ΔL / L0,其中ΔL为线段在力作用下伸长的长度,L0为线段的原始长度。

2. 剪切应变:剪切应变是一种改变物体形状的应变形式,也称为变形应变。

剪切应变是与物体所受剪力大小成正比,与物体的长度无关。

剪切应变的表达式为γ = Δx / h,其中Δx为剪切前后平行于力方向的线段之间的位移,h为物体在该方向上的高度。

三、应力和应变之间的关系应力和应变之间存在一定的关系,通常可以通过弹性模量来表示。

弹性模量是描述物体材料抵抗形变能力的物理量,用E表示。

主要用于刻画物体在受力作用后,恢复原始形状的能力。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
难度:一般
解答:
正确答案是D。
四个应力状态的主应力, 、 、 ;其主力方向虽不全相同,但应变比能与主应力值有关,因此它们的应变比能相同。
9-30关于图示应力状态,有如下论述,试选择哪一种是正确的。
(A)最大主应力为500MPa,最小主应力为100MPa;
(B)最大主应力为500MPa,最大切应力为250MPa;
工程力学(工程静力学与材料力学)习题与解答
第9章 应力状态分析
9-1木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。试求:
1.面内平行于木纹方向的切应力;
2.垂直于木纹方向的正应力。
知识点:平面应力状态、任意方向面上的应力分析
难度:易
解答:
(a)平行于木纹方向切应力
MPa
垂直于木纹方向正应力
知识点:广义胡克定律、压力容器应力分析
难度:一般
解答:
MPa
MPa
MPa
9-21液压缸及柱形活塞的纵剖面如图所示。缸体材料为钢,E = 205GPa, = 0.30。试求当内压p=10MPa时,液压缸内径的改变量。
知识点:广义胡克定律、压力容器应力分析
难度:难
解答:
缸体上
MPa
MPa
9-22试证明对于一般应力状态,若应力应变关系保持线性,则应变比能
知识点:应力状态的基本概念
难度:一般
解答:
正确答案是B。
MPa
MPa
,为单向应力状态。
9-28试分析图示的四个应力状态是否等价,有下列四种答案。
(A)四者均等价;
(B)仅(a)和(b)等价;
(C)仅(b)、(c)等价;
(D)仅(a)和(c)等价。

工程力学 第9章 应力状态分析 习题及解析

工程力学 第9章 应力状态分析 习题及解析

习题9-1图 x15-'x x'σy'x'τ 1.25MPa15 (b-1)15a 4MP15-y'x'τx'x'σa1.6MP x (a-1) 习题9-2图302MPa 0.5MPa-60x'σ'x ''y x τ 工程力学(工程静力学与材料力学)习题与解答第9章 应力状态分析9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。

试求: 1.面内平行于木纹方向的切应力;2.垂直于木纹方向的正应力。

知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:(a )平行于木纹方向切应力6.0))15(2cos(0))15(2sin(2)6.1(4=︒-⨯⋅+︒-⨯---=''y x τMPa 垂直于木纹方向正应力84.30))15(2cos(2)6.1(42)6.1(4-=+︒-⨯---+-+-='x σMPa (b )切应力08.1))15(2cos(25.1-=︒-⨯-=''y x τMPa正应力625.0))15(2sin()25.1(-=︒-⨯--='x σMPa9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。

若已知胶层切应力不得超过1MPa 。

试分析是否满足这一要求。

知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:55.1))60(2cos(5.0))60(2sin(2)1(2-=︒-⨯⋅+︒-⨯---=''y x τMPa 1MPa 55.1||>=''y x τMPa ,不满足。

9-3 结构中某点处的应力状态为两种应力状态的叠加结果。

试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。

知识点:平面应力状态分析 难度:难 解答:习题9-2图yσxσxyτ=yσxσxyτx=yσxσxyτ=左微元⎪⎪⎪⎩⎪⎪⎪⎨⎧-='-='-=-='+=--+='000000022cos 122sin )2sin(222cos 10)2cos(22σθσσσσθθστσθθσσσx y xy x 叠加 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+'=-=+=+=+'=''000022cos 1022sin 022cos 3σθσσσθττσθσσσy y y x xy x x0)cos 1()cos 1( )22sin (4)22cos 122cos 3(21222cos 122cos 330020202021=⎩⎨⎧-+=-+--+±-++=⎭⎬⎫σσθσθσθσθθσθθσσ 面内最大切应力:θσσστcos 2021max=-='该点最大切应力:031max2cos 12σθσστ+=-=左微元0023))30(2sin()(ττσ=︒-⨯-='x ,0230τσσ-='-='x y ,2))30(2cos(00τττ=︒-⨯='xy 右微元0023)302sin()(ττσ=︒⨯-=''x,0230τσσ-=''-=''x y ,2))30(2cos()(00τττ-=︒⨯-=''xy 叠加 03τσσσ='+'=y x x ,03τσσσ-=''+'=y y y ,0=''+'=xyxy xy τττ 013τσ=,02=σ,033τσ-= 面内031max32||τσστ=-='xABOσOσαα(a)习题9-4图A60CB60100-x σxσyxτxyτ92MPa(a)习题9-5图该点031max 32||τσστ=-=叠加[]⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡︒-⨯--+==--+==⎥⎦⎤⎢⎣⎡︒-⨯--+-++=MPa 30))45(2sin(2)30(5070MPa 1010)3050(0MPa 90))45(2cos(2)30(502)30(5080xy y x σσσ主应力0MPa 0MPa100304)]100(90[212109022231=⎩⎨⎧=⨯+-±+=⎭⎬⎫σσσ面内及该点:5021002||||31max max=-=-=='σσττMPa9-4 已知平面应力状态的最大正应力发生在与外力作用的自由表面AB 相垂直的面上,其值为0σ。

工程力学之应力状态分析和强度计算

工程力学之应力状态分析和强度计算

工程力学之应力状态分析和强度计算工程力学是研究物体受力和变形规律的学科,其基础之一就是应力状态分析和强度计算。

应力状态分析主要是通过计算和评估物体内部的应力分布情况,强度计算则是根据应力状态来确定物体的强度和稳定性。

应力状态分析是力学中的一个重要步骤,它不仅可以用来评估物体的受力情况,还可以为工程设计提供依据。

在进行应力状态分析时,首先需要确定物体所受的外力,然后利用力学原理和相关公式计算物体内部的应力分布。

具体来说,首先我们需要确定物体所受的外力,包括静力、动力以及热力等,这些外力会作用在物体的不同部位上。

然后,通过应用牛顿第二定律、平衡方程等力学原理,可以计算得到物体内部的应力分布情况。

在实际工程中,通常使用数值计算方法来解决这些力学方程,比如有限元法和边界元法等。

强度计算则是根据应力状态来评估物体的强度和稳定性,以确定物体是否满足设计和使用要求。

在进行强度计算时,首先需要确定物体的强度参数,比如抗拉强度、屈服强度、抗剪强度等。

然后,根据物体所受的应力状态,通过应力分析和计算,可以得到物体内部的应力大小。

接下来,比较物体内部的应力和其强度参数,就可以判断物体是否安全和稳定。

应力状态分析和强度计算在各个工程领域中都有广泛的应用。

在土木工程中,它可以用来评估建筑物、桥梁和道路等结构的受力情况,以确保它们的安全使用。

在机械工程中,它可以用来评估机械零件和设备的强度和稳定性,以确保它们能够正常工作。

在航空航天工程中,它可以用来评估飞机和航天器在各种飞行状态下的受力情况,以确保它们在高速和极端环境下的安全性。

总之,应力状态分析和强度计算是工程力学的重要内容,它们不仅可以为工程设计提供依据,还可以用来评估物体的强度和稳定性。

在实际应用中,我们可以通过数值计算的方法来解决应力分析和强度计算问题,从而确保工程项目的安全性和可靠性。

在工程实践中,应力状态分析和强度计算是非常重要的步骤,涉及到许多领域,如结构工程、材料工程、土木工程等。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
1. MPa
MPa
MPa
2.
MPa
MPa
9-13图示外径为300mm的钢管由厚度为8mm的钢带沿20°角的螺旋线卷曲焊接而成。试求下列情形下,焊缝上沿焊缝方向的切应力和垂直于焊缝方向的正应力。
1.只承受轴向载荷FP = 250kN;
2.只承受内压p=5.0MPa(两端封闭)
3.同时承受轴向载荷FP = 250kN和内压p=5.0MPa(两端封闭)
难度:一般
解答:
(1)当 = 40℃
mm<
mm<
所以铝板内无温度应力,
(2)当 = 80℃
mm>
mm>
∴ (1)
(2)
所以解得qx = qy=70MPa(压)
, MPa
MPa
9-18对于一般平面应力状态,已知材料的弹性常数E、 ,且由实验测得 和 。试证明:
知识点:广义胡克定律、 三者之间的关系
难度:一般
难度:一般
解答:
正确答案是C。
(A)不满足切应力互等定律;
(B)不满足平衡;
(C)既可满足切应力互等,又能达到双向的平衡;
(D)不满足两个方向的平衡。
9-27微元受力如图所示,图中应力单位为MPa。试根据不为零主应力的数目,它是:
(A)二向应力状态;
(B)单向应力状态;
(C)三向应力状态;
(D)纯切应力状态。
MPa
9-7受力物体中某一点处的应力状态如图所示(图中p为单位面积上的力)。试求该点处的主应力。
知识点:应力圆的应用
难度:难
解答:
应力圆半径
9-8从构件中取出的微元,受力如图所示。试:
1.求主应力和最大切应力;
2.确定主平面和最大切应力作用面位置。

工程力学-应力状态p

工程力学-应力状态p

x
O A2
21 D1(sx ,txy)
20
C
s
A1
D2(sy , -txy)
四、最大(小)剪应力及其所在截面
t min
t max t min
s
x
s
2
y
2
t
2 xy
s max s min
2
t
max所在截面方位角1为:1
0
4
( 0 为s max所在主平面方位角)
[例3]单元体应力状态如图。试求主应力并确定主平面位置。
§7.1应力状态概述
一、引言 1、铸铁与低碳钢的拉、压、扭试验破坏现象是怎样的?
P 铸铁拉伸
铸铁压缩
Me
P
低碳钢
铸铁
P
2、组合变形杆将怎样破坏?
P 铸铁
Me
二、一点的应力状态 通过受力构件内一点有无数个截面,这些过一点处不同方位
截面上应力情况的集合,称为这点的应力状态。
三、单元体 单元体——构件内的点的代表物,是包围被研究点的无限小
代入公式,得斜截面上正应力:
s
sx
sy
2
sx
s y
2
cos 2
t xy
sin 2
50 30 50 30 cos 60o 20sin 60o 32.7 MPa
2
2
斜截面上剪应力:
t
sx
s y
2
sin 2
t xy
cos 2
50 30 sin 60o 20 cos 60o 2
18.7 MPa
规定:s以拉为正;
sx
t 以其对作用对象内任一点的
txy
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s sm ma i n xsx 2sysx 2sytx 22966
MPa MPa
a0arctansmtaxxsy62.5
s126MPas2 0 s396MPa
sH sx 2sy sx 2syco a stx 2 sia n s2 a
sa sx 2sy sx 2syco a stx 2 sia n2
同理可证: tH ta
点、面对应关系
转向相同,转角加倍 互垂截面,对应同一直径两端
例题
例 2-1 计算截面 m-m 上的应力
解:sx10M 0 Ptax60MPsay 50MPaa30
§1 引言 §2 平面应力状态应力分析 §3 极值应力与主应力 §4 复杂应力状态的最大应力 §5 广义胡克定律 §6 复合材料应力应变关系简介
§1 引 言
实例 应力状态概念 平面与空间应力状态
实例
微体A
微体abcd
微体A
应力状态概念
应力状态 过构件内一点所作各微截面的应力状况,称为该点 处的应力状态
主应力-主平面上的正应力
主应力符号与规定- s1s2s3(按代数值)
应力状态分类 单向应力状态:仅一个主应力不为零的应力状态 二向应力状态:两个主应力不为零的应力状态 三向应力状态:三个主应力均不为零的应力状态
二向与三向应力状态,统称复杂应力状态
纯剪切与扭转破坏
纯剪切状态的最大应力
s1
s3
斜截面应力公式
s t aas aa F n 0 , a d A (x d A co )s s i(n x d A co )c s os ( ty d A sa i)n c a o (sy d s A sa i)n s a i0 n
t t aas aa F t 0 , a d A (x d A co )c s o (x d A sco )s s in t aas aa (y d A si)n s i(n y d A si)n c o 0s
2. 由应力圆求 sm与tm
由A点(截面 x )顺时针转60。至D点(截面 y )
sm11M 5 Patm35MPa
§3 极值应力与主应力
平面应力状态的极值应力 主平面与主应力 纯剪切与扭转破坏 例题
平面应力状态的极值应力
极值应力数值
ssm mainxOCCAsx 2sy sx 2sy2tx2
问题:已知sx , tx , sy , 画相应应力圆
根据:
sC
sx
sy
2
R sx 2sy2tx2
满足上述二条件 确为所求应力圆
图解法求斜截面应力
sH O C C cD o a 0s 2 a ()2
s aa aa H O C C cD o 0 cs o C 2 s sD 2 i 0 s n in 2 2
由于tx 与 ty 数值相等,并利用三角函数的变换关系,得
sa sx 2sy sx 2syco a s tx 2 sia n2
tasx 2sysia n2 txcoas2
上述关系建立在静力学基础上,故所得结 论既适用于各向同性与线弹性情况,也适
用于各向异性、非线弹性与非弹性问题
应力圆
应力圆原理
sa sx 2sy sx 2syco a stx 2 sia n2
stm , ax sCt scm , axsDt
tma xtm in t
s1 s3 t, s2 0
主平面微体位于 45 方位
圆轴扭转破坏分析
滑移与剪断
发生在tmax
的作用面
断裂发生在
smax 作用面
例题
例 4-1 用解析法与图解法,确定主应力的大小与方位
解:1. 解析法 sx70MPatx50MPas y 0
tasx 2sysin a 2txcoas2
sa sx 2sy sx 2syco a stx 2 sia n2
应力圆
ta0sx 2sysia nt2xcoas2
圆心位于s 轴
sa sx 2sy 2 ta 0 2 sLeabharlann 2sy 2 tx 2sC
sx
sy
2
R sx 2sy2tx2
应力圆的绘制
sm sx 2sysx 2syco a stxs 2ian 2 11M 4.5 Pa
tmsx 2sysia n2txcoas235M .0Pa
例 2-2 利用应力圆求截面 m-m 上的应力
解:
sm11M 5 Patm35MPa
例 2-2 利用应力圆求截面 m-m 上的应力
解: 1. 画应力圆 A点对应截面 x, B点对应截面 y
ttmmainx CK
sx
sy
2
2
tx2
极值应力方位
• 最大正应力方位: tana20sx2tsx y
taan 0sx ts xminsm tx a s xy
• smax与smin所在截面正交
• s 极值与t 极值所在截
面, 成 45夹角
主平面与主应力
s2
s1 s3
主平面-切应力为零的截面 相邻主平面相互垂直,构成一 正六面形微体 - 主平面微体
平面应力状态 的一般形式
微体各侧面均作用有 应力-空间应力状态
空间应力状态一般形式
§2 平面应力状态应力分析
应力分析的解析法 应力圆 例题
应力分析的解析法
问题
斜截面:// z 轴;方位用 a 表示;应力为 sa , ta
符号规定:
切应力 t - 以企图使微体沿 旋转者为正 方位角 a - 以 x 轴为始边、 者为正 问题:建立 sa , ta 与 sx , tx , sy , ty 间的关系
ssasatt aa ax c2 o y s s2 i n (x y )sc in os t ssaat at a a (x y )sc io n x c s2 o y s s2 in
ssasatt aa ax c2 o y s s2 i n (x y )sc in os t ssaat at a a (x y )sc io n x c s2 o y s s2 in
研究方法 环绕研究点切取微体,因微体边长趋于零,微体趋 于所研究的点,故通常通过微体,研究一点处的应 力与应变状态
研究目的 研究一点处的应力状态以及应力应变间的一般关系, 目的是为构件的应力、变形与强度分析,提供更广 泛的理论基础
平面与空间应力状态
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
相关文档
最新文档