(完整版)二次根式综合练习题

合集下载

完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案最简二次根式基础练一、填空题:1.把下列二次根式化成最简二次根式。

1) $\sqrt{120}=\sqrt{4\times30}=2\sqrt{30}$;2) $\sqrt{27}=\sqrt{9\times3}=3\sqrt{3}$;3)$\sqrt{\frac{1}{8}}=\sqrt{\frac{1}{2}\times\frac{1}{4}}=\frac{1 }{2}\sqrt{2}$;4)$\sqrt{\frac{1}{2}}=\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}$;5) $\sqrt{84}=\sqrt{4\times21}=2\sqrt{21}$;6) $\sqrt{250}=\sqrt{25\times10}=5\sqrt{10}$;7) $\sqrt{\frac{24}{8}}=\sqrt{3}$;8) $\sqrt{\frac{8}{32}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$。

2.若$\sqrt{3}\approx1.732$,则$\sqrt{227}\approx15.0$(保留三个有效数字)。

3.设$x<0$,则$\sqrt{-8x}=2i\sqrt{2}\sqrt{-x}$。

4.下列二次根式$45a$,$30$,$\frac{1}{2}$,$40b^2$,$\sqrt{54}$中是最简二次根式有$30$,$\frac{1}{2}$,$\sqrt{54}=3\sqrt{6}$。

二、选择题1.在二次根式$\sqrt{72}$,$5a\sqrt{3}$,$\sqrt{3}$,$9\sqrt{x^2}$中,最简二次根式的个数是(C)3个。

2.下列各式中是最简二次根式的是(A)$\sqrt{5}$。

3.下列各式中,不是最简二次根式的是(A)$\sqrt{6}$。

4.下列计算中正确的是(A)$\frac{1}{2}$。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。

答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。

答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。

答案:4√2
2. 解方程:
√x + 3 = 7。

答案:x = 16
四、证明题
1. 证明√2是一个无理数。

答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。

答案:边长为√50厘米,即5√2厘米。

六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。

答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。

七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。

(完整版)第十六章二次根式测试题

(完整版)第十六章二次根式测试题

…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。

(完整版)二次根式测试题附答案

(完整版)二次根式测试题附答案

二次根式测试题(1)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3 B .b<3 C .b≥3 D .b≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .B .C .D .1448b a 44+a 6.如果,那么( ))6(6-=-∙x x x x A .x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a =∙=112.做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A . B . C . D .3011330303033011309.若最简二次根式的被开方数相同,则a 的值为( )a a 241-+与A .B .C .a=1D .a= —143-=a 34=a 10.化简得( ))22(28+-A .—2 B . C .2 D . 22-224-二、填空题(每小题2分,共20分)11.① ;② .=-2)3.0(=-2)52(12.二次根式有意义的条件是 .31-x 13.若m<0,则= .332||m m m ++14.成立的条件是 .1112-=-∙+x x x 15.比较大小: .321316. , .=∙y xy 82=∙271217.计算= .3393a a a a -+18.的关系是 .23231+-与19.若,则的值为 .35-=x 562++x x 20.化简的结果是 .⎪⎪⎭⎫ ⎝⎛--+1083114515三、解答题(第21~22小题各12分,第23小题24分,共48分)21.求使下列各式有意义的字母的取值范围:(1) (2)(3) (4)43-x a 831-42+m x 1-22.化简:(1) (2))169()144(-⨯-22531-(3) (4)5102421⨯-n m 21823.计算:(1) (2) 21437⎪⎪⎭⎫ ⎝⎛-225241⎪⎪⎭⎫ ⎝⎛--(3) (4) )459(43332-⨯⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5) (6) 2484554+-+2332326--四、综合题(每小题6分,共12分)24.若代数式有意义,则x 的取值范围是什么?||112x x -+25.若x ,y 是实数,且,求的值.2111+-+-<x x y 1|1|--y y 二次根式测试题(2)时间:45分钟分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若,则a<0B .a a -=20,2>=a a a 则若C . D . 5的平方根是4284b a b a =52.二次根式的值是( )13)3(2++m m A . B . C . D .02332223.化简的结果是( ))0(||2<<--y x x y x A .x y 2- B .y C .y x -2 D .y -4.若是二次根式,则a ,b 应满足的条件是( )ba A .a ,b 均为非负数 B .a ,b 同号C .a≥0,b>0D .0≥ba5.已知a<b ,化简二次根式的正确结果是( )b a 3-A . B . ab a --ab a -C . D .ab a aba -6.把根号外的因式移到根号内,得( )mm 1-A . B . C . D .m m -m --m-7.下列各式中,一定能成立的是( ).A .B .22)5.2()5.2(=-22)(a a =C .=x-1 D .122+-x x 3392+⋅-=-x x x 8.若x+y=0,则下列各式不成立的是( )A .B .022=-y x 033=+y x C . D .022=-y x 0=+y x 9.当时,二次根式的值为,则m 等于( )3-=x 7522++x x m 5A . B . C . D .22255510.已知,则x 等于( )1018222=++x x x x A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若不是二次根式,则x 的取值范围是 .5-x 12.已知a<2, .=-2)2(a 13.当x= 时,二次根式取最小值,其最小值为 .1+x 14.计算: ; .=⨯÷182712=÷-)32274483(15.若一个正方体的长为,宽为,高为,则它的体积cm 62cm 3cm 2为 .3cm 16.若,则 .433+-+-=x x y =+y x 17.若的整数部分是a ,小数部分是b ,则 .3=-b a 318.若,则m 的取值范围是 .3)3(-∙=-m m m m 19.若 .=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)21. 22.21418122-+-3)154276485(÷+-23. 24. x xx x 3)1246(÷-21)2()12(18---+++25. 26.已知:,求的0)13(27132--+-132-=x 12+-x x 值.27.已知:。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式演习01一.填空题 1.下列和数1415926.3)1(.3.0)2(722)3(2)4(38)5(-2)6(π (3030030003).0)7( 个中无理数有________,有理数有________(填序号)2.94的平方根________,216.0的立方根________. 3.16的平方根________,64的立方根________. 4.算术平方根等于它本身的数有________,立方根等于本身的数有________.5.若2562=x ,则=x ________,若2163-=x ,则=x ________.6.已知ABC Rt ∆双方为3,4,则第三边长________.7.若三角形三边之比为3:4:5,周长为24,则三角形面积________.8.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.9.假如0)6(42=++-y x ,则=+y x ________. 10.假如12-a 和a -5是一个数m 的平方根,则.__________,==m a11.三角形三边分离为8,15,17,那么最长边上的高为________.12.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 二.选择题13.下列几组数中不克不及作为直角三角形三边长度的是( )A.25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b aD.17,8,15===c b a14.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C.29英寸(cm 74) D .34英寸(cm 87)15.等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16.三角形三边c b a ,,知足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17.2)6(-的平方根是( )A .6-B .36C.±6D.6±18.下列命题准确的个数有:a a a a ==233)2(,)1((3)无穷小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( )A .1个 B. 2个 C .3个D.4个19.x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B.7C.3,7D. 1,720.直角三角形边长度为5,12,则斜边上的高( )A. 6B.8C.1318D.1360 21.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A.2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+22.如图一向角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B.cm 3 C.cm 4D.cm 5三.盘算题23.求下列各式中x 的值:24.用盘算器盘算:(成果保存3个有用数字)四.作图题25.在数轴上画出8-的点.26.下图的正方形网格,每个正方形极点叫格点,请在图中画一个面积为10的正方形. 五.解答题27.已知如图所示,四边形ABCD中,,12,13,4,3cm CD cm BC cm AD cm AB ====090=∠A 求四边形ABCD 的面积.28.如图所示,在边长为c 直角边为b a ,勾股定理吗?写出来由.29.如图所示,15cm 60)堆在一路,30.如图所示,在ABC Rt ∆中,∠若AD=8,BD=2,求CD.31.在△ABC 中ABC 周长.二次根式演习01AEBDC第22题图第25题图第26题图第28题图 A第30题图AD答案:一.填空题:1.4.6.7,1.2.3.5;2.32±,0.6;3.±2,2;4.0和1,0和±1;5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1 二.选择题:13-22:ACBCCBDDDB 三.盘算题:23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用盘算器盘算答案略 四.作图题:(略)五.解答题:27.提醒:贯穿连接BD,面积为56;28.提醒:应用面积证实;29.327.8;30.CD=4;31.周长为42.二次根式演习02一.选择题(每小题2分,共30分) 1.25的平方根是( )A.5B.–5C.5±D.5± 2.2)3(-的算术平方根是( )A.9B.–3C.3±D.3 3.下列论述准确的是( )2.0± B.32)(--的立方根不消失C.6±是36的算术平方根D.–27的立方根是–34.下列等式中,错误的是( ) A.864±=± B.1511225121±= C.62163-=- D.1.0001.03-=- 5.下列各数中,无理数的个数有( )A.1B.2C.3D.46.假如x -2有意义,则x 的取值规模是( )A.2≥xB.2<xC.2≤xD.2>x 7.化简1|21|+-的成果是( )A.22-B.22+C.2D.28.下列各式比较大小准确的是( )A.32-<-B.6655->-C.14.3-<-πD.310->-9.用盘算器求得333+的成果(保存4个有用数字)是( )A.3.1742B.3.174 C 10.假如mmm m -=-33成立,则实数m 的取值规模是( )A.3≥mB.0≤mC.30≤<mD.30≤≤m11.盘算5155⨯÷,所得成果准确的是( )A.5B.25C.1D.5512.若0<x ,则xx x 2-的成果为( )A.2B.0C.0或–2D.–213.a.b 为实数,在数轴上的地位如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14.下列算式中准确的是( )A.333n m n m -=-B.ab b a 835=+C.1037=+x xD.52523521=+ 15.在二次根式:①12;④27中,与3是同类二次根式的是( )A.①和③B.②和③C.①和④D.③和④二.填空题(每小题2分,共20分)16.–125的立方根是_____.17.假如9=x ,那么x =________;假如92=x ,那么=x ________.18.要使53-x 有意义,则x 可以取的最小整数是. 19.平方根等于本身的数是________;立方根等于本身的数是_______20.x 是实数,且02122=-x ,则.____=x21.若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22.盘算:①____;)32(2=-②._____1964522=-23.2.645==,24.盘算:._____1882=++ 25.已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23(3)若6=+b a ,则ab ≤3依据以上三个命题所供给的纪律猜测:若9=+b a ,则ab ≤________. 三.解答题(共50分) 26.直接写出答案(10分)④⑦348-⑧()225+⑨27.盘算.化简:(请求有须要的解答进程)(18分) ①8612⨯②)7533(3-③32 -321+2④123127+-⑤(2+2363327⨯-+28.探讨题(10分)=______.依据盘算成果,答复:(1)a吗?你发明个中的纪律了吗?请你用本身的说话描写出来.(2).应用你总结的纪律,盘算①若2x〈,则=②29.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(准确到)30.(6分)已知yx、知足0|22|132=+-+--yxyx,求yx542-的平方根.附加题:31.(5分)已知21,31==yx,求下列各式的值①3223441yxyxyx++②32241yxyyx+-32.(5分)已知ABC∆的三边为cba、、.化简根式002参考答案一.CDDBCCDCBCCACDC二.-5; ±9; ±3; 2; 0; ±1.0; ±0.5; 2;12;314;122.8;;92;三.12;±23;-0.4;5;;9+33;0.5;6;34;13;0;不必定.a=;2-x; 3.14π-;6cm;±4c.二次根式演习03一.填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数规模内分化因式:a4-4=____________.二.选择题(每题4分,共20分)15.下列说法准确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三.盘算题(各小题6分,共30分)四.化简求值(各小题5分,共10分)五.解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径若干?32cm2,假如将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是若干(保存3个有用数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19.A 20. D23. 2430.二次根式演习04一.填空题(每题3分,共54分)2.-27的立方根=.二.选择题(每题4分,共20分)15.下列式子成立的是( ). 17.下列盘算准确的是( ).三.盘算题(各小题6分,共30分)四.化简求值(各小题8分,共16分)五.解答题(各小题8分,共24分)根式004答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19.B 20. A二次根式演习05二次根式:1..2. 当__________时.3.11m+意义,则m的取值规模是.4. 当__________x时是二次根式.5. 在实数规模内分化因式:429__________,2__________x x-=-+=.6. 2x=,则x的取值规模是.7. 2x=-,则x的取值规模是.8. )1x的成果是.9. 当15x≤时5_____________x-=.10. 把.11.11x=+成立的前提是.12.若1a b-+互为相反数,则()2005_____________ab-=.13. 在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A. 2个B. 3个C. 4个D. 5个14. 下列各式必定是二次根式的是()15. 若23a,)A. 52a- B. 12a- C. 25a- D. 21a-16.若A==()A. 24a+ B. 22a+ C. ()222a+ D.()224a+17. 若1a≤,)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值规模是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开端出错的步调是()A. ()1B. ()2C. ()3D. ()421. 2440y y-+=,求xy的值.22. 当a取什么值时,1取值最小,并求出这个最小值.23. 去失落下列各根式内的分母:24. 已知2310x x-+=,.25. 已知,ab为实数,(10b-=,求20052006a b-的值.二次根式演习05答案:二次根式:1. 4x ≥;2. 122x -≤≤; 3. 01m m ≤≠-且; 4. 随意率性实数;5. ()((223;x x x x +; 6. 0x ≥;7. 2x ≤; 8.1x -;9. 4; 10. 1x ≥; 12. -1; 13——20:CCCABCDB21. 4; 22. 12a =-,最小值为1; 23.()()3121x x +;二次根式演习061. 当0a ≤,0b时__________=.2.,则_____,______m n ==.3.__________==.4.盘算:_____________=.5.面积为,则长方形的长约为(准确到0.01).6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式( )8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9.-和-)A. 32-- B. 32--C. -=-D. 不克不及肯定10.以下说法中不准确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 盘算: 12. 化简:13. 把根号外的因式移到根号内:二次根式演习0621.2 二次根式的乘除:1. - 6——10: DDCAB11. ()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. ()()()123.0ab ;13. ()()1.2. 根式013答案: 1——5: ABDDD6. 25x ≤≤; 7. 8; 8. ; 9. ()(22x x x +; 10. 0;11.36-15. 底面边长为; 高为; 16. 26x -; 17. ()41.3x y =⎧⎨=⎩. ()2.5 二次根式演习071. 下列根式中,)2. 下面说法准确的是( )A. 被开方数雷同的二次根式必定是同类二次根式D. 同类二次根式是根指数为2的根式3.)4. 下列根式中,是最简二次根式的是()D.5. 若12x,()A. 21x- B. 21x-+ C. 3 D. -36.10=,则x的值等于()A. 4B. 2±C. 2D. 4±7.x,小数部分为y,y-的值是()A. 38. 下列式子中准确的是()=a b=-C. (a b=-22==9.,.是同类二次根式,则____,____a b==.11.,则它的周长是cm.12.式,则______a=.13.已知x y==则33_________x y xy+=.14.已知x =则21________x x -+=.15. )()20002001232______________+=.16. 盘算:⑴.⑵(231⎛++ ⎝⑶. (()2771+--⑷. ((((22221111+17. 盘算及化简:⑴. 22-⑵⑶⑷. a b a b ⎛⎫+--18.已知:x y ==求32432232x xy x y x y x y -++的值.19. 已知:11a a +=+求221a a +的值.20. 已知:,xy 为实数,且13yx -+,化简:3y -.21. 已知11039322++=+-+-y x x x y x ,求的值. 二次根式演习07答案21.3 二次根式的加减:1——8:BAACCCCC9. ; 10. 1.1; 11. (; 12. 1; 13. 10;14. 42; 16. ()()()()122,3.454.4-+; 17. ()()()()()21.4,23.,4.1x yy x-+-;18. 5; 19. 9+二次根式演习08一.选择题1.假如-3x+5是二次根式,则x的取值规模是()A.x≠-5B.x>-5C.x<-5D.x≤-52.等式x2-1 =x+1 ·x-1 成立的前提是()A.x>1B.x<-1C.x≥1D.x≤-13.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A.3B.4C.5D.64.下列二次根式中,x的取值规模是x≥2的是()A.2-xB.x+2C.x-2D.1 x-25.鄙人列根式中,不是最简二次根式的是()A.a2 +1 B.2x+1 C.2b4D.0.1y6.下面的等式总能成立的是()A.a2 =aB.a a2 =a2C. a · b =abD.ab = a · b7.m为实数,则m2+4m+5 的值必定是()A.整数B.正整数C.正数D.负数8.已知xy>0,化简二次根式x-yx2的准确成果为()A.yB.-yC.-yD.--y9.若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值规模是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.下列根式不克不及与48 归并的是()A.0.12B.18C.113D.-7511.假如最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的规模是()A.x≤10B.x≥10C.x<10D.x>1012.若实数x.y知足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A.1B.32+ 2 C.3+2 2 D.3-2 2二.填空题1.要使x-13-x有意义,则x的取值规模是.2.若a+4 +a+2b-2 =0,则ab=.3.若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 =.4.若y=1-2x +2x-1 +(x-1)2 ,则(x+y)2003=.5.若 2 x>1+ 3 x,化简(x+2)2-3(x+3)3 =.6.若(a+1)2 =(a-1)2 ,则a=.7.比较大小:⑴3 5 2 6 ⑵11 -10 14 -138.若最简根式m2-3 与5m+3 是同类二次根式,则m=.9.已知223=223,338=338,4415=4415,…请你用含n的式子将个中蕴涵的纪律暗示出来:.10.若 5 的整数部分是a,小数部分是b,则a-1b=.11.已知x =1a- a ,则4x+x2 =.12.已知a=3- 5 -3+ 5 ,则化简a得.三.盘算与化简1.( 3 + 2 )-1+(-2)2 +3-82.13 +1+15 - 3+15 +33.(1+ 2 - 3 )(1- 2 + 3 )+2 64.9a + a31a +12aa 3 四.先化简再求值1.已知a=3,b= 4,求[4( a + b )( a - b ) +a +b ab ( b - a ) ]÷ a - bab的值.2.化简:a+2+a 2-4 a+2-a 2-4 - a+2-a 2-4 a+2+a 2-4 取本身爱好的a 的值盘算.3.当a= 3 + 2 3 - 2 ,b= 3 - 2 3 + 2 时,求a 2-3ab+b 2的值.4.当a= 21- 3 时,求a 2-1a -1 - a 2+2a+1 a 2+a - 1a 的值.五.解答下列各题1.解方程: 3 (x -1)= 2 (x+1)2.3.已知直角三角形两直角边长分离为a= 12 3 -11 ,b= 12 3 +11 ,求斜边的长.4.先浏览下列的解答进程,然后作答:形如m ±2n 的化简,只要我们找到两个数a.b 使a+b=m,ab=n,如许( a )2+( b )2=m, a · b =n,那么便有m ±2n =( a ± b )2= a ± b (a>b)例如:化简7+4 3 解:起首把7+4 3 化为7+212 ,这里m=7,n=12;因为4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 · 3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2=2+ 3 由上述例题的办法化简:⑴13-242 ⑵7-40 ⑶2- 3二次根式演习08参考答案一.选择题1.C2.C3.)C4.C5.D6.C7.C8.D9.C10.B11.A12.C二.填空题1.1≤x<32.-123.04.15.-2x-56.07.>>8.69.n+nn2-1=nnn2-1(n≥2且n为整数)10.- 511.1a-a12.- 2三.盘算与化简1. 3 - 22. 3 +13.-4+4 64.236 a四.先化简再求值1. 3 -22.a3.954.- 3五.解答下列各题1.x=5+2 62.x=2 3 -2 y=6-2 33.464.⑴7 - 6 ⑵ 5 - 2 ⑶ 2 - 62二次根式演习09一.选择题1.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是( )A.a 2+3 B.-a 2+3 C.±a 2+3 D.±a+3 2.若式子(x -1)2+|x -2|化简的成果为2x -3,则x的取值规模是( )A.x ≤1B.x ≥2C.1≤x ≤2D.x>03.下列说法错误的是( )A.a 2-6x+9 是最简二次根式 B. 4 是二次根式 C.a 2+b 2长短负数 D.a 2+16 的最小值是44.式子m m +6mm 4 -5m 21m的值是( ) A.正数 B.负数 C.非负数 D.可为正数也可为负数 5.等式x ÷1-x =x1-x成立的前提是( )A.0≤x ≤1B.x<1C.x ≥0D.0≤x <16.下列各组代数式中,互为有理化因式的是( )A.3x +1与1-3xB.x +y 与-x -yC.2-x 与x -2D.x 与 3 x7.下列断定中准确的是( )A.m -n 的有理化因式是m+nB.3-2 2 的倒数是2 2 -3C. 2 - 5 的绝对值是 5 - 2D. 3 不是方程x+1x -1-3x=2的解 8.下列盘算准确的是( )A. 2 + 3 = 5B.2+ 2 =2 2C.63 +28 =57D.8 +18 2= 4 +99.已知a<0,那么(2a -|a|)2的值是( ) A.a B.-a C.3a D.-3a10.在5a ,8b ,m 4,a 2+b 2 ,a 3中,是最简二次根式的有( )A.1个B.2个C.3个D.4个11.不等式(2- 5 )x<1的解集为( )A.x<-2- 5B.x>-2- 5C.x<2- 5D.x>-2+ 512.已知ba -ab =3 2 2 ,那么b a +a b的值为( )A.52B.72C.92D.132 二.填空题1. 2 2分数(填“是”或“不是”)2.最简二次根式a 2+a 与a+9 是同类二次根式,则a=. 3.将a-1a根号外的因式移入根号内的成果是.4.代数式(x +1)2 +(x -3)2的最小值是. 5.代数式2-a +9 的最值是.6.合适不等式15 ≤x ≤27 的整数x 的值是.7.化简:aa -ba 2-ab a 3-2a 2b+ab2 (a>b)=. 8.化简:(12 +1 +13 + 2 +14 + 3 +…+12006 +2005)(2006 +1)=.9.分化因式x 2(x - 3 )-3(x - 3 )=. 10.当a 时,a+2a -4是二次根式. 11.若(-2a )2=2a,则a=. 12.已知x+1x =4,则x -1x = .三.盘算与化简1. 6 ÷(12 +13 )2.22(212 +418-348 ) 3.22 -( 3 -2)0+20 4.22- 3 -12 +( 3 +1)25.aa -ab - ba -b 6.(ab -ab a +ab)·ab -ba -b7.a -9 a +3 8.1x +3 四.化简求值1.已知x= 3 +1,,求x21+2x+x2 的值.2.已知a= 2 5 +2 ,y=10 +2 2 ,求x 2+2xy+y 2+18 (x-y)的值.五.解答题1.解不等式: 2 x-1< 3 x2.解方程组:3.设等式a(x-a) +a(y-a) =x-a -a-y 在实数规模内成立,个中a.x.y是两两不合的实数,求3x2+xy-y2x2-xy+y2的值.4.已知x>0,y>0,且有x (x +2y )=y (6x+5y )求x+xy -y2x+xy +3y的值.5.若a+b=2ab (a>0,b>0),求a+b3a+5b的值.6.已知实数a知足|2003-a|+a-2004 =a,则a-20032的值是若干?二次根式演习09参考答案一.选择题1.C2.B3.A4.负数5.D6.A7.C8.C9.D10.B11.B12.D二.填空题1.不是2.-33.--a4.45.大 26.4或57.a(a-b)2a-b8.20059.(x- 3 )2(x+ 3 )10.a>4或a≤-211.012.±3 3三.盘算与化简1.6 3 -6 22.2-8 33. 2 -1+2 54.8+2 35.16.a7. a -38.当x≠9时,原式=x -3x-9当x≠9时,原式=16四.化简求值1. 3 -12.16五.解答题1. x>- 2 - 32.x=3 2 +2 35,y=3 3 -2 253.36.2004二次根式演习10一.选择题1.下列断定⑴12 3 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,个中错误的个数是( ) A.3 B.2 C.1 D.02.假如a 是随意率性实数,下列各式中必定有意义的是( ) A. a B.1a2 C.3-a D.-a 23.下列各组中的两个根式是同类二次根式的是( ) A.52x 和3x B.12ab 和13abC.x 2y 和xy 2D. a 和1a2 4.下列二次根式中,是最简二次根式的是( ) A.8x B.x 2-3 C.x -y xD.3a 2b 5.在27 .112.112中与 3 是同类二次根式的个数是( )A.0B.1C.2D.36.若a<0,则|a 2-a|的值是( ) A.0 B.2a C.2a 或-2a D.-2a 7.把(a -1)11-a根号外的因式移入根号内,其成果是( )A.1-aB.-1-aC.a -1D.-a -1 8.若a+b4b 与3a +b 是同类二次根式,则a.b 的值为( )A.a=2.b=2B.a=2.b=0C.a=1.b=1D.a=0.b=2 或a=1.b=19.下列说法错误的是( )A.(-2)2的算术平方根是2 B. 3 - 2 的倒数是3 + 2C.当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D.方程x+1 +2=0无解10.若 a + b 与 a - b 互为倒数,则( )A.a=b -1B.a=b+1C.a+b=1D.a+b=-1 11.若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( )A.1-a 1+aB.a -11+aC.1-a 2D.a 2-112.在化简x -y x +y时,甲.乙两位同窗的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y )=(x -y)(x -y )(x )2-(y )2 =x -y 乙:x -y x +y =(x )2-(y )2x +y =(x -y )(x +y )x +y=x -yA.两人解法都对B.甲错乙对C.甲对乙错D.两人都错( )二.填空题1.要使1-2x x+3 +(-x)0有意义,则x 的取值规模是.2.若a 2=( a )2,则a 的取值规模是.3.若x 3+3x 2=-x x+3 ,则x 的取值规模是.4.不雅察下列各式:1+13 =213 ,2+14=314,3+15=415,……请你将猜测到的纪律用含天然数n(n ≥1)的代数式暗示出来是. 5.若a>0,化简-4ab =.6.若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 =.7.化简:||-x 2-1|-2|=.8.在实数规模内分化因式:x 4+x 2-6=.9.已知x>0,y>0且x -2xy -15y=0,则2x+xy +3yx+xy -y =.10.若5+7 的小数部分是a,5-7 的小数部分是b,则ab+5b=.11.设 3 =a,30 =b,则0.9 =. 12.已知a<0,化简4-(a+1a)2-4+(a -1a)2=.三.盘算与化简 1.13(212 -75 ) 2.24 - 1.5 +223 - 3 + 2 3 - 23.(-2 2 )2-( 2 +1)2+( 2 -1)-14.7a 8a -2a218a+7a 2a 5.2nm n -3mn m 3n 3 +5m m 3n (m<0.n<0) 6.1a+ b7.x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8.x+xyxy +y+xy -y x -xy 四.化简求值1.已知x= 2 +12 -1 ,y= 3 -13 +1,求x 2-y 2的值.2.已知x=2+ 3 ,y=2- 3 ,求x +yx -y -x -yx +y的值.3.当a= 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1a 2-a 的值. 五.已知x +1x =4,求x -1x的值.二次根式演习10参考答案 一.选择题 1.B 2.C 3.B 4.B 5.C 6.D7.B 8.D 9.C 10.B 11.A 12.B 二.填空题1.x ≤x ≠-3,x ≠02.a ≥03.-3≤x ≤04. -55 (n+1) 1n+25.-2b -ab6.2x7.18.(x+ 3 )(x+ 2 )(x - 2 ) 9.2927 10.2 11.3a b12.-4三.盘算与化简 1. -1 2. 6 6 -53.6- 24.412 a 2a5.-10mn6. (1)当a ≠ b 时,原式=12a 或 b2b (2)当a= b 时,原式=a - ba 2-b7.18.(x+y)xy xy四.化简求值1.-11+12 2 +16 62.2 3 33.3五.±2 3。

二次根式混合运算题有答案ok完整版

二次根式混合运算题有答案ok完整版

二次根式混合运算题有答案o kHUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】二次根式混合运算125题(有答案)7、.8、9、.10、;11、.12、;13、;14、.15、;16、.17、.18、19、20、;21、22、.25、26、;.27、28、;;29、;30、31、;(5);32、33、;34、;35、36、3﹣9+337、÷(3×)38、39、40、;.41、42、43、44、45、;46、.47、(﹣)2﹣;48、;49、;50、.51、;52、.53、3﹣﹣+(﹣2)(+2)55、56、57、59、2÷﹣(2﹣)260、﹣2+(﹣1)261、(+2)﹣.62、63、64、65、.67、.68、69、70、3﹣(﹣)71、72、﹣273、74、75、76、77、÷78、×+÷﹣79、80、81、﹣.82、83、84、85、(+1)2﹣286、(+1)(1﹣)﹣(﹣1)2+(+1)287、88、89、90、;91、.92、;93、;;94、95、;96、;97、98、|﹣|+﹣;99、;;100、101、(+)2008(﹣)2009.102、;103、;104、.105、(3+)÷;106、107、;108、;109、.110、﹣1111、(﹣)(+)+2+|﹣3|﹣2﹣1(4)(﹣2)×﹣6 114、115、(2﹣);116、;117、118、.119、.120、121、122、+6a;﹣×.123、124、(2)(7+4)(7﹣4)+(2+)125、参考答案1、原式=2﹣3=﹣;2、原式=×==30;3、原式=2﹣12=﹣10.4、原式==2.5、原式===﹣6a.6、原式=;7、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)=8、原式=.9、.原式=(3﹣2+3)×=(+3)×=1+10、原式=﹣+=;11、原式=(4+)÷3=12、原式=2+3﹣=;13、原式==;14、原式=(7+)(7+)=14×2=15、原式==3+6﹣10=﹣1;16、原式=2﹣=﹣2.17、原式=﹣2+=3﹣2+=18、原式=(3﹣2)(3+2)=18﹣12=6;19、原式=(2﹣+)=(+)=+120、原式=﹣35÷=﹣15÷=﹣15;21、原式=3+﹣2+﹣3=;22、原式=3a+﹣2b23、原式=3﹣2+1﹣(2﹣3)=5﹣2.24、原式==25、原式=2+1﹣(﹣)=3﹣1=2.26、原式=17﹣(19﹣)=﹣2+;27、原式=2﹣3﹣2=﹣3.28、原式=4+12=;29、原式=+2﹣10=;30、原式=4﹣+=;31、原式=6﹣5=1;32、原式=12+18﹣12=;33、原式=(2+)×﹣2=3﹣2=1;34、原式=+×6﹣m=2m+3m﹣m=0;35、原式=++1=﹣1++1=36、原式=12=(12﹣3﹣+6)=;37、原式=6÷(×)=6÷6=38、原式=+3﹣2=3+3﹣2=3+.39、原式=++×1=6+1+=7+.40、原式=×3+6×﹣2x=2+3﹣2=3;41、原式=2﹣+3﹣2=2﹣2+142、原式=(6﹣+﹣2)÷2﹣3=3﹣+﹣﹣3=﹣+﹣;43、原式===444、=(4÷2)=45、原式=2+3﹣7=﹣2;46、原式===14.47、原式=10﹣7+=3+;48、原式=×(2﹣+)=+×=+1;49、原式=﹣1;50、原式=2+3+2﹣(2﹣3)=5+2+1=6+251、原式=4+﹣4=;52、原式=(4﹣2+6)÷=2+253、原式=6﹣3﹣+5﹣4=(6﹣3﹣)+1=+154、原式==;55、原式==.56、原式=[﹣(﹣)][+(﹣)]=5﹣(﹣)2=5﹣(5﹣2)=2.57、原式=4×2﹣16+12﹣16﹣8=﹣4﹣16;58、原式=+﹣+3=59、原式=2﹣(4﹣4+2)=2﹣6+4=6﹣6.60、原式=×2﹣2×3+5﹣2+1=﹣6﹣2+6=6﹣7.61、原式=a+2=2.62、原式=;63、原式=﹣+=﹣+=0.64、=2+﹣2=.65、=﹣=66、原式=9﹣14+4=﹣;67、原式=﹣43=﹣12=﹣11.68、原式=2×=12;69、原式=×3×=﹣;70、原式=12﹣2+6=16;71、原式=(4﹣2+6)×=2+272、原式=27÷(3×)×﹣8=3×﹣8=﹣8;73、原式=()2﹣()2=3﹣(2+2+5)=﹣4﹣274、原式=3+8=11;75、原式=2﹣12=﹣10;76、原式=5+﹣6=0;77、原式=÷=÷=1.78、原式=﹣==4+=4+.79、原式===;80、原式==9+6=1581、原式=(+)2﹣=3+2+2﹣=5+82、原式==;83、原式=;84、原式=5﹣6=﹣1;85、原式=4+=86、(1+)(1﹣)﹣(﹣1)2+(+1)2=1﹣()2﹣(2﹣2+1)+2+2+1 =1﹣2﹣2+2﹣1+2+2+1=4﹣1.87、原式=+4×﹣+1=++1=1+.88、原式=(40)=30=15;89、原式=2+2=2+.90、原式===;91、原式===12.92、原式=2+2+4+2=;93、原式=9﹣14+24=;94、原式=(7+4)(7﹣4)+4﹣3=49﹣48+1=2;95、原式=﹣4×+9﹣12﹣()=﹣8+9﹣12﹣+1=﹣11;96、原式=﹣+=2x+=;97、原式=2a(b﹣×+)=2ab﹣+ab=98、原式=﹣+3﹣5=2﹣4;99、原式=12﹣4+1=13﹣4;100、原式=2+﹣=;101、原式=()=102、原式=3×2﹣2×3+5×4=6﹣6+20=20;103、原式=7﹣3+2=6;104、原式=(﹣)×=﹣=﹣105、原式=3÷+÷=3+=;106、原式=3﹣1﹣=2﹣107、原式=+1﹣×2=2+1﹣2=1;108、原式=3﹣2+1﹣1=3﹣2;109、原式=+4﹣3=110、﹣1=﹣1=﹣1=0;111、()()+2=﹣+2=5﹣7+2=0;112、+|﹣3|﹣2﹣1=1+3﹣=3;113、(﹣2)×﹣6=﹣4﹣=﹣9﹣=﹣114、原式=4﹣5=﹣1;115、原式=×=1;116、原式=5﹣2﹣5+2=;117、原式=4﹣2+﹣1=3﹣118、原式==3﹣2=1.119、原式==120、原式=+1=121、原式=3+6a=2a+3a=5a;122、原式=﹣=﹣=3﹣2=1.123、原式==12;124、原式=49﹣48+2+=3+.125、原式===.。

二次根式综合练习

二次根式综合练习

1二次根式综合练习一、单选题1.下列各式成立的是( )A .√(−3)2=−3B .√x 2=xC .√(−5)2=5D .√a 2+1=a +1 2.二次根式 √x −5 中字母x 的取值可以是( )A .x =5B .x =1C .x =2D .x =-1 3.当a <1时,化简√−a 3(1−a)的结果是( )A .a √(a −1)B .−a √a(a −1)C .a √a(−a)D .−a √a(−a) 4.二次根式 √2x −1 有意义时,x 的取值范围是( ). A .x >12 B .x ≥12 C .x <12 D .x ≤12 5.下列根式中,最简二次根式的是( )A .√4B .√12C .√12D .√106.计算并化简√5×√45 的结果为( ) A .2 B .√4 C .±2 D .±√47.下列运算正确的是( )A .√2+√3=√5B .√3−√2=1C .√2×√3=√5D .√24÷√8=√3 8.函数y =√x+3中,自变量x 的取值范围是( ) A .x >﹣3且x≠0 B .x >﹣3 C .x≥﹣3D .x≠﹣39.下列等式何者不成立( ) A .4√3+2√3=6√3 B .4√3−2√3=2√3 C .4√3×2√3=8√3 D .4√3÷2√3=2 10.下列二次根式是最简二次根式的为( )A .√10B .√20C .√23D .√3.6 11.已知y =√x −3+√3−x +1,则x +y 的平方根是( )A .2B .-2C .±2D .±112.实数a 、b 在数轴上的位置如图所示化简,√(a −b)2+√a 2−√b 2的结果为( )A .2a +2bB .−2aC .−2bD .2a −2b 13.把代数式 (a −1)√11−a中的 a −1 移到根号内,那么这个代数式等于()2A .−√1−aB .√a −1C .√1−aD .−√a −1 14.计算√2×√8+√−273的结果为( )A .﹣1B .1C .4−3√3D .7 15.若一个直角三角形的两条直角边长分别为 √13 cm 和 √14 cm ,那么此直角三角形的斜边长是( ) A .3 √2 cm B .3 √3 cm C .9cm D .27 cm 16.已知 √7 =a , √70 =b ,则 √10 等于( )A .a+bB .b-aC .abD .b a17.如图,长方形内三个相邻的正方形面积分别为4,3,和2,则图中阴影部分的面积为( )A .2B .√6C .2√3+√6−2√2−3D .2√3+2√2−5 18.√16 的值为( ) A .4 B .-4 C .±4 D .219.下列计算正确的是( ) A .√(−3)2=−3 B .√9=±3C .√−83=2D .√(−4)33=−4 20.估计 2√6 的大小应( )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 21.若式子 √3−x 在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≤3C .x ≥3D .x ≠3 22.下列二次根式中,最简二次根式是( ) A .√12B .√17C .√75D .√5a 3 23.如果 a =√3+2, b =√3−2 ,那么 a 与 b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a <b 24.下列计算正确的是( )A .√2+√3=√5B .3√2−2√2=1C .√2×√3=√6D .√24÷√6=4 25.计算 4√12+3√13−√8 的结果是( ) A .√3+√2 B .√3 C .√33 D .√3−√226.下列计算正确的是( )3A .(3−2√2)(3−2√2)=9−2×3=3B .(2√x +√y )(√x −√y )=2x −yC .(3−√3)2=32−(√3)2=6D .(√x +√x +1)(√x +1−√x )=1 27.已知x 为实数,化简√−x 3−x √−1x的结果为( ) A .(x −1)√−x B .(−1−x )√−x C .(1−x )√−x D .(1+x )√−x二、填空题28.若二次根式 √x −3 在实数范围内有意义,则x 的取值范围是 . 29.二次根式 √x +4 中,字母x 的取值范围是 . 30.(√6+√5)2021×(√6−√5)2022 = . 31.若一个二次根式与 √12 的积为有理数,则这个二次根式可以是 32.计算√−83+√36−√49= ;33.如果最简二次根式√2x −1与√5是同类二次根式,那么x 的值为 . 34.已知实数a ,b ,c 表示一个三角形的三边长,它们满足 √a −3 +|b-3|+ √c −4 =0,则该三角形的形状为 35.已知1<a <3,则化简 √1−2a +a 2 ﹣ √a 2−8a +16 的结果是 .36.函数y = √x+5x 的自变量x 的取值范围为 . 37.比较大小: 1√6−√5 1√7−√6(用 >,< 或 = 填空) 38.①比较大小:- 3√2 -4;②√33的倒数为 . 39.若x 、y 满足y= √x −2 + √2−x +4,xy= . 40.如果最简二次根式 √2a −3 与 √7 是同类二次根式,那么a 的值是 .三、计算题41.计算: (1)4√12−√18+√8 (2)√12×√36√6 (3)(√2−√3)2−(√3+√2)(√3−√2) .四、解答题42.计算: 3√3−√27+(π−2020)0+√24÷√2 43.若 x , y 为实数,且 x =√y 2−1+√1−y 2+y y+1,求 x −3+y 的值.44.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足 b =3+√3a −6+5√2−a ,求此三角形的周4 长.45.有一道练习题是:对于式子 2a −√a 2−4a +4 先化简,后求值.其中 a =√2 . 小明的解法如下:2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣(a ﹣2)=a+2= √2 +2. 小明的解法对吗?如果不对,请改正.46.如果最简二次根式 √3a −8 与 √17−2a 是同类二次根式,那么要使式 √4a −2x +√x −a 有意义,x 的取值范围是什么?47.实数a 、b 、c 在数轴上的对应点位置如图所示,化简: √(−c)2+|a −b|+√(a +b)33−|b −c|48.古希腊的几何学家海伦给出了求三角形面积的公式:S= √p(p −a)(p −b)(p −c) ,其中a ,b ,c 为三角形的三边长,p= a+b+c 2.若一个三角形的三边长分别为2,3,4,求该三角形的面积.49.若a 、b 、c 是△ABC 的三条边长,且满足等式 √a −1+(b −√3)2+(c −2)2=0 求证:△ABC 是直角三角形50.如图所示是工人师傅做的一块三角形铁板材料,BC 边的长为2 √35 cm ,BC 边上的高AD 为 √28 cm ,求该三角形铁板的面积.每天进步一点点,就是迈向卓越的开始 5 答案解析部分1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】C12.【答案】B13.【答案】A14.【答案】B15.【答案】B16.【答案】D17.【答案】D18.【答案】A19.【答案】D20.【答案】C21.【答案】B22.【答案】B23.【答案】A24.【答案】C25.【答案】B26.【答案】D27.【答案】C28.【答案】x≥329.【答案】x≥-430.【答案】√6−√531.【答案】√3632.【答案】-333.【答案】334.【答案】等腰三角形35.【答案】2a−536.【答案】x≥-5且x≠037.【答案】< 38.【答案】<;√339.【答案】840.【答案】541.【答案】(1)解:原式=2 √2 -3 √2 +2 √2 = √2 (2)解:原式= √12×√3×√66 =√12×3×66 =√6 (3)解:原式=5- 2 √6 -(3--2)=4- 2 √6 42.【答案】解:原式= √3−3√3+1+2√3 =143.【答案】解:由题意得,y 2-1≥0且1-y 2≥0, 所以,y 2≥1且y 2≤1,所以,y 2=1所以,y=±1,又∵y+1≠0,∴y≠-1,所以,y=1,所以,x= 11+1=12 ,∴x −3+y =(12)−3+1=944.【答案】解:∵b =3+√3a −6+5√2−a ∴3a -6≥0,2-a≥0∴a=2∴b=3∵a ,b 分别为等腰三角形的两条边长 ∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=845.【答案】解:小明的解法不对.改正如下:7 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣|a ﹣2|, ∵a= √2 ,∴a ﹣2<0,∴原式=2a+a ﹣2=3a ﹣2,把a= √2 代入得原式=3 √2 ﹣246.【答案】解:由题意,得3a ﹣8=17﹣2a ,解得a=5;4a ﹣2x≥0且x ﹣a≥,解得5≤x≤10,√4a −2x +√x −a 有意义,x 的取值范围是5≤x≤1047.【答案】解:原式=|-c|+|a-b|+a+b-|b-c|, =c+(-a+b )+a+b-(-b+c ),=c-a+b+a+b+b-c ,=3b.48.【答案】解:设a=2,b=3,c=4, ∴p= a+b+c 2=2+3+42=92∴S= √p(p −a)(p −b)(p −c)= √92(92−2)×(92−3)×(92−4) = 3√154∴该三角形的面积为 3√15449.【答案】证明:由题意,得a= 1,b= √3 ,c= 2,∵a 2+b 2= 4,c 2= 4,∴a 2+b 2=c 2, ∴△ABC 是直角三角形50.【答案】解:解:根据题意可知,S △ABC =12×BC ×AD =12×2√35×√28=√35×28=14√5故三角形铁板的面积为14 √5 cm 2。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式练习01f填空JS1、卜列和«1(1)3 141592( (2)0.3 (3)≡- (4)√2 (5)-√8(6)y (7)0 3030030003.■其中无理数有 ______ •有理数右 ________ (填序号)42、亍的平力H _______ ・0 216的立方H.3、JlB的平方根________ .阿的立方根 ___________ .4、球术平方根等于它本身的数有_______ ・立方根等于本身的数右________5、若X2 = 256. W-IX= ________ ・若x j = -216. WX= ___________ .6、LI)IlRtMBC两边为3∙ 4・则第三边长_________ >7、若三角形三边之比为3: 4:5∙网长为24.则三角形向枳_______& L!⅛∣≡A形L 2n+ IJn1 ÷2n f2n2 + 2n+ Ln为止整数.則此三角滞是三角形.9. ⅛ι⅛√χ34+(y+6)j -0 ・則x + y- _______________10.如果2a-lfπ 5-a是一个数m的平方根•则& = ____________ m= _______ IU三角形二边分别为& 15. 17.那么仪长边上的岛为_____________ .12. K角三角形三角形FWiftft边长为3和4・三角形内一点到备边铢离相等.那么这个丽离为________二.13. 卜刊几组数中不能作为H角二角形三边长度的足< )Aa = 6t b= 24»C= 25 Ba = 1.5,b = 2»C= 2.52 5C. a ≡ —t b ■ 2f c ■ —D. a ■ 15,b ■& C ■ 173 414. 小强Ift御家甲.彩电荧屏的长为58cm •宽为46cm •则这台电视机尺寸足( >A 9 英Q (23 Cm )B 21 英寸(54Cnl) C.29 英寸(74Cm )D S4 英寸« 87Cm)15. 等腰二角形腰长IOan.底边16cm.则面积( >A 96Cm I B. 48Cm i C. 24cm1 D 32Cm J16. 三何形二边a,b,c满足(a+b)'∙c∣+ 2ab∙则这个三角形足()A 角形B.钝ffj^∑flj形 C. H角三角形D等腰三角形17. (-6)'的平方根足( )A - 6B 36 C. 士6 D. ±麻18. bħj∣⅛jg∣E确的个故冇,(I)Va7 = a t(2)√aτ≡a(3)无限小数都足无珅数<4)有眼小数郝是有理数(5)实数分为IE实数和岁实数两类( 〉A l个 B.2个 C 3个D4个19. x½(-√9)2的平方Mi∙ y足64的立方根•则χ + y= <>A 3 B.7 C3. 7 D l. 720. Fnfl三角形边长度为5. 12.則斜边上的高( )IS 60A 6B 8 C. — D —13 132k Γ{ffi~∕fi形边K为a,b.斜边I•高为h∙则卜列冷犬总能成立的地(A. ab= Ii 2 B a 1÷b 2 = 2h i22. ⅛ιffl ∙fi∕{j Ξ角形尿片.两HftJ 边AC-6αnBC-8αn ・现将直角边AC 沿Fl 线AD 折叠.便它落在料边AB 上•且,j AE ⅛fr.则CD 等F ()(3×2Xr = -824.用i ∣∙nsi ∣∙W:(结果保留3个有效数字)A. 2cm B 3an C 4cm 三、计算层23.求F 列待式中X 的值:(1)16X 2-49=0第 22 JSra(2XX-1)2 = 25(4A(x∙F J7(I)VB四、作图题(?)VB(3)√6-< (4)2√3-3√225.庄数轴上Bii 岀■罷的点•D.5an% 25 Sffl26. IT的JI方形网格■毎个止方形顶点叫格点•请在图和Bi—个面枳为10的正方形•五■解善JR27.已Ial如图所示•四边形ABCD 中AB- 3cnχAD- 4α∏BC - 13ClnCD - 12an ZA- 90°求四边形ABCD 的∣6i⅛U«27 JSffl28. ⅛ι附所示•在1⅛长为C的正方形中.有四个斜边为c∙宜角边为a,b的全肆Hfn三和彤.你虢利用这个图说明勾股定円叫?耳出Pf由“%2Sβffl 229.如图所示・】5只空油饲(毎只油桶底面虫径均为60Cm >堆在•起.妥给它盖一个遮甬棚•逋甬棚起码耍多奇?(结呆保昭一位小数〉30.如图所示∙ ΛlRtΔABC 中∙ ZACB- 90° . CDALAB 边上高•若 AD=S.引.XZSABC 中.AB≡15. AC≡13・ BC 边 l:A AD=12.试求/.ABC 周长.BD=2. 求CD,二次根式练习1一.填空题:1. 4. 6. 7. k 2、3、5; 2・0. 6:3. ±2∙ 2: 4. 0 和1∙ 0 和±hL PO 5・±16∙・4: 6・5Λ√7 :7・ 24: S.宜角:9・・2: 10.)・ 81: 11. ≤-:二选择业:13-22: ACBCCBDDDB三.It WSSi23. (1) (2)x=6 或x≡4 (3) x≡-l: (4) x≡6: 24.用il 弊器4计“答案略BL作图題,(«)五、解答题* 27. Ie示,遗箔BD.面税为56: 28.捉川利用面农证明ι 29. 327. S:二次根式练习2 30. CD-4∣ 31.周长为42.二次根式练习02一.选择题〈毎小题2分.共30分) h 25的平方根是()c. V≡2l6--6 D. -Vδ^δol≡-o 15. 下列各数中.无理数的个数有()-O lOlooh √7. 丄 -?• √2-√3. 0, -√1642AV 1 B 、 2 CU 3D 、 46. 如果J 口有总义.則X 的取值范围是()A. X ≥ 2B. X < 2C. X≤ 2D. X > 27. 化简∣1-√2∣+1的结果是()C∙ ±5 D. ±√52、 (-3)】的算术平方桟是()AK 9 B.・3 C 、±3 3. 下列叙述正确的是()A. 0.4的平方根是±0 2 C. ±6是36的算术平方根 4.下列等式中,钳误的是()D. 3B. -(-2?的立方根不存在 D.・27的立方根是・3A . 2- √2B ∙ 2 + √2c 、2 O. √2 8∙下列各式比较大小正确的是() A. -√2<.√3 趴-営八徑56C. -n < -3 14 D 、- VTO >-3 9∙用计算澎求得√3 + V3的络果(保留4个有效数字)是(A. 3. 1742 B % 3.174 CW 3. 175 2'如果栏F=In成立,则实数m 的取值范围是(IK 计鼻5→√5×-^t 所得络果正飜的是( A 、 5 B 、 2512、若x<0,则匚五[的结果为()X13. ∙∙b 为实数.在数轴上的位置如图所示.则ja-b ∣÷√Γβ的值是(—bB. bC. b —2DD.2a —b14. 下列算式中正确的是()AW m λ∕3 - n√3 = m - n√3 B 、5λ∕a + 3√b = 8x ^b C 、7√x+3>∕x≡ IOD∙ ^J545 ■ 2√5D. 3. 1743A. m≥ 3Bi m≤0C% 0 < m≤ 3D∙ O≤m≤3A. 2B. O C∙ O 或-2 D.■ ・15. 左二次根式:ω√Γ5;②爲;③個;④Q 中.与書是同类二次根式的是()A.①蜩B、②和③ C、①她D.③和④二.填空題〈哥小题2分.共20分〉16. - 125的立方根是 ____17. 如果∣3∣≡9t那么L ________ I如果X2 = 9t那么X= _________ •18. 要使心匚3有慮义,则”可以取的嵌小整数是 __________ •19. 平方根等于本身的数是_______ ;立方根需于本身的数是________20. X是实数•且2"・y-0,则______________21. 若仏b是实数・Ia-II+J2b + l = θ. Wa2-2b= _______________22、计算:Φ(-2√3)* = _②启事= _____________________23, SVrS5 = 1 22& = 2 645.则"1850000=.24. 计算:√2 + √8 + √18≡ 25、已知正数"和九有下列命SL(1) Sa+b≡2f M√ab≤l(2)若a+b≡3, M√ab≤∣■(3〉若a+b = 6. M√ab≤3根聞以上三个命題所提供的规徉豹想:若a+b≡9t则屈W _______________三.解答題(共50分)26. ■接写岀答案OO分)Φ√144②士」(■二$③ V-O O64④斗5)f⑤^6×y∕8CD√48-√3⑧(√I + 2∣1φ(√3÷√5)(√5-√3)27■计Jr化閒:(熨求有必夏的解答过程)(18分〉②書(3√I - √7¾6^)√T7-J ∣+√I?TF= 5pj r = ---------------- ∫⅛r =--------------------- √θr = -------------------- •根据计算结果•回答:(1)・ Q —定等于a 吗?你发现其中的规律了吗?谄你用自己的语言描 述出来.(2).利用你总纽的规律,计算①若X 〈人M √(x - 2): - _____________② √(3.14-π)1= ________ ____⑤(-√3),÷√32-2^I28.探究題(10分)29. (6分)己知一个正方形边长为3c叫另一个正方形的面积是它的面积的4 倍.求第二个正方形的边长•饰确到O ICm). --------------- 4 30. (6分)已知X、y满足√2x-3y-l+∣x- 2y+2∣= 0.求2x-<y的平方根附加掘31. (5分)已WX-Iy- L9求下列各式的值32. (5分)已知AZBC的三边为(U b、c・化简J(a +b + c)' + J(a _ b_ cj + Jp- C — a),- — a — b)i根式002参考答案_■ CODBCa)C BeCACOC二• 一5;±9ι±3{2; O S ±K 0; ±0.5; 2; 12;122∙ 8∣三、12J ±|; -0.4i5; 4√3 ; -y-53√3 s9+4√5 ; 2{ 1.5;3; ^6;;羽;牛曲;3+V∑; 1;3; 0. 5; 6:扌;J ; 0;不一定•因为■ IaI ; 2-x; J -3.14 ;6cm;± 2>∕3;;4c •二次根式练习03填空题:每题2分,共28分)1.4的平方根是_________________ .2. 旅的平方根是__________________ •3. 如数亿师数轴上的住置如图所示.则化简7?歹的结昊足------------- 1-------- 1 --------------- ! ------------a o »4. _______________________________________ -右的豆方碎僧数= _______________________________________________ ・5∙己知S b∣ = ?上=Z I,则Ja 4∙ 2b = __________ ・6. ・J(I -刖≡冲7则尸点取7I•范围是____________________ .7. 在实数范IS内分解因式:#-4 = ____________________ ・≡∙化简:捋M9∙化简吋13.妇^J(6-R(X-4沪=0-耳圧?则命取值范围是14・己夕DQY 0,则J^ = ________________ ・二、迭择題(每题4分,共20分〉15.下列说法正确的是( ).(A) 7伏绝对值的平方根是1⑻0的平方根是0(C) £是最简二戻視式(D) G)冷亍才16 •计M(√2-iχ√2+l)啲鉛黑敏)・(A) √2 + l (B) 3血- I (C) 1 (D) -1】7.若寸X+J,÷1 = 2,则& +昭値杲( )•ω±√3⑻±1 (C)I (D) √318.下列各工〔展于最商相式的呈( )•(A) 7771 (B) TΛ7 (C) √i2(D) √0519•式子<ΞI的耽值取值范围().才+ 2(A) x≥ 1(B) x> 1 且x≠-2(C) x≠-2 (D)才勿且x≠-220. <2, Mr-3∣+J,(Λ-]/的值为( )・(A) 2L4(B)-2 (C)4-2x (D) 2三、计算题(各小题6分.共30分)21. h--2^./45+2√20 ・22∙∕lW居z∕l∙23∙(3-√5)% +(3+毎・24+阿"∙卜 3.f-25.∣√27√÷6x.J∣-z21j∣-√iθ8^.10吒傍「諾卜岳四.化简求值(各小题5分,共10分)27.当X詁J = Q81时,求X£-州・点・*77值.+ √36∑y).其中入=#•*27.五、解答βr各小題8分,共24分)29.有一块面积为(2a * t>)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a・6),疗,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32c√,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?14.15・ B 16. A 17. D 18. A 19. A20・D1. ±22. ±23. - ab4. -25. 0 或 46. ∕π≥17.(^3 + 2)(Λ+√2X<J -√2)8.軾9∙ ⅛Za 2 +⅛2 Ia12. -Jr X 门・Λ≤4根式003答案21. 亘_2不3 22. 10√2 23・ 24 24. — '[ΛB25. 4:7 —6∖Λ^ — 丄,22G. -各、隔 27. +振-3石;-2. 45 29. 2√2^5 30・ 0.900二次根式练习04一•填空赣(毎題3分,共农分)1. 0.4的平方根 ____________ ,吉的舁术平方根是______________2. -27的立方根3・己知α <-6■则∣3-$46/ + 9卜_________________ •4. 式子也手有意义∙QH得肢值范區是_______________________x+25. 写出两个与誓是同类二矢根武的根式杲_____________________6. 当X < 0,M1 -=入若数P在数粘上如图所示,则化简/百y4√(p-2f捋=10.已知2凸*代,则;T=___________________ .11・当么VO且时,化简厶:加十丄=a - CI13. ________________________________________________________ 己丸;Cj 为实数,y - X 一9+ 9一“ +',则X +y - _______________兀一3W.观察下列各式后,再芫成化简:丿3十2旋=√2 + 2^+l = M十A二血十1.Vτ÷2√10 = V5 + 2√l0+2 = 7(75+ √2)a= √5 + √2, .Jg+2√β= ・祢能曰一个相同炖的化简题吗?頁在横线上, __________________________ 二、选择題(每题4分,共20分)15•下列式子成立的是().(A)Ja2 ÷62 =(2 + ∂(B) “ J-2 = -J- ab(D)J-a "b" = —Λ⅛16. 若/芬与囲赤最筠同娄很式.则•甜=值杲().(A)O φ)l (C)-I (D)I17. 下列计算正确的是( ).(A]√2 +x^≡√5(B)2 + ,β ≡ 2√2(C)^3+√28=5Λ∕7(D)^⅛^ = √4÷√9218. 若b<O r化简+二?的结果是( )•(A) - b后(B)fe√≡^ (C)-£> Pab (P)b^fab19. 把儿Jg阴外的因式移入根号内,结果化简为(>(A)F CB)- V (C)∙Λ£)-石20. 満足廣十"=倚的整敖对(XJ)的个数是] ).(盘)多于?个⑻3个©2个(D)I个三.计算題(各小题6分•共30分) 21.9岳-7√127 4 2√6 3馬.23 .(7 + 4√3)(2 -4)2 十(2 十 √3×2 -M)- √124.舟、乔J 耳+ 6碾.22.2(l + ⅛ + √,48 +四.化简求值(各小题8分,共16分)27•巳哑手君'且曲如^,1+χ,J⅞τr28. α > αD > Q■屈运+爲j= 3血書+MI求竺空t逅的危. a -b五■解答題(各小题8分.共24分〉29. = 2-√5.‰4 -8α5+ 16αa -α÷l.50. i⅛等式JeX■小+ Jeyu TXP-Ja-丿在买数范51内成立・矣中"。

二次根式练习10套(附答案)讲解学习

二次根式练习10套(附答案)讲解学习

精品文档二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。

3、16的平方根________,64的立方根________。

4、算术平方根等于它本身的数有________,立方根等于本身的数有________。

5、若2562=x ,则=x ________,若2163-=x ,则=x ________。

6、已知ABC Rt ∆两边为3,4,则第三边长________。

7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。

8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。

9、如果0)6(42=++-y x ,则=+y x ________。

10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。

12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。

二、选择题 13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )精品文档A. 2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案1. 计算下列二次根式的值:(1) √18(2) √(2/3)(3) √(49/16)2. 简化下列二次根式:(1) √(75x^2)(2) √(64/25)(3) √(a^2b)3. 将下列二次根式化为最简形式:(1) √(8x^3)(2) √(27a^3b^2)(3) √(2xy^2z)4. 计算下列二次根式的乘积:(1) √2 * √3(2) √(a) * √(b)(3) √(2x) * √(3x)5. 计算下列二次根式的商:(1) √(2) / √(3)(2) √(a) / √(b)(3) √(3x) / √(2x)6. 解下列方程:(1) x^2 - 4 = 0(2) √(x - 1) = 2(3) √(2x + 3) = x7. 应用题:一个矩形的长是宽的两倍,且周长为24厘米。

求矩形的长和宽。

8. 应用题:一个圆形的面积是π,求圆的半径。

9. 应用题:一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

10. 应用题:一个圆柱的底面半径是2厘米,高是4厘米,求圆柱的体积。

答案:1. (1) 3√2(2) (√6)/3(3) (7/4)2. (1) 5√x(2) (8/5)(3) ab√a3. (1) 2√(2x)(2) 3√(3a^2b)(3) √(2xz/y)4. (1) √6(2) √(ab)(3) √(6x^2)5. (1) (√2)/3(2) √(a/b)(3) √(3/2x)6. (1) x = ±2(2) x = 3(3) x = 37. 长:8厘米,宽:4厘米8. 半径:1厘米9. 斜边长度:510. 体积:16π立方厘米。

(完整版)八年级二次根式综合练习题及答案解析

(完整版)八年级二次根式综合练习题及答案解析

填空题1. 有意义的条件是 。

【答案】x ≥4【分析】二次根号内的数必须大于等于零,所以x-4≥0,解得x ≥42. 当__________【答案】-2≤x ≤21【分析】x+2≥0,1-2x ≥0解得x ≥-2,x ≤213. 11m +有意义,则m 的取值范围是 。

【答案】m ≤0且m ≠﹣1【分析】﹣m ≥0解得m ≤0,因为分母不能为零,所以m +1≠0解得m ≠﹣14. 当__________x 是二次根式。

【答案】x 为任意实数【分析】﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

【答案】﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,﹙x -2﹚2【分析】运用两次平方差公式:x 4-9=﹙x 2+3﹚﹙x 2-3﹚=﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,运用完全平方差公式:x 2-22x +2=﹙x -2﹚26. 2x =,则x 的取值范围是 。

【答案】x ≥0【分析】二次根式开根号以后得到的数是正数,所以2x ≥0,解得x ≥07. 2x =-,则x 的取值范围是 。

【答案】x ≤2【分析】二次根式开根号以后得到的数是正数,所以2-x ≥0,解得x ≤28. )1x p 的结果是 。

【答案】1-x【分析】122+-x x =2)1(-x ,因为()21-x ≥0,x <1所以结果为1-x9. 当15x ≤p 5_____________x -=。

【答案】4【分析】因为x ≥1所以()21-x =1-x ,因为x <5所以x -5的绝对值为5-x ,x -1+5-x =410. 把的根号外的因式移到根号内等于 。

【答案】﹣a -【分析】通过a a 1-有意义可以知道a ≤0,a a 1-≤0,所以a a 1-=﹣⎪⎭⎫ ⎝⎛-⨯a a 12=﹣a -11. =成立的条件是 。

二次根式混合运算题含答案

二次根式混合运算题含答案

二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。

二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。

(完整版)二次根式混合计算练习(附答案)

(完整版)二次根式混合计算练习(附答案)
(2)把二次根式化成最简二次根式后,合并同类二次根式即可.
(1)原式=1-1+2 +2-
=2+ ;
(2)原式=
= .
考点:实数的混合运算;2.二次根式的混合运算.
6. .
【解析】
试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.
试题解析:原式=
.
考点: 实数的混合运算.
15.385
【解析】解:因为 ,


所以 .
16. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析:

考点:二次根式化简.
17. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析: .
考点:二次根式化简.
18.(1)22; (2)
【解析】
试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.
=2+1- + =3-3+2=2
9.1+
【解析】
解:原式=4-(3-2 )+
=4-3+2 + =1+
10.(1) ;(2)11 -9 ;(3)-4-2 ;(4)8- .
【解析】(1)利用 =a(a≥0), = (a≥0,b≥0)化简;
(2)可以利用多项式乘法法则,结合上题提示计算;
(3)利用平方差公式;
点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式.
4.0
【解析】
试题分析:根据实数的运算法则进行计算即可救出答案.
试题解析:
=
=0
考点:实数的混合运算.
5.(1) 2+ ;(2) .

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式综合练习题
第一部分(选择题共30分)一.选择题(共10小题,每小题3分,满分30分)
1.


、、是二次根式的有()
A.2个
B.3个
C.4个
D.5个
2.若y
x2
是二次根式、则下列说法正确的是()
A.0
,0≥
≥y
x B. 0
,0>
≥y
x
C.
y
x,
同号 D.

y
x
3.下列各式中、是最简二次根式的是()
A.5
1
B.
C.
D.
4.对于二次根式92
+x ,下列说法中不正确的是( )
A.它是一个非负数
B.它是一个无理数
C.它是一个最简二次根式
D.它的最小值为3 5.若
3)1()2(2
2=++-x x ,则
x
的取值范围
是( ) A.
0=x
B.21≤≤-x
C.
2≥x
D.1-≤x
6.已知直角三角形有两条的长分别是3cm 、4cm ,那么第三条边的长是( )
A.
cm 5
B.
cm 7
C.cm 5或者cm 7
D. cm
5 7.下列二次根式中、是同类二次根式的一组是( )
A.

B.

C.

D.

8.
下列各式:






、其中与
是同类
二次根式的有( )
A.1个
B.2个
C.3个
D.4个 9.如果1≤a ,那么化简=-3)1(a (

A.
a
a --1)1( B.1)1(--a a
C.1)1(--a a
D.a a --1)1(
10.化简2
2)32(144--+-x x x 得
( ) A.
2 B2.x 44-
C.44-x
D.2-
第二部分(非选择题 共120分) 二.填空题(共6小题,每小题3分,满分18分)
11.

+有意义,则x 的取值范围是。

12.写出两个与
是同类二次根式的
式子。

13.若最简二次根式与的被开方式相同、则a
的值
为 。

14.若与
n 与都是最简二次根式、并且是同类二次根式、则
=+n m 。

15.

1
<x 时,
=+-122
x x ,当
51<≤x 时,
=-+-5)1(2
x x
16.若2
440y y +-+=,则xy 的值 。

三.解答题(共9小题,满分102分) 17.(本小题满分10分)
若22≤≤-a ,化简-.
18.(本小题满分10分) (
1

(
()2
771
+---
(2)2
1)2()12(18---+++
19.(本小题满分10分)
(1) 4
3)85(4
1)1(1
2
+⨯--÷-- (2)4
401425.0)14.3()21(⨯+---π
20.(本小题满分10分) 已

1
2+=x ,求
(22121x x x x x x +-
--+)÷1
x 的值.
21.(本小题满分10分) 已知:
132-=
x ,求
12
+-x x 的
值.
22.(本小题满分12分)
已知:11a a
+=+、求221
a a
+的值。

23.(本小题满分13分)
m,使最简二次根式是否存在实数
m与m
2
-
26是同类二次根式,若
-
存在,求出m的值,若不存在,请说明理由。

24.(本小题满分13分)
如图,在△ABC中,∠A=30°,∠ACB=105°,CD⊥AB于D,BC=2cm,求:AC和AB的长(结果保留二次根式)
25.(本小题满分14分) 已知10<a
且a 是自然数
(1)若022≤-+++a x a ax x ,试求
a 的

(2)是否存在满足条件的自然数a ,使得
114
2
-++a a 是整数,若存在,求出a
,若不存在,说明理由。

相关文档
最新文档