11-7 静电场中的电偶极子
11静电场中的电偶极子
0 M 0
稳定 平衡位置
M 0 非稳定平衡位置
q
q
- +
r0
0
q
q
+ -
r0
2、非均匀电场,电偶极子不仅要转动,而
且还要平动
静电场中的电偶极子
二、电偶极子在电场中的电势能和平衡位置
Ep qV+ qV- q V- V
q
E dl
qE
dl
qE r0 p E
Ep p E
静电场中的电偶极子
一、外电场对电偶极子的力矩和取向作用
电偶极子在均匀电场 中,受到的合力为
F合 F+ F- qE qE 0
M rF
M M M
r0qE sin r0qEpE sin
M p E
静电场中的电偶极子
1、匀强电中场,在力矩作用下,电偶极子
顺时针转动 M p E
静电场中的电偶极子
0
2
Ep p E
q
q
Ep pE 电势能最小 - +
r0
Ep 0
Ep pE 电势能最大
0
q
q
+ -
r0
从能量的观点来看,能量越低,系统的状态越 稳定。
大学物理授课教案 第八章 静电场中的导体和电介
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时,称这种状态为导体的静电平衡。
(2)静电平衡条件从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成: ①⇒导体内各点电势相等; ②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 导体静电平衡时其内0=E,∴ 0=•⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴ 空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即BAU U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=•内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q ,∴ 腔内表面必有感应电荷-q ,。
【西安交通大学】【电介质物理】【第一章-第九讲(偶极子转向极化 )
<E>式中关于E的三阶项,如果它主要来源于固有偶极矩o =0 ,则具有饱和效应,如果来源于各向异性极化率Δa,则
有一个增强效应(反饱和效应)。
晶体中的偶极取向极化
➢ 缺陷偶极子
实际晶体存在缺陷和杂质,在这些区域往往有着空格点 和束缚得不那么紧密的,它们等效地带有正、负电荷, 热运动使空格点和弱束缚离子作混乱排布,而正负电荷 间的库仑引力把它们耦合在一起,形成偶极子——称点 缺陷偶极子,介绍两种缺陷偶极子
当电场不太高,温度不太低 x 1
E
ae 2
x 3
a2e2 6kT
E
02
3kT
E
谢谢观看/欢迎下载
BY FAITH I MEAN A VISION OF GOOD ONE CHERISHES AND THE ENTHUSIASM THAT PUSHES ONE TO SEEK ITS FULFILLMENT REGARDLESS OF OBSTACLES. BY FAITH I BY FAITH
由于 x 1 z 1
exp( yx zy 2 ) 1 yx (z x2 ) y 2 ...... 2
cos y x [1 (1 2 ) x2 ......]
3
15
非球状偶极分子的转向极化
cos2 1 2 (1 )x2 ......]
3 45
E
(
02
3kT
)E
随着x增大, cos 从零增到1,
这是因为 cos增 大,电场的
x/3
取向作用压倒温度的扰乱作用,
L(x)
使所有偶极子都趋向与外电场平
行,达到饱和
cos L(x) x 1 x3 2 x5 ......
[理学]静电场中的导体
QB
4 0r 2
rA r rB
由于球壳接地有 U A 0 ,根据电势的定义,
则O点的电势为:
UO
UO UA
a E dr
0
rB 0
E1
dr
rA E rB 2
dr
a rA E3 dr
rA E rB 2
dr
rA QB dr
rB 4 r 2
QB
4 0
1 rB
1 rA
•高压设备都用金属导体壳接地做保护
•在电子仪器、或传输微弱信号的导线中都常用 金属壳或金属网作静电屏蔽。
•高压带电操作
U C
外界不影响内部
静电的应用
一、静电的特点
•带电体所带的静电电荷的电量都很小; •静电场所具有的能量也不大; •电压可能很高。
二、静电的应用
•范德格拉夫起电机 •静电除尘 •静电分离 •静电织绒 •静电喷漆 •静电消除器 •静电生物技术
B、C、D处的场强和电势又如何?
解:
(1)据静电平衡条件和高斯定理有:
s1
内球:电荷 q 均匀分布在球面; 球壳:内表面均匀分布 q ;
外表面均匀分布 2q 。
s2
D
C
BA
R3
o R1 R2
(2)由高斯定理,可算得:
E1 0
r R1
E2
q
40r 2
R1 r R2
E3 0
U R1 1r
R2 r
E1
dr
R3
R2
E R1 2
E4 dr
RR243 E23 q0rd2r
r
R3
R3
E4
dr
U2
q
电势场强微分关系,电偶极子,电介质
UP
k
p cos θ r2
k
p r r3
k
p
r0
r2
28
五、电介质(了解) 无极分子位移极化 有极分子取向极化 极化强度: 描述极化程度
P
pi
V
均匀电介质中的电场:E E0 r r 1 e 0r
29
r2
14
U
k
p r0
k
p cos
r2
r2
电势与p成正比, 与距离的平方成反比, 还与方位有关。
求中垂面上的电势:
U=kq/r+(-kq/r) = 0
U k p cos 0
r2
y
rr
q q l
x
15
A●
B
●
●C
U A 0;UB 0;UC 0
p cos
U k
r2
16
3 电偶极子电场中的场强
a q0E dl
3. 电势:(1)
UA
E dl
A
(2)
Ua
q
4 π 0r
4. 电势差:
b Ua Ub a E dl
2
6.3.1 场强与电势的关系
1 等势面(电势图示法) 等势面:电势相等的点连成的面。
规定任意两相邻等势面间的电势差相等
为什么这么规定?
3
等势面的特征:
➢电荷沿等势面移动时,静电力做功为零
电势沿法线n方向的变
化率: dU dU dn dl
电势沿法线n方向的变化最快
(电势变化率最大)
电势梯度:gradU
dU dn
n0
单位:V/m
9
3 电势与场强的微分关系
q0沿法线n方向从A移到B, 电场力做的功:
电偶极子的电场
对于偶极子中点o MM M
M M M q M E 2 2 qsE i n q E s inMPE
Pq
§1.5 电场线
1.5.1.电场线(E线)
为形象地描写场强的分布,引入 E线。
1. E 线上某点的切向
切线
2. 即E 线为的该密点度E 给的出方E 向的;大小。
•
•
•
Ej
qi •
•
E
Ei ds
•qj
i
j
(S内) (S外)
Φe Eds
S
( E i)d s ( E jd s)
Si
Sj
•
E id s E jd s
•
iS
jS
S
•
qi 0 q内
i 0
0
4. 将上结果推广至任意连续电荷分布
在均匀电场中,通过面积S⊥的
nˆ
电通量为 e = E×S⊥
通过任一平面S 的电通量为
e = E× S×cos
S
S
在非均匀电场中,通过 任一面积S的电通量为
ed eE co ds S
nˆ E
dS S
通过任一封闭面S的电通量为
e
Ecos d S
R2
E2x0
(x2
1 R2)12
(3)无限大带电平板外任一点的场强
R1 0 R2
E
2 0
例5、计算电偶极子在均匀电场中所受的力矩
解:电荷产生电场,电场对电荷施加电场力
f qE
电偶极子的场及辐射
收稿日期:2003-06-14作者简介:吕宽州(1963-),男,河南扶沟人,郑州经济管理干部学院讲师。
文章编号:1004-3918(2003)05-0512-03电偶极子的场及辐射吕宽州1,姜俊2(1.郑州经济管理干部学院,河南郑州450053;2.河南省科学院,河南郑州450002)摘要:采用了镜像法等方法对电偶极子及其产生的静电场、电磁场及辐射等做了较系统和深入的分析、研究,使分析方便、简化,推出的结论有一定实际指导意义。
关键词:电偶极子;电场;磁场;辐射中图分类号:0442文献标识码:A在很多文献上,缺乏对电偶极子及其产生的静电场、电磁场及辐射等较系统和深入的分析、研究。
本文参考有关文献给出或分析、推出了重要结论,部分内容采用了镜像法,使分析更方便。
!电偶极子及其产生的静电场电偶极子由一对正、负点电荷组成,电量为l ,相距为l ,如图1所示。
其电偶极矩p =l l ,l 的方向由~l 指向+l ,在T 处产生的电场的电势为:#(r )=l 4L e 0T +_l4L e 0T _当T !l 时,#(r )=l l cOs 64L e 0T 2=p ·e r 4L e 0T2(1)电场强度为:E =_"@=e r P cOs 62L e 0T 3+e !P si n 64L e 0T3(2)以上结果表明,电偶极子的电势及电场强度的大小分别与距离的平方、三次方成反比,既存在于近区,且与方位角有关,这些特点都与点电荷的电场显著不同。
图2绘出了电偶极子的电力线与等位面。
图1电偶极子F i g .1E lectric d i p O le图2电偶极子的电力线与等位线F i g .2E lectric p Ow er li ne and e C ui p Otential p laneOf e lectric d i p O le第21卷第5期2003年10月河南科学HENAN SC I ENCEV O l.21N O.50ct .2003!电偶极子产生的电磁场及辐射当P =P 0e -j G t 时,为谐振电偶极子,P 0为常矢,则在近区,即l H T 时,主要地一方面将感应如上所述的静电场,另一方面,相当于I =j G C 、长为l 的电流元还将产生一稳恒磁场,其规律可用毕萨定律描述,且电场与磁场的相位相差为90 ,即电场能量与磁场能量相互转换,而平均波印亭矢量为零,故不产生辐射。
大学物理 第11章 静电场
电荷1 电荷1
电场1 电场1
电荷2 电荷2
二、电场强度
描述场中各点电场的强弱变化的物理量——电场强度 电场强度 描述场中各点电场的强弱变化的物理量 )(正 点电荷——可以准确的测量电场的 (1)(正)点电荷 )( 可以准确的测量电场的 试验电 分布 荷条件 足够小 (2)电量足够小——不显著地影响电场的分布 )电量足够 不显著地影响电场的分布 把试验电荷放到电场 中任意场点,测量受 中任意场点, 力情况,试验表明: 力情况,试验表明: (1)受力与位置(场点)有关 )受力与位置(场点)
-1
或: ⋅ m -1 V •电场强度单位: 电场强度单位: 电场强度单位 国际单位制 N ⋅ C •定义电场强度后,点电荷(q)处于外场中时受电 定义电场强度后,点电荷( ) 定义电场强度后 场作用力: 场作用力:
F = qE
三、点电荷电场的电场强度
根据库仑定律, 根据库仑定律,
q2
q1
q1
受到的电场力为
λdx Ex = ∫ cosθ 2 4πε0r
d r= sinθ
y
dE
x =−Hale Waihona Puke ctgθdEyP d
dEx
d dx = 2 dθ sin θ
Ex = ∫
θ2
θ1
r
θ
θ2
x
θ1
θ2
Ey = ∫
θ1
λ λ cos θ dθ = 4πε 0 d 4πε 0 d λ λ sin θ dθ = (cos θ1 − cos θ 2 ) 4πε 0 d 4πε 0 d
x dx Q L x a P
dq Qx d dE = = 2 2 4πε0x 4πε0Lx
E = ∫dE =
第三章--静电场中的电介质习题及答案
第三章 静电场中的电介质 一、判断题1、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的r ε1倍。
×2、对有极分子组成的介质,它的介电常数将随温度而改变。
√3、在均匀介质中一定没有体分布的极化电荷。
(内有自由电荷时,有体分布) ×4、均匀介质的极化与均匀极化的介质是等效的。
×5、在无限大电介质中一定有自由电荷存在。
√6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。
√7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
√8、在均匀电介质中,只有P为恒矢量时,才没有体分布的极化电荷。
P =恒矢量 0=∂∂+∂∂+∂∂z P y P x P zy x⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=zP y P x P z y x p ρ×9、电介质可以带上自由电荷,但导体不能带上极化电荷。
√10、电位移矢量D仅决定于自由电荷。
×11、电位移线仅从正自由电荷发出,终止于负自由电荷。
√12、在无自由电荷的两种介质交界面上,P fE E线连续,线不连续。
(其中,f E 为自由电荷产生的电场,pE为极化电荷产生的电场) √13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。
√14、在两种介质的交界面上,电场强度的法向分量是连续的。
× 15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。
× 16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的r ε分之一。
√二、选择题1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。
则下列说法中不正确的是:(A ) 介质中的场强为真空中场强的r ε1倍。
电偶极子
在平衡时,在电介质内部的总场强应是这两者的矢量
和。则
E→=
→
E0
→
Ep
在均匀外电场中,这三个矢量互相平行,故
可写成: E = E0 – EP 。 27
§9.5 静电场中的电介质
s
E0
=
0
0
EP
=
s 0
此时有 σ′=P=χeε0E,则 Ep=χeE ,并由
于Ep与E0 反向,故合场强大小为
E = E0 EP = E0 ceE
10
第六节 心电知识
一、心电场(cardio-electric field)
1、心肌细胞的电偶极矩
11
§9.6 心电知识
12
2、心电偶的电性质
§9.6 心电知识
13
二、心电图
§9.6 心电知识
14
15
§9.6 心电知识
16
17
三、心电图导联
§9.6 心电知识
18
§9.6 心电知识
19
We
=
V wedV
=
1 E 2dV
V2
37
和的例电R介92-,质4所,带如问电图此荷所电为示容,器球Q贮形存电.的容若电器在场的两能内球量、壳为外间多半 充少以径?电分容别率为为R1
解
→ E=
1
4π
Q r2
→ er
we
=
1 E 2
2
=
Q2
32π 2 r 4
dWe
=
wedV
=
Q2
4
§9.4 电偶极子
三、 电偶极子轴线延长线上的场强:
E
=
静电场中的导体和电介质
2.1.1 导体的静电平衡条件 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,则该带电体系达到了静电平衡。 均匀导体的静电平衡条件就是其体内场强处为0。 从导体静电平衡条件还可导出以下推论: (1)导体是个等位体,导体表面是个等位面。 (2)导体以外靠近其表面地方的场强处处与表面垂直。
2.2.3 电容器的并联、串联 (1) 并联 电容器并联时,总电容等于个电容器电容之和。 (2) 串联 电容器串联后,总电容的倒数是各电容器电容的到数之和
2.2.4 电容器储能(电能) 设每一极板上所带电荷量的绝对值为Q,两极板间的电压为U,则电容器储存的电能 从这个意义上说,电容C也是电容器储能本领大小的标志。
(2)极化电荷的分布与极化强度矢量的关系 以位移极化为模型,设想介质极化时,每个分子中的正电“重心”相对负电“重心”有个位移l。用q代表分子中正、负电荷的数量,则分子电矩P分子=ql。设单位体积内有 n个分子,则极化强度矢量P=np分子=nql。
取任意闭合面S,根据电荷守恒定律,P通过整个闭合面S的通量应等于S面内净余的极化电荷∑q′的负值 ,即 这个公式表达了极化强度矢量P与极化电荷分布的一个普遍关系。
(3)库仑平方反比率的精确验证 用实验方法来研究导体内部是否确实没有电荷,可以比库仑扭秤实验远为精确的验证平方反比律。 卡文迪许的验证实验装置见教材中图2-11。实验时,先使连接在一起的球1和壳3带电,然后将导线抽出,将球壳3的两半分开并移去,再用静电计检验球1上的电荷。反复实验结果表明球1上总没有电荷。
(1) 平行板电容器 平行板电容器由两块彼此靠得很近的平行金属极板组成。设两极板A、B的面积为S , 带电量分别为±q , 则电荷的面密度分别为 ±σe =±q/S 根据式(2.1),场强为 E = σe/ε0 , 电位差为 根据电容的定义
静电场中的电介质
SD dS Q0
选半径为r,长度为L的高斯圆柱 面
r
R2 R1
SD dS l
D2 π rl l D
2πr
E D
ε0εr 2 π ε0εrr
(R1 r R2 )
P
0 E
( r
1) 0 E
r 1 2 πrr
r
R2 R1
(2) E
2π
0
r
r
E1 2 π 0 r R1 (r R1)
q0 有关.
s内
特例: 真空——特别介质
特例: 真空——特别介质
q' 0 , P 0 , D 0E P 0E
回到:
1
E
s
dS
0
(
q0
S内 )
3. 如何求解介质中电场?
本课程只要 求特殊情况
各向同性电介质 q0 ,q' 分布具有某些对称性
(1)各向同性电介质:
P
0E
为常数
D 0E P 0E 0E 0(1 )E
模型 “电子气”
与电场的 相互作用
静电感应
电偶极子
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡
导体内 E 导体表面
0, 0 E表面
内部:分子偶极矩矢量
和不为零
pi 0
i
感应电荷 0E 出现束缚电荷(极化电荷)
4.极化现象的描述
1) 从分子偶极矩角度
单位体积内分子偶极矩矢量和——极化强度.
R2的薄导体圆筒组成,其间充
以相对电容率为r的电介质. 设
直导体和圆筒单位长度上的电
荷分别为+和- . 求(1)电介 质中的电场强度、电位移矢量
静电场7-电解质的极化,束缚电荷,电解质中的高斯定理,电位移矢量
电偶极子. 一对相距为l 的等量异号点电荷,若从电荷连线的中点 向场点 P 画一位矢 r ,且满足: r >> l 的条件,则这一对 等量异号点电荷叫做电偶极子(electric dipole)。
定义电偶极矩 (electric moment): p ql
S1
S1
A
1
S2 d1
2
B
D1 S1 S1
D1
同理,做一个圆柱形高斯面 S2 SD dS qi ( S 2内) D2
2
d2
D1 D 2
2014-4-12
E1 E 2
第十章 -- 静电场
西安电子科技大学
12
§8.9 电介质
E1 o r1
R1
E2
E1
R2
E1 2 .5 E 2
u
R 2 2 . 5 R1
R
R2
1
E dr
*
R
R2
1
R2 R1 E ln R1 E * ln 2 . 5 R1
2014-4-12
dr R1 E 2 0 r r
* R2
R
1
dr r
r
第十章 -- 静电场
d1
d2
西安电子科技大学
13
例 一单芯同轴电缆的中心为一半径为R1的金属导线,外层一金 属层。其中充有相对介电常数为r 的固体介质,当给电缆加 一电压后,E1 = 2.5E2 ,若介质最大安全电势梯度为E 求 电缆能承受的最大电压? 解 用含介质的高斯定理 * E 2 R E 0 r 1 2 0 r r
电磁学 第3章静电场中的电介质
∫∫ ρ′ = −
v v P ds
∆V
注意: 注意:均匀极化时电介质内部的极化电荷体密度为零
20
4.电介质表面(外)极化电荷面密度 电介质表面( 电介质表面 内
r dS
θ
dS
r r v ˆ dq ′ = P ⋅ d s = P ⋅ dsn = Pnds 面外
dq ′ v ˆ σ′= = P ⋅ n = Pn dS
16
约定: 约定:
q ', ρ ',σ q0, ρ
0
'
,λ ,λ
'
,σ
0
0
表示极化电荷; 表示极化电荷; 表示自由电荷
二、极化强度与极化电荷的关系 在已极化的介质内任意作一闭合面S 在已极化的介质内任意作一闭合面 基本认识: 基本认识: 1)S 把位于S 附近的电介质分子分为两部分 ) 把位于 附近的电介质分子分为两部分 一部分在 S 内 一部分在 S 外 2)只有电偶极矩穿过 的分子对 )只有电偶极矩穿过S 电偶极矩穿过 S内外的极化电荷才有贡献 内外的极化电荷 内外的极化电荷才
S
17
1.小面元 附近分子对面 内极化电荷的贡献 小面元dS附近分子对面 小面元 附近分子对面S内极化电荷的贡献 在dS附近薄层内认为介质均匀极化 附近薄层内认为介质均匀极化 薄层: 为底、 的圆柱。 薄层:以dS为底、长为 的圆柱。 为底 长为l的圆柱 只有中心落在薄层内的分子 才对面S内电荷有贡献 内电荷有贡献。 才对面 内电荷有贡献。 所以, 所以,
∫L
s
E ⋅dL = 0
v v
v
v
∫∫ s E ⋅ d s =
q ε0
媒质中{
导体感应电荷, 导体感应电荷,感应电场又反过来影响原 电场,静电平衡。 电场,静电平衡 电介质:即绝缘体,不导电物体, 电介质:即绝缘体,不导电物体,在电场 中怎样? 中怎样?
第三章静电场中的电介质
1 E ds ( q0 q)
s
0
s内
s内
q P ds
s内 s
1 1 E dS q0 q q0 P dS 0 0 S S
0 E P dS q0
四、 有介质时的高斯定理应用
令D 0 E P
S
引入辅助物理量:电位移矢量(electric displacement)
D 0E P
介质存在时高斯定理:
D ds q0
s s内
电位移矢量对任意闭合曲面的通量等于该曲面内所有自由 电荷的代数和。 二、电位移矢量D 1、定义:
(S )
_
E0
内
ds
l
P dS q
( S内)
V
S
外
V 内的极化电荷总量 q P ds s P d s 该点的极化电荷体密度 ' s V
'
P ds / V
' s
* 此式为各点极化电荷体密度和该点极化强度的关系。
q' , ' , ' 分别表示极化电荷、体密度、面密度 • q0 , 0 , 0 分别表示自由电荷、体密度、面密度
•
二、极化电荷体密度与极化强度的关系:
1、以位移极化为例 极化分子电矩
p分子
ql
S
E0
ds
单位体积有 n 个分子 极化强度矢量
l
0
P np分子 nql
D E
《电磁场与电磁波》试题
《电磁场与电磁波》试题《电磁场与电磁波》试题.txt 2.设线性各向同性的均匀媒质中,称为方程。
3.时变电磁场中,数学表达式称为。
4.在理想导体的表面,的切向分量等于零。
5.矢量场穿过闭合曲面S的通量的表达式为:。
6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。
8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。
二、简述题(每小题5分,共20分)11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题(每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量,,求(1)(2)17.在无源的自由空间中,电场强度复矢量的表达式为(1)试写出其时间表达式;(2)说明电磁波的传播方向;四、应用题(每小题10分,共30分)18.均匀带电导体球,半径为,带电量为。
试求(1)球内任一点的电场强度(2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程;(2)求槽内的电位分布五、综合题(10 分)21.设沿方向传播的均匀平面电磁波垂直入射到理想导体,如图3所示,该电磁波电场只有分量即(1) 求出入射波磁场表达式;(2) 画出区域1中反射波电、磁场的方向。
静电场之等量异号点电荷和电偶极子的电场课件
电偶极子的电势分布
总结词
电偶极子的电势分布是指电偶极子产生的电势在空间 中的分布情况。
详细描述
电偶极子的电势分布由电偶极子的几何形状、电荷间 距以及与观察点的距离决定。在靠近电偶极子处,电 势变化较为剧烈,而在远离电偶极子处,电势变化较 为平缓。在电偶极子的轴线上,电势从正电荷向负电 荷逐渐减小,而在电偶极子的两侧,由于电荷产生的 电场的叠加作用,使得电势出现最大值和最小值。了 解电偶极子的电势分布有助于进一步理解静电场的性 质和特点。
静电喷涂
利用静电场将涂料粒子吸 附在工件表面,然后进行 喷涂,提高涂层的均匀性 和附着力。
静电纺丝
利用静电场将高聚物溶液 或熔体纺成细丝,制备出 具有特殊性能的纤维材料。
THANKS
感谢观看
静电场之等量异号点 电荷和电偶极子的电 场课 件
ቤተ መጻሕፍቲ ባይዱ
• 等量异号点电荷的电场 • 电偶极子的电场 • 点电荷与电偶极子的比较 • 静电场的特性和应用
目录
PART 01
等量异号点电荷的电场
点电荷的电场分布
总结词
点电荷在空间中产生的电场是辐射状的,距离点电荷越远,电场强度越小。
详细描述
点电荷的电场线从正电荷出发,沿径向方向向外辐射,在空间中形成等距的同 心圆。在距离点电荷相同的位置上,各方向的电场强度大小相等,但方向不同。 随着距离的增加,电场强度逐渐减小。
电场强度和电势的变化趋势
点电荷电场强度和电势变化
在等量异号点电荷的连线上,电场强度先增大后减小,中点处场强为零。电势则从正电 荷到负电荷逐渐降低。
电偶极子电场强度和电势变化
在电偶极子周围,靠近正电荷区域电场强度较大,靠近负电荷区域较小。电势则从正电 荷到负电荷逐渐降低。
电场强度的计算计算电偶极子较远处的电场
计算电偶极子较远处的电场。
解: 在直角坐标系中先写出电势的表达式,
U 1 q 1 q
40 r 40 r
q
4 0
r r r r
q
4 0
L cos
r2
P cos 4 0r 2
Px
40 (x2
y2 )3/ 2
Ex
U x
P(2x2 y2)
S
l 0
E
侧E? dS E底0E 2drSl
dS
dS
E 2 0r
思考:如果线粗细不可忽略,空间场
强分布如何?
对于具有某种对称性的电场,用高斯定理求场强简便。
例题 求电量为Q 、半径为R的均匀带电球面的场强分布。
源球对称
场强对称
E
E
选高斯面
电偶极矩(电矩) P q l
E
E
1
4 0
(r 2
ቤተ መጻሕፍቲ ባይዱ
q l2
/ 4)
E 2E cos
2
1
4 0
(r 2
q l
2
/
4)
(r
2
l/2 l2 /
4)1/
2
1
4 0
(r 2
ql l2 /
4)3/ 2
P
l E
E
+ P
E
r
q
+q
l/2 l/2
40 (x2 y2 )5/ 2
Ey
U y
4
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它们将形成一对力偶,力偶矩大小为
M qr0 E sin pE sin M p E
在非匀强电场中,电偶极子所受合力将不为0。
二 电偶极子在电场中的电势能和平衡位置
若将电偶极子正负电荷所在处的电势分别表示为 则电偶极子在电场中的电势能为
14:11 2
和 u u
u u Ep q(u u ) q( )r0 cos qr0 E cos r0 cos Ep p E
当 当
时,电势能能量最低;当 0
时能量最高。
时能量为零; 2
14:11
3
§11-7 静电场中的电偶极子
一、外电场对电偶极子的力矩和取向作用
和 F 表示正负电荷所受电场力 为零,即 则电偶极子所受合力 F
Hale Waihona Puke F F F F qE qE 0
1
14:11
电偶极子所受合力
虽然为零,但由于 F
和 F
不在一条直线上, F