SPSS学习系列 缺失值处理(一类特选)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09. 缺失值处理

空缺值(用“.”表示)和输入错误值,都属于缺失值范畴。

输入错误值需要做“数据检验”来发现:

(1)【分析】——【描述统计】——【描述】和【频率】

(2)【图形】——【旧对话框】——【箱图】

观察极小、极大值、频率、异常值等来判断。例如,性别“男=1,女=2”,若极大值出现3,则是输入错误值;箱线图或3σ原则发现的异常值,则要先改成缺失值。

缺失值的处理方法通常有四种。

一、删除有缺失值的个案

删除有缺失值的个案,或在具体统计分析时的【选项】——【缺失值】框选择某种处理方法:

①按列表排除个案——只要任何一个变量含有缺失值,就要剔除出所有因变量或分组变量中有缺失值的观测记录;

②按对排除个案——同时剔除带缺失值的观测量及与缺失值有成对关系的观测量(对照分析);

③使用均值替换——使用该变量的均值替换缺失值。

二、替换缺失值

SPSS提供了5种简单替换缺失值的方法:

(1)序列均值——该变量的有效观察值的平均数;

(2)临近点的均值——该缺失值前后n个观察值的平均数;

(3)临近点的中位数——该缺失值前后n个观察值的中位数;

(4)线性插值——该缺失值前后观察值建立插值直线确定【同取n=1的(2)】;

(5)点处的线性趋势——以编号为自变量用线性回归法预测值。

现有数据文件:

1.【转换】——【替换缺失值】,打开“替换缺失值”窗口,将变量“统计成绩”选入【新变量】框;

2.【名称和方法】框,设定新变量名称“统计成绩_1”,方法选“序列均值”

3.点【确定】,得到

相关文档
最新文档