求与圆有关的轨迹方程的方法及例题

合集下载

求与圆有关的轨迹方程的方法及例题

求与圆有关的轨迹方程的方法及例题

求与圆有关的轨迹方程[概念与规律]求轨迹方程的基本方法。

(1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。

(2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤是:设动点M (x, y),已知曲线上的点为N (x o, y o),求出用x,y表示x o, y o的关系式,将(x o,y o)代入已知曲线方程,化简后得动点的轨迹方程。

(3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。

(4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。

(5)定义法:这是直接运用有关曲线的定义去求轨迹方程。

[讲解设计]重点和难点例1 已知定点A (4, 0),点B是圆x2+y2=4上的动点,点P分AB的比为2: 1,求点P的轨迹方程例2自A (4, 0)引圆x2+y2=4的割线ABC ,求弦BC中点P的轨迹方程例3 已知直角坐标平面上的点Q (2, 0)和圆C :x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数・c 0),求动点M的轨迹方程,并说明它表示什么曲线。

(1994年全国高考文科题)例4 如图,已知两条直线l i:2x-3y+2=0,I2: 3x-2y+3=0,有一动圆(圆心和半径都在变化)与l i,I2都相交,并且l i与I2被截在圆内的两条线段的长度分别是26和24,求圆心M的轨迹方程。

(1983年全国高考题)练习与作业1.已知圆C1:(x+1)2 + y2=1 和C2:(x-1)2 + (y-3)2=10,过原点O的直线与C i交于P,与C2交于Q,求PQ线段的中点M的轨迹方程。

2 •已知点A (-1 , 0)与点B (1 , 0) , C是圆x2+y2=1上的动点,连接BC并延长到D,使|CD|=|BC| ,求AC 与OD(O 为坐标原点)的交点P 的轨迹方程。

高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题

高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题

高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。

巧用相切关系求动圆圆心的轨迹方程

巧用相切关系求动圆圆心的轨迹方程

求动圆圆心的轨迹方程包头市第一中学---赵胜凡直线与圆相切,圆与圆相切是圆这一节的重要内容,它主要体现在圆的半径及其圆心距的数量关系上,从而利用这一特点求动圆圆心的轨迹或轨迹方程的问题在高考及资料中经常见到,显然此类问题简洁的解法就是利用圆的几何性质,这类问题一般不难,但比较灵活,学生在解决这类问题时不容易把握,经常出错,本人整理了一些常见类型,试图揭示其本质,使学生把握其规律,掌握这类问题。

类型1 动圆与直线相切,求动圆圆心的轨迹方程例1.已知动圆经过点F(0,3)且和直线y+3=0相切,求圆心的轨迹方程.解析:设所求圆心为(x,y),有已知可得3)3()0(22+=-+-y y x ,化简并整理的 y x 122=,是一条抛物线,其中顶点为(0,0),焦点为(0,3)例2. 求与圆C :0422=-+x y x 相切且与y 轴相切的动圆圆心P 的轨迹方程. 解析:圆C 即4222=+-y x )(,设动圆的圆心为)(y x P ,(1)若动圆P 与圆C 相外切,则2222+=+-x y x )(,所以x x y 442+=,即 时,x y 82= (x>0)或02=y (x<0).(2)若动圆P 与圆C 内切,则0=y (x>0,且2≠x ) 综上 ,所求轨迹方程为x y 82= (x>0)或y=0 ( 2,0≠≠x x 且)点评:本题两圆的位置关系注意不要忘记动圆P 与定圆C 内切的情况 .类型2 动圆与已知定圆相切,求动圆圆心的轨迹方程例3 . 过已知圆C 内一个定点A 作圆'C 与已知圆C 内切,则圆心的轨迹是( )A.线段B.圆C.椭圆D.圆或椭圆解析:若点A 为圆C 的圆心,则点'C 的轨迹为圆,若点A 不是圆C 的圆心,由两圆内切可知A C R CC ''-= 即R A C CC =+''(其中R 为圆C 的半径),因此点'C 的轨迹为椭圆.故选D评析:此题学生容易忽略点A 为圆心时的一种情况,从而错选C. 例4.已知一个动圆M 与定圆C :100422=++y x )(,且过点A (4,0),求这个动圆圆心M 的轨迹方程. 解:根据已知条件得MA MC -=10,即10=+MA MC ,又8=CA ,由椭圆的定义知,点M 的轨迹为以A,C 为焦点的椭圆,其中a=5, c=4,所以92=b 因此所求轨迹为192522=+y x . 例5.已知定点A (3,0)和定圆C :16322=++y x )(,动圆P 和圆C 相切,并过点A ,求动圆圆心P 的轨迹方程. 解析:设动圆的半径为r,且圆心坐标为)(y x ,, 根据已知条件⎩⎨⎧=+=r PA r PC 4,或⎩⎨⎧=-=rPA r PC 4,即 4±=-PA PC ,有双曲线的定义知动圆圆心P 的轨迹为以),(),,(0303A C -为焦点且实轴长2a=4的双曲线,其方程为15422=-y x . 评析:观察例4及例5不难发现其条件基本相同但结论差异很大,一个是椭圆,另一个是双曲线.其原因在于定点与定圆的的位置关系不同,例4中的点A 在定圆内,而例5中的点A 在定圆外.这类题目还可以这样变化,变式:已知点)0,2(A ,定圆C :16)2(22=++y x ,动圆P 与圆C 相切且过点A ,求点P 的轨迹方程.其结论应该为y=0 )且(2,2≠->x x ,此时点A 在定圆上,可见在其他条件不变的情况下影响轨迹类型的主要是点A 与定圆的关系.类型3.动圆与已知两圆相切,求动圆圆心的轨迹方程.例6. 求与圆13:221=++y x C )(及93:222=+-y x C )(都外切的动圆圆心C 的轨迹方程. 解析:设动圆C 的半径为r ,根据已知条件知r 11+=CC 及r 32+=CC ,所以212=-CC CC <6,则动点C 的轨迹为双曲线的左支,又a=1,c=3,所以82=b ,因此点C 的轨迹方程为)(01822≤=-x y x . 评析:本例学生以忽略限制条件0≤x 导致出错.若将此题条件圆2C 的方程改为1322=+-y x )(,其余条件不变,此时动圆圆心的轨迹将变为线段21C C 的垂直平分线.例7.已知一个动圆M 与定圆1004:221=++y x C )(相内切,与定圆44:222=+-y x C )(相外切,求这个动圆圆心M 的轨迹方程. 解:设动圆圆心M 的坐标为)(y x ,半径为r,由题意得r 101-=MC ,r 22+=MC 所以1221=+MC MC ,所以点M 的轨迹为以21,C C 为焦点的椭圆,且长轴2a=12,焦距2c=8,即a=6,c=4,所以202=b ,故所求轨迹方程为1203622=+y x . 点评:通过以上两例发现相切关系不一样所得方程类型也不一样.通过以上例题,我们不难发现,这些题目的共同特点都是相切,不管是动圆与直线还是与定圆,条件都相差不多,解题过程也大体相同(结合圆锥曲线的第一定义),但轨迹的类型各不相同,解题时稍不注意就会出错,以上就是本人对这类问题的一点粗浅认识,希望能对大家有所帮助.。

与直线和圆有关的轨迹问题

与直线和圆有关的轨迹问题
例1.如图,圆O1和圆O2的半径都等于1,O1O2 4,过动点 P分 别 作 圆O1、 圆O2的 切 线PM、PN ( M、N为 切 点), 使得PM 2PN.试建立平面直角坐标系,求动点 P的 轨 迹 方 程.
(定义法)
例2.已知点A(1,0), B(1,0),C是圆x2 y2 1上的 动点, 连接BC并延长至D点,使 | CD || BC |,求直 线AC与 直 线OD的 交 点P的 轨 迹 方 程.
直线与圆方程的综合问题
例6.已知圆C : x2 y2 2x 4 y 3 0. (1)若圆C的切线在x轴和y轴上截距的绝对值相等, 求此切线方程; (2)从圆C外一点P( x1, y1 )向圆引一条切线,切点为 M , O为坐标原点,且有 | PM || PO |, 求使 | PM | 最小 时的P点坐标.
(转移法)
练 习:已 知 线 段AB的 端 点B的 坐 标 为(1,2),端 点A 在圆x2 y2 4上运动,求线段AB中点M的轨迹 方 程.
例3.过 点A(0,1)作 直 线 交圆M : ( x 2)2 y2 1于 点 B、C,在 线 段BC上 取 点P,使 | BP |:| PC || AB |:| AC |,求 点P的轨迹方程.
(a 2)(b 2) 2 (2)求线段AB中点的轨迹方程.
总结:
1.求轨迹方程的方法,主要有定义法、转移法、参数法、几 何法、交轨法.
2.(1)求两条直线、直线与曲线的交点的轨迹,首先选用 的是交轨法。
(2)K参数法是选取直线的斜率作为参数。 (3)由于圆的几何性质特别明显,几何法是众多方法中最 简单的.
(参数法)
例4.直 线 l1
:
y

2(x t

轨迹方程求轨迹方程的的基本方法

轨迹方程求轨迹方程的的基本方法

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

4.1.2圆的一般方程(轨迹问题)(第二课时)

4.1.2圆的一般方程(轨迹问题)(第二课时)

一、代入法求轨迹方程:
例4:已知线段AB的端点B的坐标是 2 2 (4,3), 端点A在圆 ( x 1) y 4 上运动,求线段AB的中点M的轨迹 方程。
方法总结
代入法也称相关点法:
如果轨迹上的动点P(x,y)依赖于另一动
点Q(a,b),而Q又按某一个规律运动,则可 先用x,y表示a,b,再把a,b代入点Q所满足
圆的一般方程 (轨迹问题)
学习目标:
由已知条件求出圆的方程及轨迹方程
学习重难点:
根据已知条件求轨迹方程
预备知识:轨迹与轨迹方程 1、什么是轨迹?
符合一定条件的动点所形成的图形,或者 说,符合一定条件的点的全体所组成的集 合,叫做满足该条件的点的轨迹. 2、轨迹与轨迹方程有区别吗? 轨迹是图形,轨迹方程实际上就是轨迹 曲线的方程,即动点坐标(x,y)满足的关 系式.
2 2
轨迹方程为x 3y 4( x 1).
10
的条件便得到动点P的轨迹方程。
简记为:先有未知表示已知,再有 已知表示未知
练习:
1、已知点P在圆C: 2 2 x y 8x 6 y 21 0
上运动,求线段OP的中点M的轨迹方程。
2、一个动点在圆:x2+y2=1上运动时,
它与定点(3,0)所连线段的中点P的 轨迹方程是什么?
F 2,0 为
2
二、直接法求轨迹方程:
1.(2010 上海卷)若动点P到点F 2, 0 的距离与它到直线 x 2 0的距离相等,则点P的轨迹方程为 __________
程为y 8x.

方法总结
直接法也称直译法: 将已知条件直接翻译为关于动点的几何关 系,再利用解析几何有关公式(如两点间

求轨迹的几种求法

求轨迹的几种求法
由 题:意 2a得 8,2c6 b242327
15
M
10
N
5
P
-30
-20
点P的 轨 迹 方 x2 程 y2 为 1
16 7
-10
A
B
10
-5
-10
【练习3】第3题-----变式
已知A圆 的方程 (x为 3)2 y2 1166,B(3,0)为一定 , 点 15 M为圆 A上的一个 ,线动段 M点的 B 中垂线A和M直
求轨迹的几种求法
三、定义法
分析题设几何条件,根据所学曲线的定义, 判断轨迹是何种类型的曲线,直接求出该曲 线的方程.
圆的定义:
|PC|=r (r>0)
椭圆的定义: |PF1| + |PF2| = 2a (2a > |F1F2|)
双曲线的定义: ||PF1| - |PF2|| = 2a (0 < 2a < |F1F2|)
的交点 P,N为 为垂,求 足动P的 点轨迹.方程 10
5
M
N
-20
-10
A
B
P
-5
【练习3】第3题-----变式
已知A圆 的方程 (x为 3)2 y2 1166,B(3,0)为一定 , 点 M为圆 A上的一个 ,线动段 M点的 B 中垂线A和M直 的交点 P,N为 为垂,求 足动P的 点轨迹.方程
问题1:一动圆与圆O1:(x+3)2+y2=4外切, 同时与圆O2:(x-3)2+y2=9内切,求动圆圆心 的轨迹方程,并说明它是什么类型的曲线.
想一想:
在两定圆不动的前提下,适当改变其他条件 使动圆圆心形成新的轨迹?
【例题3】
已知圆A:(x+2)2+y2=1与点A(-2,0),B(2,0), 分别求出满足下列条件的动点P的轨迹方程. (1)△PAB的周长为10; (2)圆P与圆A外切,且点B在动圆P上(P为动圆圆心); (3)圆P与圆A外切且与直线x=1相切(P为动圆圆心).

圆的一般方程2(求轨迹方程)

圆的一般方程2(求轨迹方程)

推导圆的标准方程 问题:圆心是C(a,b),半径是r的圆的方程是什么?
设点M (x,y)为圆C上任一点,则|MC|= r。
圆上所有点的集合 y M(x,y) O
P = { M | |MC| = r }
( x a ) ( y b) r
2 2
C(a,b)
x
(x-a)2+(y-b)2=r2
解:由题意,以AB中点为原点,边AB所 在的直线为x轴建立直角坐标系, 如图,则A(-a,0),B(a,0),
xa y , ) 则BC中点为E ( 2 2
设C(x,y),
因为|AE|=m,所以
xa y 2 2 ( a) ( ) m 2 2
化简得(x+3a)2+y2=4m2. 由于点C在直线AB上时, 不能构成三角形,故去掉曲 线与x轴的两个交点, 从而所求的轨迹方程是 (x+3a)2+y2=4m2. (y≠0)
x y = 1. 即点P的轨迹方程为 25 16
2
2
例1 :将圆x2+y2 = 4上的点的横坐标保持不变, 纵坐标变为原来的一半,求所的曲线的方程, y 并说明它是什么曲线? 解: 设所的曲线上任一点的坐标为 2 2 (x,y),圆 x y =4上的
对应点的坐标为(x’,y’),由 题意可得:
0
( x 1) ( y 1) ( x 3) ( y 7)
2 2 2
2
x
曲线的方程
A
将上式两边平方,整理得: x+2y-7=0

2
例2 已知圆A:(x+3)2+y2=100,圆A内一 定点B(3,0),圆P过B点且与圆A内切,求圆心 P的轨迹方程. 解:设|PB|=r.

圆的一般方程(轨迹问题)

圆的一般方程(轨迹问题)

(P124,B3) 已知一曲线是与定点O(0,0),A(3,0)距离的
比是 1 的点的轨迹,求此曲线的轨迹方程,并画出曲线.
2
解:在给定的坐标系里,设点M(x,y)是曲线上的任意一点,
也就是点M属于集合
{M
|
|
OM|
1 }
| AM| 2 由两点间的距离公式,得
y
M
x2 y2 1 (x 3)2 y2 2
CO
Ax
化简得
x2+y2+2x3=0

这就是所求的曲线方程.
直译法
把方程①的左边配方,得(x+1)2+y2=4.
所以方程②的曲线是以C(1,0)为圆心,2为半径的圆.
(P124,B2)长为2a的线段AB的两个端点分别在相互 垂直的两条直线上滑动,则线段AB的中点轨迹为?
x2 y2 a2
轨迹的常用求法:
1.直译法; 2.定义法;
y
B
M

A
x
【课堂练习】
1.已知Rt△ABC中,A(-1,0),B(3,0),
复习引入
【思考1】平面内到一定点A的距离等于定长的
点M的轨迹是什么?
M r
|MA|=r
A
【答】以定点A为圆心,定长r为半径的圆。
【思考2】平面内与两定点A、 B距离相等的点
M的轨迹是什么?
M
|MA|= |MB|
【答】线段AB的垂直平分线。 A
B
典型例题
【例1】已知线段AB的端点B的坐标是(4,3),端点A在圆 (x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程.
3.求轨迹方程的步骤:①建系设点(x,y); ②列式代入; ③化简检验.

与圆有关的综合问题

与圆有关的综合问题

与圆有关的综合问题题型一:与圆有关的轨迹问题[典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法[针对训练]1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′),由题意得,⎩⎪⎨⎪⎧ x ′+4=2x ,y ′-2=2y ,则⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y +2,故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ). 由题设知CM ―→·MP ―→=0, 故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.题型二:与圆有关的最值或范围问题[例1] (2019·兰州高三诊断)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5][解析] 法一:当MA ,MB 是圆C 的切线时,∠AMB 取得最大值.若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.法二:由于点M (5,t )是直线x =5上的点,圆心的纵坐标为4,所以实数t 的取值范围一定关于t =4对称,故排除选项A 、B.当t =2时,|CM |=25,若MA ,MB 为圆C 的切线,则sin ∠CMA =sin ∠CMB =1025=22,所以∠CMA =∠CMB =45°,即MA ⊥MB ,所以t =2时符合题意,故排除选项D.选C. [答案] C[例2] 已知实数x ,y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.(2)y -x 可看成是直线y =x +b 在y 轴上的截距.当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方.由平面几何知识知,x 2+y 2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值. 因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43, 最小值是(2-3)2=7-4 3.[方法技巧]与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:[针对训练]1.(2019·新余一中月考)直线x +y +t =0与圆x 2+y 2=2相交于M ,N 两点,已知O 是坐标原点,若|OM ―→+ON ―→|≤|MN ―→|,则实数t 的取值范围是________. 解析:由|OM ―→+ON ―→|≤|MN ―→|=|ON ―→-OM ―→|, 两边平方,得OM ―→·ON ―→≤0, 所以圆心到直线的距离d =|t |2≤22×2=1, 解得-2≤t ≤2,故实数t 的取值范围是[-2, 2 ]. 答案:[-2, 2 ]2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点A (2,1)连线的斜率.当直线PA 与圆相切时,k 取得最大值与最小值.设过(2,1)的直线方程为y -1=k (x -2),即kx -y +1-2k =0. 由|2k |k 2+1=1,解得k =±33.答案:33,-333.(2019·大庆诊断考试)过动点P 作圆:(x -3)2+(y -4)2=1的切线P Q ,其中Q 为切点,若|P Q |=|PO |(O 为坐标原点),则|P Q |的最小值是________.解析:由题可知圆(x -3)2+(y -4)2=1的圆心N (3,4).设点P 的坐标为(m ,n ),则|PN |2=|P Q |2+|N Q |2=|P Q |2+1,又|P Q |=|PO |,所以|PN |2=|PO |2+1,即(m -3)2+(n -4)2=m 2+n 2+1,化简得3m +4n =12,即点P 在直线3x +4y =12上,则|P Q |的最小值为点O 到直线3x +4y =12的距离,点O 到直线3x +4y =12的距离d =125,故|P Q |的最小值是125.答案:125[课时跟踪检测]1.(2019·莆田模拟)已知圆O :x 2+y 2=1,若A ,B 是圆O 上的不同两点,以AB 为边作等边△ABC ,则|OC |的最大值是( ) A.2+62B. 3 C .2D.3+1解析:选C 如图所示,连接OA ,OB 和OC . ∵OA =OB ,AC =BC ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°, 在△OAC 中,由正弦定理得OA sin 30°=OCsin ∠OAC ,∴OC =2sin ∠OAC ≤2,故|OC |的最大值为2,故选C.2.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b 2的最小值为( ) A .2 B .4 C .8D .9解析:选D 圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b 2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.3.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( ) A .3 B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45.因为P 在圆C 上,所以P ⎝⎛⎭⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.4.(2019·拉萨联考)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,则点P 到直线l :x -2y -5=0的距离的最小值是( ) A .4 B. 5 C.5+1 D.5-1解析:选D 圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1.故选D. 5.(2019·赣州模拟)已知动点A (x A ,y A )在直线l :y =6-x 上,动点B 在圆C :x 2+y 2-2x -2y -2=0上,若∠CAB =30°,则x A 的最大值为( ) A .2 B .4 C .5D .6解析:选C 由题意可知,当AB 是圆的切线时,∠ACB 最大,此时|CA |=4.点A 的坐标满足(x -1)2+(y -1)2=16,与y =6-x 联立,解得x =5或x =1,∴点A 的横坐标的最大值为5.故选C.6.(2018·北京高考)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( ) A .1 B .2 C .3D .4解析:选C 由题知点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离d =21+m 2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3.7.(2019·安徽皖西联考)已知P 是椭圆x 216+y 27=1上的一点,Q ,R 分别是圆(x -3)2+y 2=14和(x +3)2+y 2=14上的点,则|P Q |+|PR |的最小值是________.解析:设两圆圆心分别为M ,N ,则M ,N 为椭圆的两个焦点, 因此|P Q |+|PR |≥|PM |-12+|PN |-12=2a -1=2×4-1=7,即|P Q |+|PR |的最小值是7. 答案:78.(2019·安阳一模)在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ),由题意得x 2+(y +3)2=2x 2+y 2, 整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组⎩⎨⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3,解得0≤a ≤3, 综上可得,实数a 的取值范围是[0,3]. 答案:[0,3]9.(2019·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|Q M |的最小值. 解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2. 化简可得(x -5)2+y 2=16,故此曲线方程为(x -5)2+y 2=16. (2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题知直线l 2与圆C 相切,连接C Q ,CM , 则|Q M |=|C Q |2-|CM |2=|C Q |2-16,当C Q ⊥l 1时,|C Q |取得最小值,|Q M |取得最小值,此时|C Q |=|5+3|2=42,故|Q M |的最小值为32-16=4.10.(2019·广州一测)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k . 当k 1k 2=3时,求k 的取值范围. 解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2(x -1)2+y 2. 整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2, 即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦ 由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。

与圆有关的轨迹问题

与圆有关的轨迹问题

课下探索: 课下探索: 与两个定圆都相切的动圆的圆心的轨迹
(1)与两圆均外切 )
y A B x
(2)与两圆均内切 ) y
A B x
内切、 外切、 (3)与圆 内切、与圆 外切 4)与圆 外切、与圆 内切 )与圆A内切 与圆B外切 )与圆A外切 与圆B内切 (
y y A B x A B x
方法小结 :与定圆相切的动圆圆心的轨迹情 况复杂, 况复杂, 1.抓牢两个圆心,一个切点,三点一定共线。 1.抓牢两个圆心,一个切点,三点一定共线。 抓牢两个圆心 一定共线 2.抓牢定圆的半径,设出动圆半径作辅助。 2.抓牢 圆的半径 设出动圆半径作辅助。 抓牢定 半径, 动圆半径作辅助 3.抓牢动点到两定点的距离的和与差不放。 3.抓牢动点到两定点的距离的和 不放。 抓牢动点到两定点的距离的
C

探索与定圆相切的动圆圆心轨迹要抓牢动 探索与定圆相切的动圆圆心轨迹要抓牢动 圆圆心到两定点的距离的和与差不放 不放。 圆圆心到两定点的距离的和与差不放。
S A B
C A S S B A B
定点A,同时与定圆 定圆⊙ 结论 :过定点 ,同时与定圆⊙ B 相 的动圆圆心 的轨迹可能是椭圆 圆心S的轨迹可能是椭圆或 切 的动圆圆心 的轨迹可能是椭圆或双 曲线或直线的一部分。 曲线或直线的一部分。
x
x y 变题 2 :已知双曲线的方程为 2 − 2 = 1( a > 0, a b b > 0 ), F1 , F2 分别为左右焦点 , Q 是双曲线上任意 一点 , 从左焦点 F1 作 ∠ F1QF 2 平分线的垂线 , 垂足 为 P , 求点 P 的轨迹方程
F1
O
F2
x
P
M
经过点 A(5,0)且 与 且 例3: C ( x + 5) 2 + y 2 = 49 :圆 的轨迹方 外 切的圆的圆心 P 的轨迹方程

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。

圆的方程 知识点+例题+练习

圆的方程 知识点+例题+练习

教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。

高中数学与圆有关的轨迹问题与最值问题

高中数学与圆有关的轨迹问题与最值问题

b a 1 ,解得 a 1 , b 2 ,从而 r 2 2 (5 分)
圆 C 方程为: (x 1)2 ( y 2)2 8(6 分)
(Ⅱ)设 M (x, y) , B(x0

y0
)
,则有
1
x0 2
x,
y0 2
y , (8
分)
解得 x0 2x 1 , y0 2 y ,代入圆 C 方程得: (2x 2)2 (2y 2)2 8 , (10 分)
| MA | 2
(x 3)2 y2 2
化简整理得: x2 y2 2x 3 0 ,即 (x 1)2 y2 4 ,
点 M 的轨迹方程 (x 1)2 y2 4 ,轨迹是以 (1, 0) 为圆心,以 2 为半径的圆;
(2)由(1)可知, P(x, y) 为圆 (x 1)2 y2 4 上任意一点, 3x1 ,
(1)求动点 M 的阿波罗尼斯圆的方程; (2)过 P(2,3) 作该圆的切线 l ,求 l 的方程.
【解答】解:(1)设动点 M 坐标为 (x, y) ,则 AM (x 4)2 y2 , BM (x 1)2 y2 ,
又知 AM 2BM ,则 (x 4)2 y2 2 (x 1)2 y2 ,得 x2 y2 4 .
专题 05 与圆有关的轨迹问题与最值问题
题型一 轨迹问题
1.动圆 x2 y2 (4m 2)x 2my 4m2 4m 1 0 的圆心的轨迹方程是 x 2y 1 0(x 1) .
【解答】解:把圆的方程化为标准方程得 [x (2m 1)]2 ( y m)2 m2 (m 0)
3 / 13
【解答】解: ( 1) 由两点式可知,对角线 AC 所在直线的方程为 y 2 2 2 , x4 04
整理得 y x 2 0 ,

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。

(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。

(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。

如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

圆的方程五种求法分类

圆的方程五种求法分类

圆的方程求法分类圆的方程是解析几何中一类重要曲线方程,是高考的必考内容之一,本文将圆的方程的求法作以分类解析,供学习时参考.一、直接法根据条件利用圆的有关性质,求的圆心坐标和半径,从而写出圆的方程的方法.例1已知圆C 的圆心与点(2,1)P 关于直线1y x =+对称.直线3430x y ++=与圆C 相交于B A ,两点,且6=AB ,求圆C 的方程.点评:若根据条件利用圆的有关性质,易求的圆心坐标和半径,常用直接法.二、间接法——化未知为已知若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:⎩⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α),(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0.【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.【点评】上述两种方程为求轨迹的基本方法:相关点及参数法.三、待定系数法例3 已知圆C 经过A (-2,4),B (3.-1)两点,且在x 轴上截得的弦长等于6,求圆C 的方程.点评:求圆的方程的常用方法是待定系数法,若已知圆心或半径或在解题过程中需要用到圆心或半径,如已知弦长、相切等,则将圆的方程设成标准方程形式;若已知条件与圆心和半径无关,则设圆的一般方程.四、几何法——与向量或三角沟通直线被圆截得的弦长计算,运用弦心距(即圆心到直线的距离)、弦半径及半径构成直角三角形计算,此公式是半径2=弦心距2+半弦长2.【例4】 在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB 的坐标; (2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;【例5】已知一圆经过点(3,1)A ,(1,3)B -,且它的圆心在直线320x y --=上.(1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点(3,0)C ,求线段CD 的中点M 的轨迹方程.五、圆系法经过两圆1C :2x +2y +x D 1+y E 1+1F =0和圆2C :2x +2y +x D 2+y E 2+2F =0交点的圆系方程为:222211122()0x y D x E y F x y D x E y F λ+++++++++=(1λ≠-).注意包括圆1C 不包括圆2C .经过直线:0Ax By C ++=与圆:220x y Dx Ey F ++++=交点的圆系方程为:22()0x y Dx Ey F Ax By C λ+++++++=.例6求过直线240x y ++=和圆:222410x y x y ++-+=的交点,且面积最小的圆的方程.分析:本题是过直线与圆的交点的圆的方程问题,可用圆系法.点评:若所求圆过两圆的交点或以直线与一个圆的交点,常用圆系法,本题也可用直接法,因以直线被圆截得的弦为直径的圆半径最小,此时圆面积最小,故可求出直线与圆的交点,从而求出圆心与半径,写出圆的方程.在求圆的方程时,根据已知条件,选用合适的方法求解,用待定系数法时,注意方程类型的选定.【例7】求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求与圆有关的轨迹方程
[概念与规律]
求轨迹方程的基本方法。

(1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。

(2)转移法(逆代法):这方法适合于动点随已知曲
线上点的变化而变化的轨迹问题,其步骤是:设动点M (x, y),已知曲线上的点为N (x o, y o),
求出用x,y表示x o, y o的关系式,将(x o,y o)代入已知曲线方程,化简后得动点的轨迹方程。

(3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。

(4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。

(5)定义法:这是直接运用有关曲线的定义去求轨迹方程。

[讲解设计]重点和难点
例1 已知定点A (4, 0),点B是圆x2+y2=4上的
动点,点P分AB的比为2: 1,求点P的轨迹方程
例2自A (4, 0)引圆x2+y2=4的割线ABC ,求弦BC中点P的轨迹方程
例3 已知直角坐标平面上的点Q (2, 0)和圆C :
x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数・c 0),求动点M的轨迹方程,并说明它表示什么曲线。

(1994年全国高考文科题)
例4 如图,已知两条直线l i:2x-3y+2=0,I2: 3x-
2y+3=0,有一动圆(圆心和半径都在变化)与l i,I2都相交,并且l i与I2被截在圆内的两条线段的长度分别是26和24,求圆心M的轨迹方程。

(1983年全国高考题)
练习与作业
1.已知圆C1:(x+1)2 + y2=1 和C2:(x-1)2 + (y-3)2=10,过原点O的直线与C i交于P,与C2交于Q,求PQ线段的中点M的轨迹方程。

2 •已知点A (-1 , 0)与点B (1 , 0) , C是圆x2+y2=1上的动点,连接BC并延长到D,使|CD|=|BC| ,求AC 与OD(O 为坐标原点)的交点P 的轨迹方程。

Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档