信源和信息熵
信息论与编码信源与信息熵
• 联合熵H(X1,X2)表达平均每二个信源符号所携带 旳信息量。
• 我们用1/2H(X1,X2)作为二维平稳信源X旳信息熵 旳近似值。那么平均每一种信源符号携带旳信
息量近似为:
– 信源符号分布旳不均匀性。 • 等概率分布时信源熵最大。
log 2 n H0 (X ) H1(X ) H2 (X ) H (X )
26
冗余度
• 对于有记忆信源,极限熵为H∞(X)。 • 这就是说我们需要传送这一信源旳信息,理论
上只需要传送H∞(X)即可。但必须掌握信源全 部概率统计特征,这显然是不现实旳。
/
符号
11
• 例:有一离散平稳无记忆信源
求:二次扩展信源旳熵
X p(x)
x1 1
2
x2 1
4
x3 1 4
X2信源 旳元素
相应旳 消息序列
概率p(ai)
a1 a2 a3 a4 a5 a6 a7 a8 a9
x1x1 x1x2 x1x3 x2x1 x2x2 x2x3 x3x1 x3 x2 x3 x3 1/4 1/8 1/8 1/8 1/16 1/16 1/8 1/16 1/16
• 目前后符号无依存关系时,有下列推论:
H(X1X2) H(X1) H(X2)
H (X1 | X 2 ) H (X1), H (X 2 | X1) H (X 2 )
14
离散有记忆信源序列熵
• 信源旳联合熵(即前后两个符号(X1,X2)同步发生 旳不拟定度)等于信源发出前一种符号X1旳信息 熵加上前一种符号X1已知时信源发出下一种符号 X2旳条件熵。
信息论与编码 第二章 信源与信息熵
信源
{ 连续信源: 话音、图像
2~3 1~2 0~1 2 1 0
电 压 5~6 4~5 范围 量化 5 4
3~4
3
电 压 -1~0 -2~-1 -3~-2 -4~-3 -5~-4 -6~-5 范围
散无记忆信源。可用一个离散型随机变量X来描述这
个信源输出的消息。
2.1.1 无记忆信源
发出单个符号的离散无记忆信源
可用一个离散型随机变量X来描述这个信源输出的消息。 随机变量X的样本空间就是符号集:
A {a1 , a2 ,, an }
X的概率分布为:
P { p(a1 ), p(a2 ),, p(an )}
2.2.2 离散信源熵
信源熵
——信源的平均不确定度。
H ( X ) E[ I ( X )] p( xi )log p( xi )
i
单位为bit/符号
信源熵是在平均意义上来表征信源的统计特性,它是信源X的函数。
当信源给定,各符号的概率空间就给定,信源熵就是一个确定的值。
不同的信源因概率空间不同而具有不同的信源熵。
无记忆信源
{ 发出符号序列的无记忆信源
发出单个符号的无记忆信源
{
离散 连续
2.1.1 无记忆信源
发出符号序列的信源
——每次发出1组含L个(L≥2)符号的符号序列来代表一 个消息的信源。
需要用随机序列(或随机矢量) X =(X1, X2,…, Xl, …, XL)来描 述信源输出的消息,用联合概率分布p(X1, X2,…, Xl, …, XL)来表 示信源特性。 当L=2时,此时信源为X =(X1, X2) ,其概率空间为:
信息论与编码2-信源及信源熵
实例3
随机天气状况信源,其中晴天、雨天、雪天出现的概率分别是0.7、0.2、0.1。
实例1
随机二进制信源,其中每个二进制符号(0或1)出现的概率为0.5。
离散无记忆信源的实例
离散有记忆信源
03
离散有记忆信源是输出符号序列中符号与符号之间存在记忆关系的离散随机序列。
应用场景
广泛应用于网络通信、金融交易、军事通信等领域,保障信息安全和隐私。
加密通信
03
应用景
广泛应用于通信系统、数据存储等领域,如CD、DVD、硬盘等存储设备的纠错编码。
01
纠错原理
通过在数据中添加冗余信息,检测和纠正数据传输过程中的错误。
02
常见纠错编码
如奇偶校验码、海明码、循环冗余校验码等,这些编码利用数学原理对数据进行校验,确保数据的正确性。
纠错编码
THANKS
感谢观看
离散有记忆信源的输出符号之间存在统计依赖关系,这种关系会影响信息熵的计算。
定义
性质
离散有记忆信源的定义与性质
计算方法
条件熵
联合熵
离散有记忆信源熵的计算
离散有记忆信源熵是描述信源不确定性的度量,可以通过统计模型来计算。具体计算方法包括条件熵和联合熵等。
条件熵是在给定前一个或多个符号条件下,输出符号的熵。
应用场景
广泛应用于文件存储、网络传输、多媒体处理等领域,如JPEG图片压缩、MP3音频压缩等。
数据压缩原理
通过去除数据中的冗余信息,将数据压缩至更小的存储空间,提高存储和传输效率。
数据压缩
加密原理
通过特定的加密算法将明文转换为密文,确保信息在传输过程中的保密性。
信源与信息熵
信源的描述
• 随机序列的概率
p(x1, x2 , x3,LxL ) = p(xL | xL−1,Lx1) p(x1, x2 ,LxL−1) = p(xL | xL−1,Lx1) p(xL−1 | xL−2 ,Lx1) p(x1, x2 ,LxL−2 ) =L
• 当信源无记忆时
p(x1x2 Lxl LxL ) = p(x1) p(x2 )Lp(xl )Lp(xL ) = ∏p(xl )
0.6 0.4 0 p(s j | si ) = 0.3 0 0.7 0.2 0 0.8
27
• 例2-2:有一个二元二阶马尔可夫信源,其信源 :
符号集为{0,1},已知符号条件概率: p(0|00) = 1/2 p(0|01) = 1/3 p(0|10) = 1/4 p(0|11) = 1/5 p(1|00)=1/2 p(1|01)=2/3 p(1|10)=3/4 p(1|11)=4/5
p ( y j | xi ) = p ( y j ),p ( xi | y j ) = p ( xi ),
⑹
p( xi | y j ) =
p( xi y j )
∑ p( x y )
i =1 i j
n
,p( y j | xi ) =
p( xi y j )
∑ p( x y )
j =1 i j
18
m
2.1.3 马尔可夫信源
s3
(1)1/2
(0)1/2
00 s1
(0)1/3
(0)1/4
s2 01
(1)2/3
j =1
17
概率论基础
• 无条件概率、条件概率、联合概率的性质和关系 ⑷ p ( x i y j ) = p ( x i ) p ( y j | xi ) = p ( y j ) p ( x i | y j ) ⑸ 当X与Y相互独立时, p ( x y ) = p ( x ) p ( y ) i j i j
第2章信源与信息熵
7
称为符号x 的先验概率,信源数学模型表示为: 称为符号 i的先验概率,信源数学模型表示为:
X x1 P = p( x ) 1 x2 p( x 2 ) x3 L p( x 3 ) L xn p( x n )
n
称为概率空间, 称为概率空间,其中
长江大学电信学院
长江大学电信学院
12
X
概率论知识复习
1)条件概率
p ( xi | y j ) = p ( xi y j ) p( y j ) , p ( y j | xi ) = p( xi y j ) p( xi )
13
2)联合概率
p ( xi y j ) = p ( y j ) p ( xi | y j ), p( xi y j ) = p ( xi ) p ( y j | xi )
16
长江大学电信学院
X
2.2 离散信源熵和互信息
如果信源具有更多的消息,例如发10个 【例2.3 】如果信源具有更多的消息,例如发 个 数字0,1…..9(例如采用 位十进制树的中文电报 , 例如采用4位十进制树的中文电报 数字 例如采用 位十进制树的中文电报), 而且假定这是个消息是等概率分布的,均为0.1, 而且假定这是个消息是等概率分布的,均为 , 这时信宿仅凭猜测的话,就更难猜了。 这时信宿仅凭猜测的话,就更难猜了。因为信源 发送什么消息更加不确定。 发送什么消息更加不确定。 现在讨论一种极端的情况, 【例2.4 】现在讨论一种极端的情况,信源只发送 一种消息,即永远只发送1或者只发送 或者只发送0, 一种消息,即永远只发送 或者只发送 ,从这样 的信源中我们就不能从中获取任何信息, 的信源中我们就不能从中获取任何信息,也就是 说信源的不确定性为0。 说信源的不确定性为 。
[数学]信源与信息熵
[数学] 信源与信息熵1. 信源在信息论中,信源是指产生和发送信息的原始来源。
它可以是一个物理设备,如计算机、手机或者是一个概念、事件等。
无论信源是什么,它都可以看作是一个随机变量,可以取多个可能的取值。
举个例子,考虑一个硬币的抛掷过程。
在这个例子中,信源可以是硬币的结果,可以是正面或反面。
硬币抛掷过程是一个随机过程,因此信源可以看作是一个随机变量。
2. 信息熵信息熵是信息论中一个重要的概念,用于度量信源的不确定性或者信息的平均量。
它是由信源的概率分布决定的。
假设信源有n个可能的取值,记为$x_1, x_2, \\ldots, x_n$。
每个取值n n出现的概率为n(n n),满足$\\sum_{i=1}^n p(x_i)= 1$。
那么,信源的信息熵n定义为$$ H = -\\sum_{i=1}^n p(x_i) \\log p(x_i) $$信息熵的单位通常是比特(bits)或者纳特(nats)。
信息熵可以理解为平均需要多少比特或者纳特来表示信源的一个样本。
当信源的概率分布均匀时,信息熵达到最大值。
相反,当信源的概率分布集中在某几个取值时,信息熵较低。
3. 信息压缩信息熵在信息压缩中起到了重要的作用。
信息压缩是将信息表示为更短的形式,以便更有效地存储和传输。
根据信息论的哈夫曼编码原理,我们可以通过将频繁出现的符号用较短的二进制码表示,而将不经常出现的符号用较长的二进制码表示,从而实现信息的压缩。
在信息压缩过程中,我们可以根据信源的概率分布来选择合适的编码方式,以最小化编码长度和解码的平均长度之和。
4. 信息熵的应用信息熵在各个领域都有着广泛的应用。
在通信领域,信息熵可以用来评估信道的容量。
信道容量是一个信道在单位时间内可以传输的最大信息量。
通过计算信道的信息熵,我们可以确定如何更好地利用信道的带宽和传输速率。
在数据压缩领域,信息熵可以用来评估压缩算法的效果。
一个好的压缩算法应该能够将原始数据的信息量尽可能地减少,从而更高效地存储和传输数据。
2信源与信息熵2
• 联合自信息量
I ( xi y j ) log2 p( xi y j )
• 条件自信息量和联合自信息量同样满足非负 性和单调递减性。 • 关系
I ( xi y j ) log2 p( xi ) p( y j / xi ) I ( xi ) I ( y j / xi ) log2 p( y j ) p( xi / y j ) I ( y j ) I ( xi / y j )
信源熵与自信息量的关系1:定性
• 信源熵用以表征信源的平均不确定性:一个 信源,无论是否输出符号,由于具有特定的 概率统计特性,因此具有特定的熵值。 • 信息量则只有当信源输出的符号被接收者收 到后才有意义。平均自信息量是能够消除信 源不确定性时所需信息的量度,即收到一个 信源符号,全部解除了这个符号的不确定性。 或者说获得这样大的信息量后,信源不确定 性就被消除了。
• 平均自信息量:表示信源中发出每个符号平均所能 提供的信息量。它只与信源中各个符号出现的概率 有关,可以用来表示信源输出信息的总体量度。 • 信源X的平均不确定度:表示总体平均意义上的信 源符号的不确定度(不管是否发出)。数值上等于平 均自信息量。 • 这个平均自信息量的表达式和统计物理学中热熵的 表达式很相似。在统计物理学中,热熵是一个物理 系统杂乱性(无序性)的度量。这在概念上也有相似 之处。所以,可以把信源X的平均不确定度称为 “信源熵”。
例2-5/6
• 例2-5(P19):
• 例2-6(P19): • 由于符号间通常存在关联性,实际信息量往 往远远小于理论值。
例2-7
• 例2-7(P19):二元信源的信息熵。
• 自信息量是针对无条件概率计算的,可以在 数学上进行简单的推广:将无条件概率换为 条件概率或联合概率。
信息论与编码 第2章 信源与信息熵
且有B1∪B2∪…=Ω(样本空间);
P(Bi)>0,i=1,2…,则对任一事件A,有:
p( A) p( Bi ) p( A | Bi ) p( ABi )
i i
2013-8-19
5
相 关 知 识 复 习
4)贝叶斯(Bayes)公式: 设B1,B2 , … 是一列互不相容的事件(B i B j = 0), 且有B1∪B2∪… =Ω(样本空间); p(Bi)>0 ,i=1,2,…,则对任一事件 A,有:
p( X1, X 2 ,, X l , X L ) p( X1 ) p( X 2 ) p( X L )
2013-8-19
9
2.1信源特性与分类
离散有记忆序列信源 布袋摸球实验,每次取出两个球,由两
个球的颜色组成的消息就是符号序列。 若先取出一个球,记下颜色不放回布袋, 再取另一个球。
2.1信源描述与分类
马尔可夫信源 定义:若齐次马尔可夫链对一切I,j存在
不依赖于I的极限,则称其具有遍历性, pj称为平稳分布
lim p p j k p j 0
(k ) ij i 0
p j pi pij
2013-8-19
p
j
j
1
22
2.1信源描述与分类
马尔可夫信源 定理:设有一齐次马尔可夫链,其状态
2.1 马尔可夫信源的定义
3. 【特殊说明】
① n阶马尔可夫信源只与前面发 出的n个符号有关,即关联长 度为n+1。
② 当n=1时,即任何时刻信源符 号发生的概率只与前面一个符 号有关,则称为一阶马尔可夫 信源。
第三章 信源及信息熵
N
(X )
N
H (X1X 2 X
N
)
称为平均符号熵。如果当 N 时上式极限存在, 则 lim H ( X ) 称为熵率,或称为极限熵,记为
N N
def
H lim H
N
N
(X )
3.3.1
一般情况
离散平稳无记忆信源
数学模型
设一个离散无记忆信源为:
X a1 P p1 a2 p2 ... ... aq pn
19
解(1)因为信源是无记忆信源,所以符号的平均熵
H(X ) H( 1 4 3 4 ) 1 4 2 3 4
100 m
0.415 0.81bit / 符号
(2)某一特定序列(例如有m个0和100-m个1)出现的概率为
P( X ) P( X 1 , X 2 , X 100 ) P(0)
例:有一离散平稳无记忆信源 X
x1 1 p( x) 2
x2 1 4
x3 1 4
求:二次扩展信源的熵及其该信源的熵率。
X2信源 的元素 对应的 消息序列 概率p(ai)
a1 x1x1
1/4
a2 x 1x2
1/8
a3 x1x3
1/8
a4 x2x1
1/8
i 1 3
H lim H N ( ) lim
N
1 N
N
NH ( X ) 1.5bit / 符号
例题
某一无记忆信源的符号集{0,1},已知 p(0)=1/4,p(1)=3/4. (1)求符号的平均熵; (2)由100个符号构成的序列,求某一 特定序列(例如有m个0和100-m个1) 的自信息量的表达式; (3)计算(2)中的序列的熵
第二章信源与信息熵
I ( X ; Y ) p( yj ) I ( X ; yj ) p( xiyj ) log
p( xi / yj ) p( xi )
I(X;Y)=H(X)-H(X/Y);I(Y;X)=H(Y)-H(Y/X)=I(X;Y).
• 3.疑义度或损失熵
条件熵H(X/Y)信道上的干扰和噪声所造成的对信源符号x的平均不确定度.
X 0 P p
二元信源熵为
1 q
H (X ) p log p q log q p log p (1 p ) log(1 p ) H ( p)
信源信息熵H(X)是概率p的函数,通常用 H(p)表示。函数曲线如图
i i
I ( xi) 0; P( xi) 0;0 p( xi) 1
H(X ) 0
• 2.信源熵:表征信源的平均不确定度. 3.平均自信息:平均每个信源符号所能提供的信息 量.大小与信源熵相同.
• 例2.2.3二元信源是离散信源的一个特例。该信源X输出符号只 有两个,设为0和1。输出符号发生的概率分别为p和q,p+q=1。 即信源的概率空间为可得二元信源熵为
2.概率空间
一个离散信源发出的各个符号消息的集合 例如:
X={x1,x2,…,xn}
它们的概率分别为 P={p(x1),p(x2),…,p(xn)} p(xi)称为符号xi的先验概率。 把他们写到一起就是概率空间:
X x1 P p( x1)
x2
n
...xn
xiyi 所包含的不确定度在数值上也等于它们的自信息量。
4.条件自信息量:当二者不独立 在给定y条件下,随机事件x所包含的不确定度在数值 上与条件自信息量相同,但两者含义不同。
第2章.信源与信息熵
P中第i行元素对应于从某一个状态si 转移到所有状态s j ( s j S )的 第j列元素对应于从所有状态si ( si S )转移到同一个状态s j的转移 概率,列元素之和不一定为1。
29
转移概率。矩阵中的每一行元素都是非负的,且每行之和均为1。
2.1.3 马尔可夫信源
切普曼· 柯尔莫郭洛夫方程 ( k步转移概率pijk )与l (l k )步和k - l步转移概率之间有所谓
表述的复杂度将随着序列长度的增加而增加。 然而实际上信源发出的符号往往只与前若干个符号有较 强的依赖关系,随着长度的增加依赖关系越来越弱,因 此可以根据信源的特征和处理时的需要限制记忆的长度, 使分析简化。
18
2.1.3 马尔可夫信源
马尔可夫信源 当信源的记忆长度为m+1时,该时该发出的符号与前m 个符号有关联性,而与更前面的符号无关。这种有记忆 信源叫做m阶马尔可夫信源,可以用马尔可夫链来描述。
30
2.1.3 马尔可夫信源
切普曼· 柯尔莫郭洛夫方程 由前递推关系式可知,对于齐次马尔可夫链,一步转移 概率完全决定了k步转移概率。 为了确定无条件概率,引入初始概率,令:
第二章 信源与信息熵
南通大学
2019/11/11
16
第2章 信源与信息熵
对于高阶马尔可夫链,我们可通过分析系统状
态在输入符号作用下的转移情况,使高阶马尔可夫 链过程转化为一阶马尔可夫链过程。
对于m阶马尔可夫信源,将该时刻以前出现的m
个符号组成的序列定义为状态si,即
s i x i 1 , x i 2 ,, x i m x i 1 , x i 2 ,, x i m A a 1 , a 2 ,, a n
1 时间连续函数f(t),频带受限 0 f fm,不失真的
采样频率 fs 2 fm ,若时间也受限 ,0 t tB ,则采
样点数为 2 f m t B 时,即可恢复原信号
这样就变成了时间离散,幅度连续的样值序列
2 频率连续函数f(t),时间受限 0 t tB ,若频率也
受限 0 f fm。因为在 0 2 的数字域上,不失 真采样点L须满足 LT tB ,T为采样周期,则采样 点数 LtB/TtBfs2 tBfm。
南通大学
2019/11/11
3
第2章 信源与信息熵
离散信源又可以细分为: (1)离散无记忆信源:所发出的各个符号之间是相互
独立的,发出的符号序列中的各个符号之间没有统计 关联性,各个符号的出现概率是它自身的先验概率。 (2)离散有记忆信源:发出的各个符号之间不是相互 独立的,各个符号出现的概率是有关联的。
信源输出用L维随机序列(随机矢量)
X X 1 ,X 2 , ,X l, ,X L 来描述信源输出的消息,用
联合概率分布来表示信源特性。在上述随机矢量中,
若每个随机变量
Xi(i1,2,都,是L)离散的,则可
用L重离散概率空间来描述这类信源。
《信源和信息熵》PPT课件
熵之差,并不是信息熵本身。
二、信息熵的基本性质
1、对称性:
此性质说明:熵的总体性。它只与随机变量的总 体结
构有关,而不在于个别值的概率,甚至也不因随 机变
量取值的不同而异。 2、非负性:
3、扩展性:
说明:概率很小的值的出现,给予接收者以较大的 信息,但在熵的计算中占的比重很小,这是熵的总 体平均性的一种体现。 4、确定性:
注意:信息单位比特(表示以2为底的对数) 与计算机术语中的比特(表示二进制数的 位)的意义是不同的。
▪收到某消息获得的信息量=收到此消息前 关于某事件发生的不确定性-收到此消息 后关于某事件发生的不确定性
即:收信者所获得的信息量应等于信息传 输前后不确定性的减少的量。
例:设一条电线上串联8个灯泡,且损坏的 可能性为等概,若仅有一个坏灯泡,须获 知多少信息量才可确认?
可见:所有概率分布pi所构成的熵,以等概时为最 大,
称为最大离散熵定理。
7、上凸性: 熵函数具有严格的上凸性,它的极值必为最大值。 8、递增性:
其中: 此性质说明:熵增加了一项由于划分而产生的不确 定性
量。
例:运用熵函数的递增性,计算熵函数 H(1/3,1/3,1/6,1/6)的数值。
可见:熵函数的递增性也可称为递推性,表示n 个元素的信源熵可以递推成(n-1)个二元信 源的熵函数的加权和。可使多元信源的熵函数 计算简化成计算若干个二元信源的熵函数。
独立 有记忆信源:随机矢量的各分量不相
互独立 表述有记忆信源比无记忆信源困难的多,实际中,
信 源发出的符号往往只与前若干符号的依赖关系强,
与 更前面的符号依赖关系弱,这类信源可用马尔可
第2章 -1信源与信息熵1【单符号离散信源】
1. 离散信源熵 (平均自信息量/无条件熵)
[定义] 自信息量的数学期望为信源的平均信息量,记为:H(X)。
H(X)=E[I(xi)]= –∑p(xi)log2 p(xi)
——平均不确定度的度量、体现: 总体平均
[单位]
二进制:bit/(信源)符号,或bit/(信源)序列 [含义]信息熵具有以下三方面物理含义: ⑴ 表示信源输出前,信源的平均不确定性 ⑵ 表示信源输出后,每个符号所携带的平均信息量 ⑶ 表示信源的的随机性(不同的信源有不同的统计特性) 信息熵的意义: 信源的信息熵是从整个信源的统计特性来考虑的。它是从 平均意义上来表征信源的总体特性的。对于某特定的信源, 其信息熵只有一个。不同的信源因统计特性不同,其信息熵 也不同。
√
(后续章节)
一、概述
⒈ 信息的一般概念 一个人获得消息→消除不确定性→获得信息。 ⒉ 信息度量的定性分析 事件发生的概率越大,不确定性越小,该事件 包含的信息量越小; 事件发生的概率越小,不确定性越大,该事件 包含的信息量越大; 如果一个事件发生的概率为1,那么它包含的 信息量为0; 两个相互独立事件所提供的信息量应等于它们 各自提供的信息量之和。
2.2.1
自信息量
1.自信息量 [定义] 若信源发出符号xi,由于信道无干扰,收到的就
第2章_信源与信息熵
其状态变量S=(00,01,10,11)。 其状态变量S=(00,01,10,11)。 求: S=(00
信息论基础C
18
2.2离散信源熵与互信息
信息量
自信息量 联合自信息量 条件自信息量
单符号离散信源熵
符号熵 条件熵 联合熵
信息论基础C
19
2.2.1 自信息量
信息论基础C
20
2.2.1 自信息量
信息论基础C
7
离散无记忆序列信源-布袋实验( ) 离散无记忆序列信源-布袋实验(2)
布袋摸球的实验:若每次取出两个球, 布袋摸球的实验:若每次取出两个球,由两个球的颜色组 成的消息就是符号序列。例如,先取出一个球, 成的消息就是符号序列。例如,先取出一个球,记下颜色后放 回布袋,再取另一个球。 回布袋,再取另一个球。 由于两次取球时布袋中的红球、白球个数没有变化, 由于两次取球时布袋中的红球、白球个数没有变化,第二 个球取什么色与第一个球的颜色无关,是独立的, 个球取什么色与第一个球的颜色无关,是独立的,因而该信源 是无记忆的,叫做发出符号序列的无记忆信源。 是无记忆的,叫做发出符号序列的无记忆信源。
信息论基础C
26
2.2.2 离散信源熵
信息论基础C
27
离散信源熵的引入:
例: 一个布袋内放100个球,其中80个球为红色, 20球为白色。若随机摸取一个球,猜测其颜色。共进行 n次摸取。求平均摸取一次所获得的(自)信息量。 解:x1:表示摸出的球为红球;
信息论基础C
21
自信息量: 自信息量:
对于给定的离散概率空间表示的信源,x=ai事件 所对应的(自)信息为:
1 I ( x i = a i ) = − log p ( x i ) = log p( x i )
第2章信源与信息熵
1. 非负性 2. 对称性
n
pi 1,
i 1
pi 0
(i 1, 2,..., n)
3. 确定性
4. 连续性
5. 扩展性
6. 最大熵定理
7. 条件熵小于无条件熵
熵函数的非负性
H ( X ) H ( p1, p2 , , pn ) 0
0 pi 1, log pi 0
pi log pi 0
i
熵的物理意义
H(X)表示信源发出任何一个消息状态所携带的平均信 息量
也等于在无噪声条件下,接收者收到一个消息状态所获 得的平均信息量
熵的本意为热力学中表示分子状态的紊乱程度 信息论中熵表示信源中消息状态的不确定度 信源熵与信息量有不同的意义
H(X)表示信源X每一个状态所能提供的平均信息量 H(X)表示信源X在没有发出符号以前,接收者对信源的
第2章 信源与信息熵
主要内容 1. 信源的分类与描述 2. 离散信源的信息熵和互信息 3. 离散序列信源的熵 4. 连续信源的熵与互信息 5. 冗余度
2.1 信源的分类与描述
信源的定义
产生消息(符号)、消息序列和连续消息的来源。
信源的基本特性是具有随机不确定性
分类
1. 时间
离散
2. 幅度
离散
3. 记忆
有
பைடு நூலகம்
连续 连续 无
介绍三类信源
➢ 单符号离散信源 ➢ 符号序列信源(有记忆和无记忆) ➢ 连续信源
单符号离散信源
单符号离散信源:用随机变量X来描述
X的概率空间
X p(xi
)
X
x1, p1,
X x2, p2 ,
, X xn
,
pn
第二章信源及信源熵
p( xi | xi 2 xi 1 xi 1 xi 2 xi m x1 ) p( xi | xi 1 xi 2 xi m ) (i 1, 2, , N )
用概率空间来描述离散信源:
一个离散信源的数学模型就是离散型的概率空间:
X与Y相互独立,无法从Y中提取关于X的 信息。也可以看成信道噪声相当大,以至有
H(X/Y)=H(X) 。在这种情况下,能够传输的
平均信息量为0。称为全损离散信道。
一般情况下,X和Y既非互相独立,也不是一一对
应,那么从Y获得的X信息必在零与H(X)之间,即
常小于X的熵。
0 I ( X ;Y ) H ( X )
当 xi 和 y j 相互独立时,有 p( xi y j ) p( xi ) p( y j ) 于是有 I ( xi y j ) I ( xi ) I ( y j )
条件自信息量:当 xi 和 y j 相互联系时,在事件 y j 出现的条件下,xi 的自信息量称为条件自信息 量,定义为 :
j
/ xi )
H (Y / X ) p( xi ) p( y j | xi ) log p( y j | xi )
j 1 i 1 n
m
n
p( xi y j ) log p( y j | xi )
j 1 i 1
m
H ( X | Y ) - p ( xy ) log p ( x | y )
(2)当事件xi发生以后,表示事件xi所提供的信息量。
一点说明
自信息量的单位取决于对数的底;
底为2,单位为“比特(bit, binary unit)”; 底为e,单位为“奈特(nat, nature unit)”; 底为10,单位为“哈特(hat, Hartley)”或“det”; 根据换底公式得:
《信源与信息熵》课件
通过编码技术对数据进行错误纠正和检测,提高 数据传输的可靠性。
常见编码方式
Huffman编码
Shannon-Fano编码
根据字符出现的概率进行编码,使用较短 的码字表示概率较高的字符,反之亦然。
类似于Huffman编码,根据字符出现的概 率进行分组和编码,以提高编码效率。
LZ77编码
LZ78编码
02
信息熵的概念
信息熵的定义
信息熵
信息熵是信源发出消息的不确定性的 度量,也称为平均信息量。它表示在 信源中随机选取一个符号时,所含有 的平均信息量。
数学公式
$H(X) = -sum_{i=1}^{n} P(x_i) log_2 P(x_i)$,其中$P(x_i)$表示信 源符号$x_i$出现的概率。
熵的概念
信息熵表示数据源中信息的平均不确定性或随机性,是度量数据不确定性的一个重要指标。在数据压 缩中,通过减少数据的不确定性,即减少信息熵,来实现数据的压缩。
数据压缩算法
无损压缩算法
无损压缩算法能够完全恢复原始数据,不丢失任何信息。常见的无损压缩算法 包括哈夫曼编码、游程编码、LZ77等。
有损压缩算法
有损压缩算法在压缩数据时会去除一些冗余信息,以换取更高的压缩比。常见 的有损压缩算法包括JPEG、MPEG等。
解压缩与解压算法
解压缩算法
解压缩算法是数据压缩的逆过程,用于 将压缩后的数据恢复为原始形式。不同 的压缩算法对应不同的解压缩算法,如 哈夫曼编码的解压缩算法是哈夫曼解码 。
VS
解压算法
解压算法与解压缩算法类似,也是将压缩 后的数据恢复为原始形式。在有损压缩中 ,解压算法通常与压缩算法紧密相关,如 JPEG图像的解压需要使用JPEG解码器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:任何无源处理总是丢失信息的,至多保持原来 的信息,这是信息不可增性的一种表现。
二、离散平稳信源的极限熵 设信源输出一系列符号序列X1,X2, ‥XN 概率分布: 联合熵:
定义序列的平均符号熵=总和/序列长度,即:
• 平均符号熵就是信源符号序列中平均每个信 源符号所携带的信息量。
信源和信息熵
2.1 信源的数学模型及分类
通信系统模型及信息传输模型:
一、信源输出是单个符号的消息
例:扔一颗质地均匀的正方体骰子,研究其下落后, 朝上一面的点数。每次试验结果必然是1点、2点、3点、 4点、5点、6点中的某一个面朝上。每次试验只随机出 现其中一种消息,不可能出现这个集合以外的消息, 考察此事件信源的数学模型。
H(1,0)=H(0,1)=H(1,0,0, ‥)=‥=0 说明:从熵的不确定概念来说,确知信源的不确定度 应该为0。
5、可加性: 二个随机变量X和Y不独立时: H(XY)=H(X)+H(Y/X)=H(Y)+H(X/Y) 二个随机变量X和Y独立时: H(XY)=H(X)+H(Y) 6、极值性:
H(p1,p2, ‥,pq) ≤-∑pilogqi,当pi=1/q时,
解:数学模型为:
且满足:
§离散信源:信源输出是单一符号的消息,其符号集 的取值是有限的或可数的。
一维离散信源数学模型就是离散型的概率空间:
且满足:
§连续信源的无
限
数学模型是连续型的概率空间: 值。
实数集(-∞,+∞)
X的概率 密度函数
r进制信息熵与二进制信息熵的关系:
熵的物理含义: 信息熵H(x)是表示信源输出后,每个消息(或符号)所提 供的平均信息量;信息熵H(x)是表示信源输出前,信源 的平均不确定性;用信息熵H(x)来表征变量X的随机 性。 注意:信息熵是信源的平均不确定的描述。一般情况 下,它并不等于平均获得的信息量,获得的信息量是两 熵之差,并不是信息熵本身。
可见:所有概率分布pi所构成的熵,以等概时为最大, 称为最大离散熵定理。
7、上凸性: 熵函数具有严格的上凸性,它的极值必为最大值。 8、递增性:
其中: 此性质说明:熵增加了一项由于划分而产生的不确定性
量。
例2-2:运用熵函数的递增性,计算熵函数 H(1/3,1/3,1/6,1/6)的数值。
可见:熵函数的递增性也可称为递推性,表示n 个元素的信源熵可以递推成(n-1)个二元信 源的熵函数的加权和。可使多元信源的熵函数 计算简化成计算若干个二元信源的熵函数。
例2-1解:
测量前,P1(x)=1/8,存在不确定性: I(P1(x))=log8=3bit
第一次测量获得信息量: 第二次测量获得信息量: 第三次测量获得信息量: 每次测量获得1bit信息量,需三次测量可确定坏灯泡
自信息I是一个随机变量,不能作为信源总体的信息量。 定义:自信息量的数学期望为信源的平均信息量,即信 源的信息熵,数学表示为: 信息熵的单位取决于对数选取的底,r进制信息熵:
I(xi)=-logpi=log(1/pi)
收到某消息获得的信息量=收到此消息前关 于某事件发生的不确定性-收到此消息后关于 某事件发生的不确定性
即:收信者所获得的信息量应等于信息传输前 后不确定性的减少的量。
例2-1:设一条电线上串联8个灯泡,且损坏 的可能性为等概,若仅有一个坏灯泡,须获知 多少信息量才可确认?
2.2 离散信源的信息熵
一、信息量和熵
信息的度量应符合实际情况: 出现概率小的随机事件,不确定性大,信息量大; 出现概率大的随机事件,不确定性小,信息量小; 概率为1的确定事件,信息量为0。 香农定义的自信息量I(x):任意随机事件出现概率的对
数的负值表示自信息量。
§设随机事件xi的出现概率为pi,则:
且满足:
随机矢量:信源输出的消息是按一定概率选取的符号 序列。用N维随机矢量X描述: X=(x1,x2, ‥‥xN)
其中:N维随机矢量X也称为随机序列(过程)。 平稳随机序列:序列的统计性质与时间的推移无关。 二、信源分类 (1)根据随机序列X中每个随机变量xi的取值不同:
离散平稳信源:如语言文字、离散化平面图像 连续平稳信源:如语音信号、热噪声信号等
(2)信源发出的符号间彼此是否独立: 无记忆信源:随机矢量的各分量相互独立 有记忆信源:随机矢量的各分量不相互独立
表述有记忆信源比无记忆信源困难的多,实际中,信 源发出的符号往往只与前若干符号的依赖关系强,与 更前面的符号依赖关系弱,这类信源可用马尔可夫信 源表示。 不同统计特性的信源可用随机变量、随机矢量以及随 机过程描述其输出的消息。
• 条件熵≤无条件熵;条件较多的熵≤条件较少 的熵,所以:
离 散 平 稳 信 源 性 质(H1(X)<∞时): • 条件熵随N的增加是递减的; • 平均符号熵≥条件熵; • 平均符号熵HN(X)随N增加是递减的; • 极限熵
平均值:
联合熵、信息熵及条件熵的关系为:
=H(X2)+H(X1/X2)
根据熵的极值性可得:
表明某一变量的条件熵必小于或等于它的无条件熵。 还可得: 且X1、X2独立时,上式等号成立。 定义无条件熵和条件熵之差为互信息:
I(X1;X2)=H(X1)-H(X1/X2) ≥0 =H(X1)+H(X2)-H(X1X2)
2.3 离散平稳信源的熵
离散平稳信源:各维联合概率分布均与时间起点无关 的完全平稳信源称为离散平稳信源。
一、两个符号的熵和互信息 设两个随机变量X1和X2,单个符号数学模型为:
联合概率空间:
条件概率空间: 二个符号的数学模型: 联合熵:
联合熵(共熵):是联合空间X1X2上的每个元素对 X1X2的自信息量的概率加权平均值。共熵表示信源输 出长度为2的序列的平均不确定性,或所含的信息量。 条件熵:联合空间X1X2上的条件自信息量的概率加权
二、信息熵的基本性质
1、对称性:
此性质说明:熵的总体性。它只与随机变量的总体结 构有关,而不在于个别值的概率,甚至也不因随机变 量取值的不同而异。 2、非负性:
3、扩展性:
说明:概率很小的值的出现,给予接收者以较大的信 息,但在熵的计算中占的比重很小,这是熵的总体平 均性的一种体现。 4、确定性: