信源和信息熵
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 条件熵≤无条件熵;条件较多的熵≤条件较少 的熵,所以:
离 散 平 稳 信 源 性 质(H1(X)<∞时): • 条件熵随N的增加是递减的; • 平均符号熵≥条件熵; • 平均符号熵HN(X)随N增加是递减的; • 极限熵
(2)信源发出的符号间彼此是否独立: 无记忆信源:随机矢量的各分量相互独立 有记忆信源:随机矢量的各分量不相互独立
表述有记忆信源比无记忆信源困难的多,实际中,信 源发出的符号往往只与前若干符号的依赖关系强,与 更前面的符号依赖关系弱,这类信源可用马尔可夫信 源表示。 不同统计特性的信源可用随机变量、随机矢量以及随 机过程描述其输出的消息。
I(xi)=-logpi=log(1/pi)
收到某消息获得的信息量=收到此消息前关 于某事件发生的不确定性-收到此消息后关于 某事件发生的不确定性
即:收信者所获得的信息量应等于信息传输前 后不确定性的减少的量。
例2-1:设一条电线上串联8个灯泡,且损坏 的可能性为等概,若仅有一个坏灯泡,须获知 多少信息量才可确认?
2.2 离散信源的信息熵
一、信息量和熵
信息的度量应符合实际情况: 出现概率小的随机事件,不确定性大,信息量大; 出现概率大的随机事件,不确定性小,信息量小; 概率为1的确定事件,信息量为0。 香农定义的自信息量I(x):任意随机事件出现概率的对
数的负值表示自信息量。
§设随机事件xi的出现概率为pi,则:
平均值:
联合熵、信息熵及条件熵的关系为:
=H(X2)+H(X1/X2)
根据熵的极值性可得:
表明某一变量的条件熵必小于或等于它的无条件熵。 还可得: 且X1、X2独立时,上式等号成立。 定义无条件熵和条件熵之差为互信息:
I(X1;X2)=H(X1)-H(X1/X2) ≥0 =H(X1)+H(X2)-H(X1X2)
H(1,0)=H(0,1)=H(1,0,0, ‥)=‥=0 说明:从熵的不确定概念来说,确知信源的不确定度 应该为0。
5、可加性: 二个随机变量X和Y不独立时: H(XY)=H(X)+H(Y/X)=H(Y)+H(X/Y) 二个随机变量X和Y独立时: H(XY)=H(X)+H(Y) 6、极值性:
H(p1,p2, ‥,pq) ≤-∑pilogqi,当pi=1/q时,
且:I(X1;X2)=I(X2;X1)
注意:任何无源处理总是丢失信息的,至多保持原来 的信息,这是信息不可增性的一种表现。
二、离散平稳信源的极限熵 设信源输出一系列符号序列X1,X2, ‥XN 概率分布: 联合熵:
定义序列的平均符号熵=总和/序列长度,即:
• 平均符号熵就是信源符号序列中平均每个信 源符号所携带的信息量。
解:数学模型为:
且满足:
§离散信源:信源输出是单一符号的消息,其符号集 的取值是有限的或可数的。
一维离散信源数学模型就是离散型的概率空间:
且满足:
§连续信源:信源输出数据取值是连续的,但又是随 机
的,即可能出现的消息数是不可数的无
限
数学模型是连续型的概率空间: 值。
实数集(-∞,+∞)
X的概率 密度函数
且满足:
随机矢量:信源输出的消息是按一定概率选取的符号 序列。用N维随机矢量X描述: X=(x1,x2, ‥‥xN)
其中:N维随机矢量X也称为随机序列(过程)。 平稳随机序列:序列的统计性质与时间的推移无关。 二、信源分类 (1)根据随机序列X中每个随机变量xi的取值不同:
离散平稳信源:如语言文字、离散化平面图像 连续平稳信源:如语音信号、热噪声信号等
r进制信息熵与二进制信息熵的关系:
熵的物理含义: 信息熵H(x)是表示信源输出后,每个消息(或符号)所提 供的平均信息量;信息熵H(x)是表示信源输出前,信源 的平均不确定性;用信息熵H(x)来表征变量X的随机 性。 注意:信息熵是信源的平均不确定的描述。一般情况 下,它并不等于平均获得的信息量,获得的信息量是两 熵之差,并不是信息熵本身。
二、信息熵的基本性质
1、对称性:
此性质说明:熵的总体性。它只与随机变量的总体结 构有关,而不在于个别值的概率,甚至也不因随机变 量取值的不同而异。 2、非负性:
3、扩展性:
说明:概率很小的值的出现,给予接收者以较大的信 息,但在熵的计算中占的比重很小,这是熵的总体平 均性的一种体现。 4、确定性:
例2-1解:
测量前,P1(x)=1/8,存在不确定性: I(P1(x))=log8=3bit
第一次测量获得信息量: 第二次测量获得信息量: 第三次测量获得信息量: 每次测量获得1bit信息量,需三次测量可确定坏灯泡
自信息I是一个随机变量,不能作为信源总体的信息量。 定义:自信息量的数学期望为信源的平均信息量,即信 源的信息熵,数学表示为: 信息熵的单位取决于对数选取的底,r进制信息熵:
信源和信息熵
2.1 信源的数学模型及分类
通信系统模型及信息传输模型:
一、信源输出是单个符号的消息
例:扔一颗质地均匀的正方体骰子,研究其下落后, 朝上一面的点数。每次试验结果必然是1点、2点、3点、 4点、5点、6点中的某一个面朝上。每次试验只随机出 现其中一种消息,不可能出现这个集合以外的消息, 考察此事件信源的数学模型。
可见:所有概率分布pi所构成的熵,以等概时为最大, 称为最大离散熵定理。
7、上凸性: 熵函数具有严格的上凸性,它的极值必为最大值。 8、递增性:
其中: 此性质说明:熵增加了一项由于划分而产生的不确定性
量。
例2-2:运用熵函数的递增性,计算熵函数 H(1/3,1/3,1/6,1/6)的数值。
可见:源自文库函数的递增性也可称为递推性,表示n 个元素的信源熵可以递推成(n-1)个二元信 源的熵函数的加权和。可使多元信源的熵函数 计算简化成计算若干个二元信源的熵函数。
2.3 离散平稳信源的熵
离散平稳信源:各维联合概率分布均与时间起点无关 的完全平稳信源称为离散平稳信源。
一、两个符号的熵和互信息 设两个随机变量X1和X2,单个符号数学模型为:
联合概率空间:
条件概率空间: 二个符号的数学模型: 联合熵:
联合熵(共熵):是联合空间X1X2上的每个元素对 X1X2的自信息量的概率加权平均值。共熵表示信源输 出长度为2的序列的平均不确定性,或所含的信息量。 条件熵:联合空间X1X2上的条件自信息量的概率加权
离 散 平 稳 信 源 性 质(H1(X)<∞时): • 条件熵随N的增加是递减的; • 平均符号熵≥条件熵; • 平均符号熵HN(X)随N增加是递减的; • 极限熵
(2)信源发出的符号间彼此是否独立: 无记忆信源:随机矢量的各分量相互独立 有记忆信源:随机矢量的各分量不相互独立
表述有记忆信源比无记忆信源困难的多,实际中,信 源发出的符号往往只与前若干符号的依赖关系强,与 更前面的符号依赖关系弱,这类信源可用马尔可夫信 源表示。 不同统计特性的信源可用随机变量、随机矢量以及随 机过程描述其输出的消息。
I(xi)=-logpi=log(1/pi)
收到某消息获得的信息量=收到此消息前关 于某事件发生的不确定性-收到此消息后关于 某事件发生的不确定性
即:收信者所获得的信息量应等于信息传输前 后不确定性的减少的量。
例2-1:设一条电线上串联8个灯泡,且损坏 的可能性为等概,若仅有一个坏灯泡,须获知 多少信息量才可确认?
2.2 离散信源的信息熵
一、信息量和熵
信息的度量应符合实际情况: 出现概率小的随机事件,不确定性大,信息量大; 出现概率大的随机事件,不确定性小,信息量小; 概率为1的确定事件,信息量为0。 香农定义的自信息量I(x):任意随机事件出现概率的对
数的负值表示自信息量。
§设随机事件xi的出现概率为pi,则:
平均值:
联合熵、信息熵及条件熵的关系为:
=H(X2)+H(X1/X2)
根据熵的极值性可得:
表明某一变量的条件熵必小于或等于它的无条件熵。 还可得: 且X1、X2独立时,上式等号成立。 定义无条件熵和条件熵之差为互信息:
I(X1;X2)=H(X1)-H(X1/X2) ≥0 =H(X1)+H(X2)-H(X1X2)
H(1,0)=H(0,1)=H(1,0,0, ‥)=‥=0 说明:从熵的不确定概念来说,确知信源的不确定度 应该为0。
5、可加性: 二个随机变量X和Y不独立时: H(XY)=H(X)+H(Y/X)=H(Y)+H(X/Y) 二个随机变量X和Y独立时: H(XY)=H(X)+H(Y) 6、极值性:
H(p1,p2, ‥,pq) ≤-∑pilogqi,当pi=1/q时,
且:I(X1;X2)=I(X2;X1)
注意:任何无源处理总是丢失信息的,至多保持原来 的信息,这是信息不可增性的一种表现。
二、离散平稳信源的极限熵 设信源输出一系列符号序列X1,X2, ‥XN 概率分布: 联合熵:
定义序列的平均符号熵=总和/序列长度,即:
• 平均符号熵就是信源符号序列中平均每个信 源符号所携带的信息量。
解:数学模型为:
且满足:
§离散信源:信源输出是单一符号的消息,其符号集 的取值是有限的或可数的。
一维离散信源数学模型就是离散型的概率空间:
且满足:
§连续信源:信源输出数据取值是连续的,但又是随 机
的,即可能出现的消息数是不可数的无
限
数学模型是连续型的概率空间: 值。
实数集(-∞,+∞)
X的概率 密度函数
且满足:
随机矢量:信源输出的消息是按一定概率选取的符号 序列。用N维随机矢量X描述: X=(x1,x2, ‥‥xN)
其中:N维随机矢量X也称为随机序列(过程)。 平稳随机序列:序列的统计性质与时间的推移无关。 二、信源分类 (1)根据随机序列X中每个随机变量xi的取值不同:
离散平稳信源:如语言文字、离散化平面图像 连续平稳信源:如语音信号、热噪声信号等
r进制信息熵与二进制信息熵的关系:
熵的物理含义: 信息熵H(x)是表示信源输出后,每个消息(或符号)所提 供的平均信息量;信息熵H(x)是表示信源输出前,信源 的平均不确定性;用信息熵H(x)来表征变量X的随机 性。 注意:信息熵是信源的平均不确定的描述。一般情况 下,它并不等于平均获得的信息量,获得的信息量是两 熵之差,并不是信息熵本身。
二、信息熵的基本性质
1、对称性:
此性质说明:熵的总体性。它只与随机变量的总体结 构有关,而不在于个别值的概率,甚至也不因随机变 量取值的不同而异。 2、非负性:
3、扩展性:
说明:概率很小的值的出现,给予接收者以较大的信 息,但在熵的计算中占的比重很小,这是熵的总体平 均性的一种体现。 4、确定性:
例2-1解:
测量前,P1(x)=1/8,存在不确定性: I(P1(x))=log8=3bit
第一次测量获得信息量: 第二次测量获得信息量: 第三次测量获得信息量: 每次测量获得1bit信息量,需三次测量可确定坏灯泡
自信息I是一个随机变量,不能作为信源总体的信息量。 定义:自信息量的数学期望为信源的平均信息量,即信 源的信息熵,数学表示为: 信息熵的单位取决于对数选取的底,r进制信息熵:
信源和信息熵
2.1 信源的数学模型及分类
通信系统模型及信息传输模型:
一、信源输出是单个符号的消息
例:扔一颗质地均匀的正方体骰子,研究其下落后, 朝上一面的点数。每次试验结果必然是1点、2点、3点、 4点、5点、6点中的某一个面朝上。每次试验只随机出 现其中一种消息,不可能出现这个集合以外的消息, 考察此事件信源的数学模型。
可见:所有概率分布pi所构成的熵,以等概时为最大, 称为最大离散熵定理。
7、上凸性: 熵函数具有严格的上凸性,它的极值必为最大值。 8、递增性:
其中: 此性质说明:熵增加了一项由于划分而产生的不确定性
量。
例2-2:运用熵函数的递增性,计算熵函数 H(1/3,1/3,1/6,1/6)的数值。
可见:源自文库函数的递增性也可称为递推性,表示n 个元素的信源熵可以递推成(n-1)个二元信 源的熵函数的加权和。可使多元信源的熵函数 计算简化成计算若干个二元信源的熵函数。
2.3 离散平稳信源的熵
离散平稳信源:各维联合概率分布均与时间起点无关 的完全平稳信源称为离散平稳信源。
一、两个符号的熵和互信息 设两个随机变量X1和X2,单个符号数学模型为:
联合概率空间:
条件概率空间: 二个符号的数学模型: 联合熵:
联合熵(共熵):是联合空间X1X2上的每个元素对 X1X2的自信息量的概率加权平均值。共熵表示信源输 出长度为2的序列的平均不确定性,或所含的信息量。 条件熵:联合空间X1X2上的条件自信息量的概率加权