平均变化率

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省盱眙中学高二数学组张勇

平均变化率

【创设情境】

1.同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢,这种现象我们如何去解释

呢!

2.请观察教材中图,随着时间的推移,气温的变化趋势;从图中我们可以看出:在整个区间[1,32]这个31天内,气温仅仅上升了15.1;0问题1:平均每小时上升了多少度?而在区间[32,34]这两天内,气温就上升了14.80,

问题2:平均每小时上升了多少度?

我们把这个比值叫做在给定的区间上的平均变化率;

虽然A,B之间的温差与点B,C之间的温差几乎不同,但它们的平均变化率却相差很大;因此我们可以利用平均变化率的大小来刻画变量平均变化的趋势,快慢程度;

问题3:观察这个比值与这两点连线斜率之间有什么关系?

【探索研究】

1、平均变化率:

f(x)?f(x)12上的平均变化率为[x一般地,函数f(x)在区间,x]21x?x12点拨:?xxx??○x?,1本质:如果函数的自变量的“增量”为相应的函数值的“增量”为,且12f(x)?f(x)y?21?)f(x)f?y?(x?xx?xx?x)(fxy?到,则函数,

从的平均变化率为122121.

江苏省盱眙中学高二数学组张勇

○;连线的斜率(割线的斜率)2几何意义:两点)) )),(x,f(x(x,f(x1122○,或说在某个区平均变化率反映了在函数在某个区间上平均变化的趋势(变化快慢)3间上曲线陡峭的程度;

课件展示平均变化率;

【例题评析】

2+2x,分别计算f(x)在下列区间上的平均变化率1:已知函数f(x)=x; 例1.[1,2] 2. [3,4] 3. [-1,1]

?y; ,求2+△y))及邻近一点B(1+△x,的图象上取一点变题1:在曲线y=x2+1A(1,2

?x f(x)=2x+1,

:已知函变题2 的平均变化率;-1],[0,5]上函数f(x)1.分别计算在区间[-3,上的平均变化率的特点;探求一次函数y=kx+b在区间[m,n]2.1x?)f(x?y内的平均变化率在区间[1,1+]变式3:

求函数x反思:曲线上两点的连线(割线)的斜率即为函数f(x)在区间[x,x]上的BA f(x)?f(x)AB平

均变化率;x?x AB12:自由落体运动的物体的位移s(单位:s)与时间t(单位:sgt(g是例3)之间的关系是:s(t)=2重力加速度),求该物体在时间段[t,t]内的平均速度;21

【反馈练习】

???????1.0,,上的平均变化率,并比较大小;在区间y=sinx 和试比较正弦函数???? 362????23ax)?f(x f(x)在区间[-2,-1]则在区间[1,2]上的平均变化率为上的平均变化2.练习:

已知函数,率为( )

?23? D.-3 C.-2 B. A.

江苏省盱眙中学高二数学组张勇

3.在高台跳水运动中,运动员相对于水面高度与起跳的时间t的函数关系为

2(a?0,b??c?bt?at0)h(t),则( )

bbbbbb)?h(0)h()?h()h()?h(0)h()?h()h(aa2a2a2a2a??A. B.

bbbbbb???0?0

aaa22aa2a2b(0)?hh()b a?t0?0?这段时间内处于静止状态 D.C. 运动员在b a0?a4.A、B两船从同一码头同时出发,A船向北,B船向东,若A 船的速度为30km/h,B船的速度为40km/h,设时间为t,则在区间[t,t]上,A,B两船间距离变化的平均速度为_______

21【课堂小结】

1、平均变化率的概念;

如何求平均变化率;、 2 3、平均变化率的几何意义;

相关文档
最新文档