最新人教版初中九年级上册数学《配方法》教案
新人教版九年级数学上册:《配方法》教学案
配方法课题§2.2.3 配方法(三)教学目标(一)教学知识点1.利用方程解决实际问题.2.训练用配方法解题的技能.(二)能力训练要求1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.2.能根据具体问题的实际意义检验结果的合理性.3.进一步训练利用配方法解题的技能.(三)情感与价值观要求通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.教学重点利用方程解决实际问题教学难点对于开放性问题的解决,即如何设计方案教学方法分组讨论法教具准备投影片二张第一张:练习(记作投影片§2.2.3 A)第二张:实际问题(记作投影片§2.2.3 B)教学过程Ⅰ.巧设情景问题,引入新课[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 A)用配方法解下列一元二次方程:(1)x 2+6x+8=0;(2)x 2-8x+15=0;(3)x 2-3x-7=0;(4)3x 2-8x+4=0;(5)6x 2-11x-10=0;(6)2x 2+21x-11=0.[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6).[师]各组做完了没有?[生齐声]做完了.[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x 1=-2,x 2=-4.解方程(3)时,在配方的时候,他配错了,即x 2-3x-7=0,x 2-3x =7,x 2-3x+32=7+32 应为(-23)2. [师]很好,这里一次项-3x 的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?[生乙]方程(3)的解为x 1=2373,23732-=+x . [师]好,继续.[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x 1=25,x 2=-23. [生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即方程(2)的解:x 1=5,x 2=3,方程(4)的解:x 1=2,x 2=23,方程(6)的解:x l =21,x 2=-11. [师]利用配方法求解方程时,一定要注意:①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1. 另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.这节课我们就来解决一个实际问题.Ⅱ.讲授新课[师]看大屏幕.(出示投影片§ 2.2.3B)在一块长16 m ,宽12 m 的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.[生甲]我们组的设计方案如右图所示,其中花园四周是小路,它们的宽度都相等.这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m 或12 m .[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.[生乙]甲组的设计符合要求.我们可以假设小路的宽度为x m ,则根据题意,可得方程 (16-2x)(12-2x)=21×16×12, 也就是x 2-14x-24=0.然后利用配方法来求解这个方程,即x 2-14x+24=0,x 2-14x =-24,x 2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.∴x 1=12.x 2=2.因此,小路的宽度为2 m 或12 m .由以上所述知:甲组的设计方案符合要求.[生丙]不对,因为荒地的宽度是12 m ,所以小路的宽度绝对不能为12 m .因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m .[师]大家来作判断,谁说的合乎实际?[生齐声]丙同学说得有理.[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.[生丁]我们组的设计方案如右图.我们是以矩形的四个顶点为圆心,以约5.5 m 长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m ,根据题意,可得πx 2=21×12×16. 解得x=± 96≈±5.5.因为半径为正数,所以x =-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.[生戊]由丁同学组的启发,我又设计了一个方案,如右图.以矩形的对角线的交点为圆心,以5.5 m 长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?[生庚]我们组设计的方案如右图.顺次连结矩形各边的中点,所得到的四边形即是作为花园的场地.因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m 2(即21×6×8),所以四个直角三角形的面积之和为96 m 2,则剩下的面积也正好是96 m 2,即等于矩形面积的一半.因此这个设计方案也符合要求.[生辛]我们组设计的方案如下图.图中的阴影部分可作为建花园的场所.因为阴影部分的面积为96 m 2,正好是矩形面积的一半,所以这个设计也符合要求.[生丑]我们组设计的方案如右图.图中的阴影部分可作为建花园的场地.经计算,它符合要求.[生癸]我们组的设计方案如下图.图中的阴影部分是作为建花园的场地.[师]噢,同学们能帮癸组求出图中的x 吗?[生]能,根据题意,可得方程2×21 (16-x)(12-x) =21×16×12, 即x 2-28x+96=0,x 2-28x =-96,x 2-28x+142=-96+142,(x-14)2=100,x-14=±10.∴x 1=24,x 2=4.因为矩形的长为16 m ,所以x 1=24不符合题意.因此图中的x 只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 接下来,我们再来看一个设计方案.Ⅲ.课堂练习(一)课本P 55随堂练习 11.小颖的设计方案如图所示,你能帮助她求出图中的x 吗?解:根据题意,得 (16-x)(12-x)=21×16×12, 即x 2-28x+96=0.解这个方程,得x 1=4,x 2=24(舍去).所以x=4.(二)看课本P 53~P 54,然后小结.Ⅳ.课时小结本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.Ⅴ.课后作业(一)课本P 55习题2.5 1、2(二)1.预习内容:P 56~P 572.预习提纲如何推导一元二次方程的求根公式.Ⅵ.活动与探究汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S 甲(米)与车速x(千米/时)之间有下列关系:S 甲=0.1x+0.01x 2;乙种车的刹车距离S 乙(米)与车速x(千米/时)的关系如下图所示.请你就两车的速度方面分析相碰的原因.[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连. 由甲车的刹车距离和车速的关系式S 甲=0.1x+0.01x 2,又S 甲=12,从而可求得甲 车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关系,因而可设为x 乙=kx ,又其过点(60,15),从而得到k 值,由10<s 乙<12,可得乙车车速,进而可确定事故的原因.[结果]解:对于甲车:∵甲车刹车距离为12米,根据题意,得12=0.1x+0.01x 2.解这个方程,得x 1=30或x 2=-40(舍去),即甲车的车速为30千米/时,不超过限速.对于乙车:由图象知,其关系是一个正比例函数,设此函数为x 乙=kx∵经过点(60,15),∴15=60k , ∴k =41,即此函数解析式为S 乙=41x 根据题意,得10<41x<12. ∴40<x<48.∴乙车超过限速40千米/时的规定.∴就速度方面分析,两车相碰的原因在于乙车超速行驶.板书设计§2.2.3 配方法(三) 一、实际问题的设计方案:设计方案一:设计方案二:设计方案三:设计方案四:二、课堂练习三、课时小结四、课后作业。
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计一. 教材分析人教版九年级数学上册《解一元二次方程—配方法》这一节,主要让学生掌握利用配方法解一元二次方程的方法。
教材通过引入具体的一元二次方程,引导学生发现解方程的规律,从而总结出配方法解一元二次方程的一般步骤。
教材内容由浅入深,逐步引导学生掌握解题技巧,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程有了初步的了解。
但在解一元二次方程方面,部分学生可能还停留在试错阶段,没有形成系统的解题方法。
因此,在教学过程中,需要关注学生的个体差异,引导他们发现解题规律,提高解题效率。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和方法。
2.过程与方法:通过观察、分析、归纳,培养学生发现解题规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:配方法解一元二次方程的步骤及应用。
2.难点:如何引导学生发现配方法的解题规律。
五. 教学方法1.引导发现法:通过设置问题,引导学生观察、分析、归纳,发现解题规律。
2.案例教学法:以具体的一元二次方程为例,演示配方法解题过程。
3.小组合作学习:鼓励学生分组讨论,共同探索解题方法。
六. 教学准备1.准备相关的一元二次方程案例。
2.制作课件,展示解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的一元二次方程,引导学生回顾已知的解题方法,为新课的学习做好铺垫。
2.呈现(15分钟)展示一个具体的一元二次方程,让学生尝试利用已知的解题方法进行求解。
在学生解题过程中,教师引导学生观察、分析,发现解题规律。
3.操练(15分钟)让学生分组合作,运用配方法解一元二次方程。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)呈现一组类似的一元二次方程,让学生独立运用配方法进行解答。
九年级数学上册 21.2.1 配方法教案 (新版)新人教版
21.2.1配方法一、教学目标1、掌握配方法的推导过程,并能够熟练地进行配方.2、用配方法解数字系数的一元二次方程.3、在配方法的应用过程中体会 “转化”的思想,掌握一些转化的技能.二、教学设想结合旧的知识展开,重点讨论配方法解一元二次方程。
教学中,应注意循序渐进地让学生掌握用配方法解数字系数的一元二次方程的做法,并且理解配方是为了配成完全平方的形式,再利用直接开平方的方法将一个一元二次方程转化为两个一元一次方程.三、教材分析本课时的教材在第一课时的基础上,通过对直接开平方的方法的理解,进一步引出用配方法解一元二次方程,然后再引导学生得出的这个方程的具体的解。
以直接开平方法为铺垫,把解一元二次方程转化为用配方法,也是为后面学习其它一元二次方程的解法作好准备。
四、重点难点重难点:使学生掌握配方法,解一元二次方程.把一元二次方程转化为q p x =+2)(.(q ≥0)五、教学方法引导学习法六、教具准备多媒体课件七、教学过程【引入】1.解下列方程,并说明解法的依据:(1)2321x -= (2) ()2210x --= 通过复习提问,指出这两个方程都可以转化为以下两个类型: ()()()2200x b b x a b b =≥-=≥和根据平方根的意义,均可用“直接开平方法”来解,如果b < 0,方程就没有实数解。
思考:利用直接开平方法解一元二次方程的特征是什么?形如(1)x 2=b(b 0≥),(2)(x+a )2=b (b 0≥)就可利用直接开平方法。
它的特征是:左边是一个关于未知数的完全平方式;右边是一个非负数。
且不含一次项。
符合这个特征的方程,就可利用直接开平方法。
2.复习完全平方公式:(a ±b )2=a 2±2ab+b 2(1)x 2+6x+_____=(x+3)2 (2)x 2+8x+_____=(x+___)2(3)x 2-16x+_____=( )2(4)x 2-5x+______=_________(5)x 2+px+______=_________3.要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽应各为多少?分 析:设场地宽xm ,长(x+6)m ,根据矩形面积为16m 2,列方程,x (x+6)=16即x 2+6x-16=0.【互动】怎样解方程x 2+6x-16=0?引导考虑用直接开方法解一元二次方程.(小组探索)移项: 1662=+x x配方: 916962+=++x x (方程两边同时加上一次项系数一半的平方) 写成完全平方式: 25)3(2=+x采用直开法降次解题: 53±=+x解一元一次方程: 8,221-==x x像上边那样,通过配成完全平方的形式来解一元二次方程的方法,叫做配方法.强调:无论是直接开平方法还是配方法,其本质都是先降次,化成一元一次方程解决问题.例题1:解下列方程:(1) 0182=+-x x ; (2)x x 3122=+; (3) 04632=+-x x .分 析:能否经过适当变形,将它们转化为(x+a )2=b (b 0≥)的形式,应用直接开方法求解?解(1)原方程化为1422-=⨯-x x (移项) 16116422+-=+⨯-x x (方程两边同时加上16)15)4(2=-x (化为完全平方的形式)由此得: 154±=-x 154;15421-=+=x x(2)原方程化为_____________________ (移项)_____________________ (方程两边同时加上_____)_____________________, (化为完全平方的形式)由此得: _____________________, 21;121==x x (3) 原方程化为_____________________ (移项)_____________________ (方程两边同时加上_____)_____________________, (化为完全平方的形式)由此得: _____________________,无解.【练习】1.P39页:练习题第1题:填空。
人教版数学九年级上册21.2.2《配方法(1)》教学设计
人教版数学九年级上册21.2.2《配方法(1)》教学设计一. 教材分析《配方法(1)》是人教版数学九年级上册第21.2.2节的内容,主要讲述了配方法的基本概念和应用。
配方法是一种解决二次方程的有效方法,通过将二次方程转化为完全平方形式,从而简化计算和求解过程。
本节内容主要包括配方法的定义、配方法的步骤以及配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但学生在解决实际问题时,往往对这些方法的应用范围和条件把握不清,不能灵活运用。
因此,在教学本节内容时,需要帮助学生巩固已有的知识,并通过实例讲解和练习,让学生理解和掌握配方法的特点和应用。
三. 教学目标1.知识与技能:使学生理解配方法的基本概念和步骤,能够运用配方法解决简单的实际问题。
2.过程与方法:通过实例分析和练习,培养学生运用配方法解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.讲授法:通过讲解配方法的基本概念和步骤,使学生掌握配方法的理论知识。
2.案例分析法:通过实例分析,让学生了解配方法在解决实际问题中的应用。
3.练习法:通过课堂练习和课后作业,巩固学生对配方法的理解和应用。
4.小组讨论法:鼓励学生分组讨论,培养学生的团队合作精神和数学思维能力。
六. 教学准备1.教材和教辅:准备人教版数学九年级上册教材和相关教辅资料。
2.课件和幻灯片:制作课件和幻灯片,用于课堂讲解和展示。
3.练习题和答案:准备一些配方法的练习题,并准备相应的答案。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,例如:“某数加上其倒数的和为2,求这个数。
”让学生尝试解决此问题,引发学生对配方法的思考。
2.呈现(15分钟)讲解配方法的基本概念和步骤,并举例说明配方法在解决实际问题中的应用。
人教版九年级数学上册:21.2.1配方法(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“配方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
对于难点(2),指导学生如何处理二次项系数不为1的情况,如方程2x^2 + 4x - 1 = 0,需要先将系数化为1,再进行配方。
对于难点(3),通过实际例题,如“一个长方形的长比宽多3厘米,面积为18平方厘米,求长和宽”,引导学生如何构建方程并配方求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配方法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一元二次方程的情况?”(如面积计算、速度问题等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索配方法的奥秘。
2.培养学生数学建模和直观想象的核心素养,使学生能够运用配方方法解决实际问题,并培养从具体到抽象的数学思维能力;
3.培养学生运算能力和数据分析的核心素养,通过配方练习,提高学生的运算速度和准确性,培养学生对数据敏感度和分析能力;
4.培养学生团队合作和表达交流的核心素养,让学生在小组讨论和分享中,加深对配方方法的理解,提高数学表达和交流能力。
-配方步骤的应用:在具体操作过程中,学生可能会在系数化为1或加平方项时出错,这是配方的难点。
-配方在实际问题中的应用:如何从实际问题中抽象出一元二次方程,并将其配方求解,是学生需要克服的难点。
人教版九年级数学上册:21.2.1 配方法 教学设计1
人教版九年级数学上册:21.2.1 配方法教学设计1一. 教材分析人教版九年级数学上册21.2.1配方法是本册的一个重要内容。
配方法是解决一元二次方程的一种常用方法,它可以帮助学生更好地理解一元二次方程的解法,并且为后续的二次函数、不等式等内容的学习打下基础。
本节课通过配方法的学习,使学生掌握一元二次方程的解法,提高他们解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程、二元一次方程组等知识,具备了一定的数学基础。
但学生在解决实际问题时,往往对一元二次方程的解法感到困惑。
因此,在教学过程中,要注重引导学生理解配方法的原理,并通过大量的练习让学生熟练运用配方法解决实际问题。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和技巧。
2.过程与方法:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极向上的精神。
四. 教学重难点1.重点:配方法解一元二次方程的基本步骤和技巧。
2.难点:如何引导学生理解配方法的原理,并熟练运用配方法解决实际问题。
五. 教学方法1.引导法:教师引导学生自主学习,发现配方法的原理和步骤。
2.讲解法:教师通过讲解示例,让学生理解配方法的应用。
3.练习法:学生通过大量练习,巩固配方法解一元二次方程的能力。
4.合作交流法:学生分组讨论,分享解题心得,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示配方法解题的过程和步骤。
2.练习题:准备一定数量的练习题,让学生在课堂上进行练习。
3.小组讨论:提前分组,便于学生在课堂上进行合作交流。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程、二元一次方程组的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的实例,引导学生尝试运用已有的知识解决。
学生在解决过程中,发现一元二次方程的解法存在困难。
人教版九年级数学上册21.2.1:配方法(第一课时)教学设计
(2)某商店举行打折促销活动,原价为2000元,打八折后价格为1600元,求打折后的价格。
3.提高拓展题:布置一些提高拓展题,让学生在掌握配方法的基础上,进一步提高解题能力。例如:
(1)用配方法求解下列方程:x^2-4x+4=0、(x-3)^2=16。
3.教师引导:在学生尝试解决问题后,教师引导学生总结求解一元二次方程的方法,并引出本节课要学习的配方法。
(二)讲授新知
1.配方法的原理:讲解配方法的基本原理,即如何将一元二次方程转化为完全平方公式。
2.配方法的步骤:详细讲解配方法的步骤,包括移项、配方、开平方、求解等。
3.例题讲解:结合典型例题,分步骤演示配方法的运用,让学生跟随教师一起完成配方法的过程。
(2)设计一些变形的一元二次方程,让学生尝试使用配方法求解,培养学生的应变能力和举一反三的能力。
5.总结反馈,查漏补缺:在课堂结束时,组织学生总结本节课所学内容,分享学习心得。教师针对学生的反馈,及时了解学生的学习情况,对学生的疑难问题进行解答,查漏补缺,提高教学效果。
6.课后作业,巩固成果:布置适量的课后作业,让学生在课后进一步巩固所学知识,提高解题能力。同时,鼓励学生进行自主探究,发现更多数学问题,培养学生的学习兴趣和自主学习能力。
2.理解配方法在实际问题中的应用,能够将实际问题抽象成一元二次方程并求解。
3.培养学生运用配方法解决数学问题的能力,提高学生的数学思维品质。
(二)教学难点
1.配方法的理解:学生需要理解配方法的基本原理,即如何将一元二次方程转化为完全平方公式,这对学生的抽象思维能力有一定要求。
人教初中数学九上 《配方法 》教案 (公开课获奖)
21.2.1 配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次〞,转化为两个一元一次方程. 教学目标理解一元二次方程“降次〞──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a 〔ex+f 〕2+c=0型的一元二次方程. 重难点关键1.重点:运用开平方法解形如〔x+m 〕2=n 〔n ≥0〕的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x 2=n ,知识迁移到根据平方根的意义解形如〔x+m 〕2=n 〔n ≥0〕的方程. 教学过程一、复习引入学生活动:请同学们完成以下各题 问题1.填空〔1〕x 2-8x+______=〔x-______〕2;〔2〕9x 2+12x+_____=〔3x+_____〕2;〔3〕x 2+px+_____=〔x+____〕2.问题1:根据完全平方公式可得:〔1〕16 4;〔2〕4 2;〔3〕〔2p 〕2 2p. 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x=±3,如果x 换元为2t+1,即〔2t+1〕2=9,能否也用直接开平方的方法求解呢? 〔学生分组讨论〕老师点评:答复是肯定的,把2t+1变为上面的x ,那么2t+1=±3 即2t+1=3,2t+1=-3方程的两根为t 1=1,t 2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为〔x+2〕2=1.解:(2)由,得:〔x+3〕2=2直接开平方,得:x+3=即,所以,方程的两根x 1x 2例2.市政府方案2年内将人均住房面积由现在的10m 2提高到,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10〔1+x 〕;二年后人均住房面积就应该是10〔1+x 〕+10〔1+x 〕x=10〔1+x 〕2解:设每年人均住房面积增长率为x ,那么:10〔1+x 〕2〔1+x 〕2直接开平方,得1+x=±所以,方程的两根是x 1=0.2=20%,x 2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.〔学生小结〕老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次〞,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想〞.三、稳固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是〔1+x〕,三月份的营业额是在二月份的根底上再增长的,应是〔1+x〕2.解:设该公司二、三月份营业额平均增长率为x.那么1+〔1+x〕+〔1+x〕2把〔1+x〕当成一个数,配方得:〔1+x+12〕2=2.56,即〔x+32〕2=2.56x+32=±1.6,即x+32=1.6,x+32方程的根为x1=10%,x2因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p〔p≥0〕,那么x=±p转化为应用直接开平方法解形如〔mx+n〕2=p〔p≥0〕,那么mx+n=±p,到达降次转化之目的.假设p<0那么方程无解六、布置作业1.教材复习稳固1、2.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b a a b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩D CA B所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)D CABDC A B答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,D C A B12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的E DC A B P方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
新人教版九年级数学上册:《配方法》教案
§2.2 配方法课时安排3课时从容说课配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.本节的重点、难点是配方法.根据课程的特点,以及学生的认知结构特点,本节内容分三课时.在教学时,首先从前面两节课的实例引入求精确解.因为我们已经能解形如(x+a)2=b(b ≥0)的方程,所以想到要求一个一元二次方程的精确解时,是否可把方程转化为已经能解的方程,这时引入了一元二次方程的解法——配方法.配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征.教学方法主要是学生自主探索、发现的方法.第三课时课题§2.2.1 配方法(一)教学目标(一)教学知识点1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.(二)能力训练要求1.会用开平方法解形如(x+m)2=n(n≥0)的方程;理解配方法.2.体会转化的数学思想方法.3.能根据具体问题的实际意义检验结果的合理性.(三)情感与价值观要求通过师生的共同活动,学生的进一步操作来增强其数学应用意识和能力.教学重点利用配方法解一元二次方程教学难点把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.教学方法讲练结合法教具准备投影片六张:第一张:问题(记作投影片§2.2.1 A)第二张:议一议(记作投影片§ 2.2.1 B)—第三张:议一议(记作投影片§ 2.2.1 C)第四张:想一想(记作投影片§2.2.1 D)第五张:做一做(记作投影片§2.2.1 E)第六张:例题(记作投影片§2.2.1 F)教学过程Ⅰ.创设现实情景,引入新课[师]前面我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质?[生甲]如果一个数的平方等于a,那么这个数就叫做a的平方根。
人教版数学九年级上册22.2.2《配方法》教案1
人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。
人教版数学九年级上册教案21.2.1《配方法》
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
人教版数学九年级上册21.2.2《配方法(2)》教学设计
人教版数学九年级上册21.2.2《配方法(2)》教学设计一. 教材分析《配方法(2)》是人教版数学九年级上册第21章第二节的内容,这一节主要介绍了配方法的进一步应用。
通过前面的学习,学生已经掌握了配方法的基本概念和步骤,本节内容则进一步引导学生运用配方法解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于配方法的基本概念和步骤有一定的了解。
但是,学生在运用配方法解决实际问题时,可能会遇到一些困难,如不知道如何选择合适的配方法,或者在计算过程中出现错误。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行指导和纠正。
三. 教学目标1.知识与技能:使学生掌握配方法的进一步应用,能够灵活运用配方法解决实际问题。
2.过程与方法:通过实例分析,培养学生运用配方法解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.重点:配方法的进一步应用。
2.难点:如何选择合适的配方法,以及在计算过程中避免错误。
五. 教学方法1.实例分析法:通过具体的例子,让学生了解配方法的应用。
2.讨论法:引导学生分组讨论,共同解决问题。
3.练习法:让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示配方法的应用实例。
2.练习题:准备一些配方法的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,让学生思考如何运用配方法解决。
例如,一个长方形的长是10cm,宽是8cm,求这个长方形的对角线长度。
2.呈现(10分钟)教师展示课件,呈现几个配方法的实例,让学生观察和思考。
同时,教师引导学生回顾配方法的基本步骤,巩固所学知识。
3.操练(10分钟)教师让学生分组进行讨论,每组选择一个实例,尝试运用配方法解决问题。
教师在旁边进行指导,帮助学生解决问题。
4.巩固(10分钟)教师选取几组学生的解题过程,进行讲解和分析,指出其中的优点和不足。
九年级数学上册《配方法》教案、教学设计
1.通过导入实际问题,激发学生对配方法的学习兴趣,引导学生主动探究配方法的应用。
2.采用讲解、示范、讨论等教学方法,帮助学生掌握配方法的步骤和要领。
3.设计丰富的例题和练习题,让学生在实际操作中巩固所学知识,提高解题能力。
4.引导学生总结配方法的使用规律,培养学生的抽象思维和归纳能力。
难点:引导学生从实际问题中抽象出一元二次方程,并运用配方法进行求解。
3.重点:通过小组讨论,培养学生的合作意识和团队协作能力。
难点:引导学生学会倾听、表达、交流,形成良好的讨论氛围,提高讨论效果。
(二)教学设想
1.针对重点和难点,采用以下教学策略:
a.讲解与示范:以生动的语言和具体的例题,阐述配方法的原理和应用,让学生在模仿中掌握配方法。
3.引入新课:在学生尝试解决问题的基础上,引入配方法的概念,告诉学生今天我们将学习一种解决这类问题的方法——配方法。
(二)讲授新知
1.配方法的定义:介绍配方法的概念,即通过添加和减去同一个数,使一元二次方程的左边成为一个完全平方公式,从而求解方程。
2.配方法的步骤:
a.将一元二次方程写成标准形式:ax^2 + bx + c = 0。
b.选择一道实际问题时,运用配方法求解,并将解题过程和答案写在作业本上。
c.总结配方法的步骤和要领,以书面形式提交。
2.选做题:
a.完成课后拓展题:根据已学的配方法,尝试解决更复杂的一元二次方程,如含参方程、分式方程等。
b.针对课堂所学,设计一道与实际生活相关的一元二次方程问题,并运用配方法求解。
3.小组合作作业:
b.变式练习:设计不同类型的练习题,让学生在解题过程中灵活运用配方法,巩固所学知识。
人教版初三数学上册《配方法》教学设计
《配方法》教学设计一、授课内容:21.2.1 配方法(2)二、教学目标:1.知识技能:掌握配方法,能解相应类型的方程;2.数学思考:通过配方法解一元二次方程的过程,体会类比的方法和问题转化的数学思想;3.解决问题:能解相应的一元二次方程,提高学生相应的计算能力;4.情感态度:通过实际问题的解决,让学生体验数学与生活的联系,感受探索数学的乐趣.三、教学重、难点1.重点:配方法解一元二次方程;2.难点:实际问题分析中一元二次方程的建立.四、教具准备:多媒体课件五、教学过程:(一)复习引入用直接开平方法解下列方程:2(1)81x=2x-+=(2)(2)202-+=(3)213x x(二)探索新知问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?解:设场地宽xm,长(x+6)m,根据矩形面积为16m2列方程x(x+6)=16,即x2+6x-16=0.根据完全平方公式:9是一次项系数6一半的平方,加9正好与x2+6x能够配成一个完全平方式: x2 + 6x + 9= ( x + 3 )2,加其它数不行!通过配成完全平方形式来解一元二次方程的方法,叫做配方法.基础练习二次项系数为1时,加一次项系数的一半的平方即可凑成完全平方式.例2.解下列关于x的方程(1)x2+2x-35=0 (2)2x2-4x-1=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=±6x-1=6,x-1=-6x1=7,x2=-5可以,验证x1=7,x2=-5都是x2+2x-35=0的两根.(2)x2-2x-12=0 x2-2x=12x2-2x+12=12+1 (x-1)2=32x-1=±2x-1=2x-1=-2x1x2可以验证:x1x2(三)巩固练习教材P8讨论改为课堂练习,并说明理由.教材P9练习1 2.(1)、(2).六、课堂知识小结:(学生活动,老师点评)本节课要掌握:1.用配方法解一元二次方程;2.会建立一元二次方程解简单的实际问题.七、作业:1.作业本:课本P17,习题21.2 第2、3题;2.质量监测:P8-P9.八、课后反思:。
最新人教版九年级数学上册《配方法》优质教案
第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x2-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x2-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m +17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m -4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.教师寄语同学们,生活让人快乐,学习让人更快乐。
初中九年级数学 《配方法》教案
《配方法》教案教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程回顾与复习1:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.用配方法解一元二次方程的方法的助手:平方根的意义:如果x2=a,那么x=±a.完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2回顾与复习2:用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.随堂练习:用配方法解下列方程:1.x 2-2=02.x 2+4x =23.3x 2+8x -3=0这个方程与前2个方程不一样的是二次项系数不是1,而是3.基本思想是:如果能转化成前2个方程的形式,则方程即可解决.你想到了什么办法?例、解方程:3x 2+8x -3=0解:3x 2+8x -3=0x 2+38x -1=0 1.化1:把二次项系数化为1; x 2+38x =1 2.移项:把常数项移到方程的右边; x 2+38x +(34)2=1+(34)2 3.配方:方程两边都加上一次项系数绝对值一半的平方;(x +34)2=(35)2 4.变形:方程左边分解因式,右边合并同类项; x +34=±35 5.开方:根据平方根的意义,方程两边开平方; x +34=35 或 x +34=-35 6.求解:解一元一次方程; 所以x 1==31, x 2=-3 7.定解:写出原方程的解. 心动不如行动:用配方法解下列方程1.3x 2-9x +2=02.2x 2+6=7x做一做:一个小球以15m /s 的初速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系:h =15t -5t 2,小球何时能达到10m 高?解:根据题意,得:15t -5t 2=10即t 2-3t =-2t 2-3t +(23)2=-2+(23)2 (t -23)2=41 即t -23=21 或t -23=-21 所以t 1=2, t 2=1答:在1s 时,小球达到10m ;至最高点后下落,在2s 时其高度又为10m .小结与拓展本节复习了哪些旧知识呢?继续请两个“老朋友”助阵和加深对“配方法”的理解运用:平方根的意义:如果x 2=a ,那么x =±a .完全平方式:式子 a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a ±b )2本节课又学会了哪些新知识呢?用配方法解二次项系数不是1的一元二次方程的步骤:化1:把二次项系数化为1;移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.用一元二次方程这个模型来解答或解决生活中的一些问题(即列一元二次方程解应用题).。
人教版数学九年级上册21.2.2《配方法(2)》教案
人教版数学九年级上册21.2.2《配方法(2)》教案一. 教材分析《配方法(2)》是人教版数学九年级上册第21章第二节的一部分,主要介绍了配方法的进一步应用。
通过本节课的学习,学生能够掌握配方法的步骤和技巧,并能运用配方法解决实际问题。
本节课的内容与生活实际紧密相连,有助于培养学生的数学应用意识。
二. 学情分析九年级的学生已经掌握了配方法的基本概念和步骤,但部分学生在运用配方法解决实际问题时,仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生巩固已学知识,提高学生运用配方法解决实际问题的能力。
三. 教学目标1.知识与技能:掌握配方法的步骤和技巧,能够运用配方法解决实际问题。
2.过程与方法:通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生运用数学知识解决实际问题的意识。
四. 教学重难点1.配方法的步骤和技巧。
2.运用配方法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的合作意识和解决问题的能力。
3.引导发现法:教师引导学生发现配方法的步骤和技巧,提高学生的自主学习能力。
六. 教学准备1.教学课件:制作课件,展示配方法的过程和实例。
2.练习题:准备一些配方法的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入课题,如:“小明家有一个长方形菜地,长为8米,宽为6米,他想将菜地改为正方形,请问如何改动?”引发学生的思考,激发学习兴趣。
2.呈现(10分钟)展示配方法的过程,引导学生发现配方法的步骤和技巧。
步骤1:将原式写成完全平方的形式。
步骤2:根据需要,将完全平方形式展开或变形。
步骤3:将展开或变形的式子应用到实际问题中。
3.操练(10分钟)学生分组讨论,尝试运用配方法解决实际问题。
教师巡回指导,解答学生的疑问。
九年级上册数学教案《配方法》
九年级上册数学教案《配方法》学情分析方程是刻画现实世界中数量关系的一个有效数学模型,应用比较广泛,而从实际问题中抽象出方程,并求出方程的解是解决问题的关键。
配方法既是一元二次方程的一种重要方法,同时也是推导公式法的基础。
配方法又是初中数学的重要内容,在二次根式、代数式的变形及二次函数中都有广泛应用。
教学目的1、回顾完全平方式,会将方程配成完全平方式。
2、掌握二次项系数为1的一元二次方程,利用配方法求解的方法。
教学重难点用配方法解二次项系数为1的一元二次方程。
教学方法讲授法、谈话法、讨论法、练习法教学过程一、温习导入1、完全平方公式a2 + 2ab + b2 = (a+b)2a2 - 2ab + b2 = (a-b)22、练习(1)x2 + 10x + 52 =(x + 5)2(2)x2 - 12x + 62 = (x - 6)2(3)x2 - 2/3x +(1/3)2 = (x - 1/3)2二、探究新知1、一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?解:设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm2。
根据一桶油漆可刷的面积,列出方程10 × 6x2= 1500 ①整理,得x2 = 25根据平方根得意义,得x = ±5即x1 = 5,x2 = -5可以验证,5和-5是方程①的两个根。
因为棱长不能是负值,所以盒子的棱长为5dm。
2、方程的根一般地,对于方程x2 = p (I)(1)当p>0时,根据平方根的意义,方程(I)有两个不等的实数根x1 = -√p,x2= -√p;(2)当p = 0时,方程(I)有两个相等的实数根x1 = x2= 0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程(I)无实数根。
3、探究对照解方程(I)的过程,应该怎样解方程(x + 3)2 = 5?(x + 3)2= 5 ②得(x + 3)2= ±√5即(x + 3)=√5,或(x + 3)= -√5。
新人教版九年级数学上册《配方法》教案
《配方法》教案理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=±2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x 2+2bx +b 2的形式→x 2+6x +32=16+9 左边写成平方形式→(x +3)2=25降次→x +3=±5即x +3=5或x +3=-5 解一次方程→x 1=2,x 2=-8可以验证:x 1=2,x 2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m ,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a)2即(x +b 2a )2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b2a =±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 x 2-2x =0 x 2+3x -4=0x 2-5x +6=0观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 2x 2-7x -4=0 3x 2+2x -5=0 5x 2-17x +6=0小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值。
九年级数学上册 解一元二次方程—配方法教案1 新人教版 教案
设 计 意 图
而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?
解:移项得:x2+6x=16
两边都加上9即 ,使左边配成x2+bx+b2的形式,得:x2+6x+9=16+9
左边写成平方形式,得:(x+3)2=25
开平方,得:x+3=±5(降次)
即(x-4)2=15 即(x-2)2=3 即(3x+1)2=4
两边开平方得: 两边开平方得: 两边开平方得:
x-4= x-2= 3x+1=±2∴x1=4 , ∴x1=2 ∴x1= ,
x2=4 x2=2- x2= -1
【例2】如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B 两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s, 几秒后△PCQ 的面积为Rt△ACB面积的一半.
解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题可列方程:
(8-x)(6-x)= × ×8×6
即:x2-14x+24=0
(x-7)2=25
x-7=±5
∴x1=12,x2=2
x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.
答:2秒后△PCQ的面积为Rt△ACB面积的一半.
【练习】课后练习
学生试解并板演
学生思考讨论
在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后分析归纳利用配方法解方程时应该遵循的步骤。
应用提高、拓展创新,培养学生应用意识.
教 学 过 程 设 计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时配方法
【知识与技能】
掌握用配方法解一元二次方程.
【过程与方法】
理解通过变形运用开平方法解一元二次方程的方法,进一步体验降次的数学思想方法.
【情感态度】
在学生合作交流过程中,进一步增强合作交流意识,培养探究精神,增强数学学习的乐趣.
【教学重点】
用配方法解一元二次方程.
【教学难点】
用配方法解一元二次方程的方法和技巧.
一、情境导入,初步认识
问题要使一块长方形的场地的长比宽多6m,并且面积为16m2,场地的长与宽各是多少?
思考如果设这个长方形场地的宽为xm,则长为,由题意可列出的方程为,你能将此方程化为(x+n)2=p的形式,并求出它的解吗?
【教学说明】经历从实际问题中抽象出一元二次方程模型的过程,进一步增强学生的数学建模能力,并通过思考,用类比、转化思想方法探索出解这类方程的一种方法,导入新课.教学过程中,应给予学生充分思考,交流活动时间,达到探索新知的目的.
二、思考探究,获取新知
【教学说明】让学生阅读第6~7页探究内容,再完成下面的“想一想”.
想一想1.下列各题中的括号内应填入怎样的数合适?谈谈你的看法.
(1)x2+10x+( )=(x+ )2;
(2)x2-3x+( )=(x- )2;
(3)x2-2
3
x+( )=(x- )2;
(4)x2+1
2
x+( )=(x+ )2.
2.利用上述想法,试试解下列方程:(1)x2+10x+3=0; (2)x2-3x+1=0;
(3)x2-2
3
x=4; (4)x2+
1
2
x-7=0.
1.依次填入:(1)25;5;(2)9
4
,
3
2
;(3)
1
9
;
1
3
;(4)
1
16
,
1
4
.
2.解:(1)原方程可化为:x2+10x=-3,配方,得x2+10x+25=-3+25,即(x+5)2=22,∴x+5=±22,即x1=-5+22,x2=-5-22;
试一试1.请说说用配方法解二次项系数为1的一元二次方程的方法是怎样的?与同伴交流.
2.如果某个一元二次方程的二次项系数不是1时,还能用配方法解这个一元二次方
程吗?谈谈你的看法,并尝试解方程1
2
x2+x-3=0.
【教学说明】让学生独立思考后,相互交流看法.理解并掌握用配方法解一元二次方程的思维方法.然后选取学生代表发言,最后师生共同总结,完善认知.
三、典例精析,掌握新知
例(教材第7页例1)解下列方程
(1)x2-8x+1=0;
(2)2x2+1=3x;
(3)3x2-6x+4=0.
分析:对于(2)、(3)中的方程,可先将未知数的项放在等号左边,常数项移至等号的右边后,再根据等式性质将二次项系数化为1,从而转化为形如x2+mx=n的方程,利用配方法可求出方程的解.
【教学说明】让学生自主探究,独立完成,同时选三名同学上黑板演算,教师巡视,针对学生可能出现的问题,教师应适时予以点拨:
(1)二次项系数不是1时,怎么办?
(2)配方过程中,在等式两边加上的常数与一次项系数的关系如何?
(3)配方过程中,若等号右边为负数,这个方程有没有实数根?
(4)配方过程中还需注意哪些问题等等.最后师生共同评析,加深用配方法解一元二次方程的理解.
【归纳结论】
一般地,如果一个一元二次方程通过配方转化成
(x+n)2=p(Ⅱ)
的形式,那么就有:
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1, x2
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,所以方程(Ⅱ)无实数根.
【试一试】师生共同完成教材第9页练习.
【教学说明】第1题老师可让学生口答,第2题教师可选几名学生板演,师生共同完成后,老师仍要向学生强调方程无实数根的情况.
四、运用新知,深化理解
1.将二次三项式x2-4x+2配方后,得()
A.(x-2)2+2
B.(x-2)2-2
C.(x+2)2+2
D.(x+2)2-2
2.已知x2-8x+15=0,左边化成含x的完全平方式,其中正确的有()
A.x2-8x+(-4)2=31
B.x2-8x+(-4)2=1
C.x2+8x+42=1
D.x2-4x+4=-11
3.若代数式
2
2
2
1
x x
x
--
-
的值为0,则x的值为.
4.方程x2-2x-3=0的解为.
5.要使一块长方形场地的长比宽多3m,其面积为28m2,试求这个长方形场地的长与宽各是多少?
【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.
【答案】1.B
2.B
3.x=2
4.x1=-1,x2=3
5.长与宽分别为7m和4m.
五、师生互动,课堂小结
1.通过本节课的学习,你能用配方法解一元二次方程吗?有哪些需要注意的地方?
2.用配方法解一元二次方程涉及哪些数学思想方法?
【教学说明】让学生通过对上述问题的回顾与思考,反思学习体会,完善知识体系.
1.布置作业:从教材“习题21.2”中选取.
2. 完成练习册中本课时练习的“课后作业”部分.
1.本节课,重在学生的自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认识冲突,激发兴趣,建立自信心.
2.在练习内容上,有所改进,加强了核心知识的理解与巩固,提高自己解决问题的能力,感受数学创造的乐趣,提高教学效果.
3.用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.。