人教版七年级数学下册期末考试模拟试题
【人教版】七年级数学下期末模拟试卷(带答案)
一、选择题1.若关于x ,y 的二元一次方程组432x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2B .10C .2-D .42.若a 为方程250x x +-=的解,则22015a a ++的值为( ) A .2010B .2020C .2025D .20193.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种4.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤5.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( )A .440x y x y x y -=-⎧⎨-=-⎩B .440x y x y -=⎧⎨+=⎩C .440x yy x -=⎧⎨-=⎩D .440x x yy x y -=-⎧⎨-=-⎩6.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求. A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭8.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C .42=±D .()515-=-9.如图,下列说法错误的是( )A .若a ∥b ,b ∥c ,则a ∥cB .若∠1=∠2,则a ∥cC .若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c10.整数a使得关于x,y的二元一次方程组931ax yx y-=⎧⎨-=⎩的解为正整数(x,y均为正整数),且使得关于x的不等式组() 1211931xx a⎧+≥⎪⎨⎪-<⎩无解,则a的值可以为()A.4 B.4或5或7 C.7 D.1111.若关于x的一元一次方程x−m+2=0的解是负数,则m的取值范围是A.m≥2B.m>2 C.m<2 D.m ≤212.在数轴上,点A 表示2,现将点A沿数轴做如下移动,第一次点A向左移动4个单位长度到达点1A,第二次将点1A向右移动8个单位到达点2A,第三次将点2A向左移动12个单位到达点3A,第四次将点3A向右移动16个单位长度到达点4A,按照这种规律下去,第n次移动到点n A,如果点n A与原点的距离不少于18,那么n的最小值是()A.7 B.8 C.9 D.10二、填空题13.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.14.若方程2(3)31aa x y--+=是关于x,y的二元一次方程,则a的值为_____.15.在平面直角坐标系中,若点3(1)M,与点()3N x,的距离是8,则x的值是________ 16.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A400的坐标为_______.17.2(3.14)|2|ππ--=________.18.命题“若a2>b2则a>b”是_____命题(填“真”或“假”),它的逆命题是_____.19.若关于x的不等式组2()102153x mx的解集为76x-<<-,则m的值是______.20.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.三、解答题21.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;(3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m元,要使(2)中所有方案获利相同,则m的值应为多少?22.解不等式组:124(3)21223x xxx--≥⎧⎪-⎨+>⎪⎩.23.观察图,解答后面的问题.梯形个数123456…周长581114…(2)写出周长y和梯形个数x之间的二元一次方程;(3)当x=670时,求y的值.24.如图1,已知直角梯形ABCO中,∠AOC=90°,AB∥x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣7c-=0(1)求出点A、B、C的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求HCJABN∠∠的值(结果用含k的式子表示).25.计算:(1)223168(2)(3)----- (2)22(2)8x -=26.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5ky =, 把5k y =代入②得:115k x =, 把115k x =,5ky =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =,∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.B解析:B 【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答. 【详解】解:∵a 为方程250x x +-=的解 ∴250a a +-=,即25a a += ∴22015a a ++=5+2015=2020. 故答案为B . 【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.3.B解析:B 【分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得: 3x+5y=35, y=7-35x , ∵x 、y 都是正整数, ∴x=5时,y=4; x=10时,y=1; ∴购买方案有2种. 故选B . 【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.4.D解析:D 【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可. 【详解】∵6556x x -=-, ∴650x -≤,∴56x ≤. 故选:D . 【点睛】本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.A解析:A 【分析】根据题设小亮和老师的岁数分别为x 岁和y 岁,根据题意列出方程组解答即可. 【详解】解:设小亮和老师的岁数分别为x 岁和y 岁可得440x y x y x y -=-⎧⎨-=-⎩故选A 【点睛】此题考查二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列出方程组求解.6.B解析:B 【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断. 【详解】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限. 故选:B . 【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.7.D解析:D 【分析】先根据点P 和P′的坐标得出坐标的变化规律,再根据规律逐一判断即可得答案. 【详解】∵点()1,2P 平移后的坐标是,3()3P '﹣,∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1, A.()3,24(,2)→-,横坐标加1,纵坐标减4,故该选项不符合题意,B.()(104),5,--→-,横坐标减4,纵坐标减4,故该选项不符合题意,C.(1.2,5)→(-3.2,6),横坐标减4.8,纵坐标减1,故该选项不符合题意,D.122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭,横坐标减4,纵坐标加1,故该选项符合题意, 故选:D . 【点睛】本题考查了坐标与图形变化-平移,根据点P 与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.8.B解析:B 【分析】根据有理数的乘方以及算术平方根的意义即可求出答案. 【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意; D.()511-=-,所以,选项D 运算错误,不符合题意; 故选:B . 【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.9.C解析:C 【解析】试题分析:根据平行线的判定进行判断即可.解:A 、若a ∥b ,b ∥c ,则a ∥c ,利用了平行公理,正确; B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确; C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确; 故选C .考点:平行线的判定.10.B解析:B 【分析】先解方程组得83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,根据x 、y 为正整数可求得a ,再解不等式组,根据不等式组无解可得a 的取值范围,据此可求得a 值. 【详解】解:解二元一次方程组931ax y x y -=⎧⎨-=⎩,得:83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,∵方程组的解均为正整数, ∴a=4、5、7、11,解不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩,得:81x x a ≥⎧⎨<+⎩,∵不等式组无解, ∴a+1≤8,即a≤7,∴满足题意的a 值为4或5或7, 故答案为:B . 【点睛】本题考查二元一次方程的解法、一元一次不等式组的解法,熟练掌握它们的解法,会用不等式组无解求参数范围,会利用正约数求满足方程组的整数解是解答的关键.11.C解析:C 【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.12.C解析:C 【分析】根据题意依次得出点A 移动的规律,当点A 奇数次移动时,对应表示的数为负数,当点A 偶数次移动时,对应表示的数为正数,得出对应规律,根据点n A 与原点的距离不少于18,列出不等式,求解可得. 【详解】解:第一次:1A4-, 第二次:2A4, 第三次:3A8, 第四次:4A8+,...当n 为奇数时,第n142n +⨯22n -, 当n 为偶数时,第n42n⨯2n , ∵点n A 与原点的距离不少于18,∴2218n -≥218n ≥,解得:82n ≥+,92n ≥-,∵012<<, ∴n≥9,∴n 的最小值是9, 故选C . 【点睛】本题是数字类的变化规律题,考查了解不等式,还考查了数轴的性质:向左移→减,向右移→加;从第一个点移动开始分别计算出表示的数,大胆猜想,找出对应的规律,并验证,列式计算.二、填空题13.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化解析:45% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==; 故答案为:45%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.14.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可. 【详解】解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3, 故答案为:-3. 【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.15.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x解析:-7或9 【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解. 【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3, ∴MN ∥x 轴, ∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9, ∴x 的值是-7或9. 故答案为:-7或9. 【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.16.(2000)【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解 解析:(200,0)【分析】根据图象可得移动4次图形完成一个循环,从而可得出点400A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,4004100∴÷= ,()()()48122,0,4,0,6,0,,A A A …()4001002,0,A ∴⨯即()400200,0,A所以:()400200,0A .故答案为:()400200,0A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.17.【分析】先计算算术平方根化简绝对值再计算实数的加减法即可得【详解】原式故答案为:【点睛】本题考查了算术平方根绝对值实数的加减运算熟练掌握各运算法则是解题关键解析: 1.14-【分析】先计算算术平方根、化简绝对值,再计算实数的加减法即可得.【详解】原式()3.142ππ=---,3.142ππ=--+,1.14=-,故答案为: 1.14-.【点睛】本题考查了算术平方根、绝对值、实数的加减运算,熟练掌握各运算法则是解题关键. 18.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a >b 则a 2>b 2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.19.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由①得:2210x m +->,221x m >-+, 12x m >-+由②得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 20.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的 解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.(1)甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元;(2)有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台;(3)要使(2)中所有方案获利相同,则m 的值应为100元【分析】(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,然后由题意可列方程组进行求解;(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,然后根据题意可列不等式组进行求解a 的范围,然后根据a 为正整数可求解;(3)设总利润为w ,则由(2)可得()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%,进而根据题意可求解.【详解】解:(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,根据题意得: 22600234400x y x y +=⎧⎨+=⎩, 解得:1000800x y =⎧⎨=⎩, 答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,由(1)及题意得: ()()1000800201800010008002017400a a a a ⎧+-≤⎪⎨+-≥⎪⎩,解得:710a ≤≤,∵a 为正整数,∴a 的值为7、8、9、10,∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台.(3)设总利润为w ,则由(2)可得:()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%, ∵(2)中方案利润要相同,∴1000m -=,解得:100m =,答:要使(2)中所有方案获利相同,则m 的值应为100.【点睛】本题主要考查二元一次方程组及不等式组的应用,熟练掌握二元一次方程组及不等式组的应用是解题的关键.22.不等式组的解集为:-1<x≤4.【分析】先求出每一个不等式的解集,再求出其公共解集即可.【详解】124(3)2(1)122(2)3x x x x --≥⎧⎪-⎨+>⎪⎩, (1)去括号得,12−4x +12≥2x ,移项、合并同类项得,−6x≥−24,解得,x≤4;(2)去分母得,3(x+2)>1−2x ,去括号得,3x+6>1−2x ,移项、合并同类项得,5x >-5,化系数为1得,x >-1.∴不等式组的解集为:-1<x≤4.【点睛】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).23.(1)17,20;(2)y =3x +2;(3)y =2012【分析】(1)根据表格前几组数据规律即可找出这两组数据;(2)根据表格数据列出y 与x 的二元一次方程即可;(3)把x=670代入到(2)中的二元一次方程中求出y 即可.【详解】【解答】解:(1)根据表格前几组数据可知周长比梯形个数的三倍多2,故第5个是17,第6个是20;故答案为:17,20(2)由表格可知:第二个梯形起,每一个梯形的周长比前一个梯形周长长了3, y =5+3(x ﹣1)=3x +2(3)当x =670时,代入y=3x+2,得:y =2012【点睛】此题考查了解二元一次方程、根据规律总结图形边长与周长的关系.24.(1)A(0,3),B(6,3), C(7,0);(2)t 的取值范围为2≤t≤3;(3)1k k + 【分析】(1)由绝对值和算术平方根的非负性质得出a+c ﹣10=0,且c ﹣7=0,求出c=7,a+c=10,得出c=3,即可得出答案;(2)由题意得ON=t ,CM=2t ,得出AN=3﹣t ,由2S △ABN ≤S △BCM 和三角形面积公式得出不等式,解得t≥2,由0≤t≤3,即可得出答案;(3)设AB 与CN 交于点D ,由平行线的性质结合三角形的外角性质和已知条件得出∠ABN=(k+1)(∠OCH ﹣∠BNQ),再由平行线的性质和已知条件得出∠HCJ=k(∠OCH ﹣∠BNQ),即可得出答案.【详解】(1)∵10a c ++﹣0=∴100a c +=﹣,且70c =﹣,∴710c a c =+=,,∴3c =,∴()()0370A C ,,,, ∵AB ∥x 轴,6AB =,∴()63B ,; (2)∵()()0370A C ,,,, ∴37OA OC ==,,由题意得:2ON t CM t ==,,∴3AN t =﹣,∵2S △ABN ≤S △BCM , ∴()112362322t t ⨯⨯⨯≤⨯⨯﹣, 解得:2t ≥,∵当点N 从点O 运动到点A 时,点M 同时也停止运动,∴03t ≤≤,∴t 的取值范围为:23t ≤≤;(3)设AB 与CN 交于点D ,如图所示:∵AB ∥OC ,∴∠BDC=∠OCD ,∵∠BDC=∠BND+∠ABN ,∠CNQ=k ∠BNQ ,∠NCH=k ∠OCH ,∴∠BDC=(k+1)∠BNQ+∠ABN ,∠OCD=(k+1)∠OCH ,∴(k+1)∠BNQ+∠ABN=(k+1)∠OCH ,∴∠ABN ═(k+1)∠OCH ﹣(k+1)∠BNQ=(k+1)(∠OCH ﹣∠BNQ),∵NQ ∥CJ ,∴∠NCJ=∠CNQ=k ∠BNQ ,∵∠HCJ+∠NCJ=∠NCH=k ∠OCH ,∴∠HCJ=k ∠OCH ﹣∠NCJ=k ∠OCH ﹣k ∠BNQ=k(∠OCH ﹣∠BNQ), ∴()()()k OCH BNQ HCJ ABN k 1OCH BNQ ∠∠∠∠∠∠=+﹣﹣=1k k +. 【点睛】本题考查了梯形的性质、坐标与图形性质、绝对值和算术平方根的非负性质、三角形面积公式、平行线的性质等知识;熟练掌握三角形的面积公式和平行线的性质是解题的关键. 25.(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(1223168(2)(3)--=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.26.(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD ⊥AB ,EF ⊥AB ,∴∠CDB=∠EFB=90°,∴EF ∥CD ;(2)∵EF ∥CD ,∴∠2=∠BCD ,∵∠1=∠2,∴∠1=∠BCD ,∴DG ∥BC ,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.。
2022—2023年人教版七年级数学下册期末模拟考试(带答案)
2022—2023年人教版七年级数学下册期末模拟考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数8.64的立方根是( )A .4B .±4C .8D .±89.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若264a =3a =________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 444a a --.(1)直接写出点A 、B 、C 的坐标; (2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC 分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、C6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、55°3、(3,7)或(3,-3)4、-15、±26、5三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)证明见解析;(2)∠FAE=135°;4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
人教版七年级下册数学期末模拟考试试卷及答案
人教版七年级下册数学期末模拟考试试卷及答案一、选择题1.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()()22a b a b a b +-=-2.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .03.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( ) A .-98.110⨯ B .-88.110⨯ C .-98110⨯ D .-78.110⨯ 4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 6.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +b C .b ﹣aD .﹣a ﹣b 7.计算23x x 的结果是( )A .5xB .6xC .8xD .23x 8.x 2•x 3=( ) A .x 5 B .x 6 C .x 8D .x 99.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线10.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13 B .9 C .9- D .13- 二、填空题11.若x +3y -4=0,则2x •8y =_________.12.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____. 13.若 a m =6 , a n =2 ,则 a m−n =________14.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.15.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____. 16.233、418、810的大小关系是(用>号连接)_____. 17.已知()223420x y x y -+--=,则x=__________,y=__________.18.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.19.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .920.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案) (2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF、EH相交于点H,满足1 3PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).22.先化简,再求值:()()()()2212112,x x x x x--+---其中2230x x--=. 23.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:15162401 680802221322222xx x xx xxx+++++++即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262(2)62xx x xx xxx+++++-++☆☆☆得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x2+2x2-x-2进行因式分解,进行到了:x3+2x2-x-2=(x+2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2-x-2因式分解.24.计算:(1)()()12212514--⎛⎫+-⨯--⎪⎝⎭;(2)52342322)(a a a a a+÷-.25.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.26.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .27.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1. 28.先化简,再求值:(1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案. 【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D . 【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.2.C解析:C 【分析】先将原式化简,然后将a−b =1整体代入求解. 【详解】()()2212221a b a b b a b a b ba b b a b -∴--+--+--=,====.故答案选:C . 【点睛】此题考查的是整体代入思想在代数求值中的应用.3.B解析:B 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000081=-88.110⨯;【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.5.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.A解析:A【分析】根据多项式与多项式相乘知(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,据此可以求得k的值.解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab , 又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ), ∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab , ∴﹣k =b ﹣a , k =a ﹣b , 故选:A . 【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.7.A解析:A 【分析】根据同底数幂相乘,底数不变,指数相加即可求解. 【详解】解:∵23235x x x x +==, 故选A . 【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.8.A解析:A 【分析】根据同底数幂乘法,底数不变指数相加,即可. 【详解】 x 2•x 3=x 2+3=x 5, 故选A. 【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.9.B解析:B 【分析】根据三角形中线的性质作答即可. 【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B . 【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.10.A解析:A先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a-b=2-(﹣11)=13.故选:A.【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.二、填空题11.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.12.5×10﹣8 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.3 【解析】 .故答案为3.解析:3 【解析】623m n m n a a a -=÷=÷=.故答案为3.14.10°或50°或130° 【分析】分三种情况讨论:①当CE ⊥BC 时;②当CE ⊥AB 时;③当CE ⊥AC 时;根据垂直的定义和三角形内角和计算即可得到结论. 【详解】解:①如图1,当CE ⊥BC 时,解析:10°或50°或130° 【分析】分三种情况讨论:①当CE ⊥BC 时;②当CE ⊥AB 时;③当CE ⊥AC 时;根据垂直的定义和三角形内角和计算即可得到结论. 【详解】解:①如图1,当CE ⊥BC 时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.15.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n 的相反数就是几.考点:科学计数法 16.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.17..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x . 【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.18.60【解析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.20.84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.三、解答题21.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.22.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.23.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.24.(1)7;(2)55a .【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2; =4+4×1﹣1=4+4﹣1 =7;(2)2a 5﹣a 2•a 3+(2a 4)2÷a 3=2a 5﹣a 5+4a 8÷a 3=2a 5﹣a 5+4a 5=5a 5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.25.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= .(3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.26.(1)见解析;(2)平行且相等; 9 .【分析】(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得; (2)根据图形平移的性质和平行四边形的面积公式即可得出结论【详解】(1)如图所示△DEF 即为所求;(2)∵△DEF 由△ABC 平移而成,∴AD ∥BE ,AD =BE ;线段AB 扫过的部分所组成的封闭图形是□ABED ,339ABED S=⨯=故答案为:平行且相等;9【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键. 27.2x 2-8x-3;-9.【解析】【分析】根据整式的乘法运算法则即可化简求值.【详解】解:原式=x 2-4x+4+2(x 2-2x-8)-(x 2-9)=x 2-4x+4+2x 2-4x-16-x 2+9=2x 2-8x-3当x=1时,原式=2-8-3=-9【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.28.(1)-8a+12,16;(2)x2+3,1 3 9【分析】(1)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案;(2)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案.【详解】解:(1)原式=a2-4a-(a2-2a+6a-12)=a2-4a-(a2+4a-12)=a2-4a-a2-4a+12=-8a+12把12a=-代入得:原式=-8×(1-2)+12=16;(2)原式=x2+4x+4+4x2-1-4x2-4x =x2+3把13x=代入得:原式=(13)2+3=139.【点睛】本题考查了多项式乘法,合并同类项,平方差公式和完全平方公式.细心运算是解题关键.。
2022—2023年人教版七年级数学下册期末模拟考试【加答案】
2022—2023年人教版七年级数学下册期末模拟考试【加答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3xB .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.若()2320m n -++=,则m+2n 的值是________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图1,BC ⊥AF 于点C ,∠A +∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况).并说明理由.4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、C6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、203、180°4、-15、-1或-46、5三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x=.2、a=3,b=﹣1,c=3.3、(1)略(2)∠BPE=∠DEP﹣∠ABP,略.4、略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
新人教版七年级数学下册期末模拟考试(附答案)
新人教版七年级数学下册期末模拟考试(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5 4.一5的绝对值是()A.5 B.15C.15-D.-55.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a=3a=________.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、A5、B6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、03、70.4、-405、±26、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、3 53、(1)证明见解析(2-14、(1)略;(2)4.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
2024年最新人教版初一数学(下册)模拟试卷及答案(各版本)
2024年最新人教版初一数学(下册)模拟试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是素数?A. 0B. 1C. 4D. 73. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 三角形4. 下列哪个数是无理数?A. 1/2B. √9C. √16D. π5. 下列哪个图形是圆?A. 正方形B. 矩形C. 梯形D. 圆形二、判断题5道(每题1分,共5分)1. 0是最小的自然数。
()2. 任何一个正整数都可以分解为几个质数的乘积。
()3. 两个负数相乘的结果是正数。
()4. 任何一个正数都有两个平方根。
()5. 任何一个正数都有两个立方根。
()三、填空题5道(每题1分,共5分)1. 3的绝对值是______。
2. 3的平方是______。
3. 2的立方是______。
4. 5的平方根是______。
5. 27的立方根是______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述无理数的定义。
3. 请简述平行四边形的性质。
4. 请简述矩形的性质。
5. 请简述圆的性质。
五、应用题:5道(每题2分,共10分)1. 计算下列各式的值:a) 3 + 7b) 5 9c) 4 × (3)d) 6 ÷ 32. 解下列方程:a) 2x + 3 = 9b) 5 x = 2c) 3(x 2) = 6d) x/4 + 2 = 53. 计算下列各式的值:a) √36b) √49c) √64d) √814. 解下列方程:a) x² = 16b) x² = 25c) x² = 49d) x² = 815. 计算下列各式的值:a) ³√27b) ³√64c) ³√125d) ³√216六、分析题:2道(每题5分,共10分)1. 有一块长方形的菜地,长为10米,宽为8米,请计算菜地的面积。
2023年人教版七年级数学下册期末模拟考试及完整答案
2023年人教版七年级数学下册期末模拟考试及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.-5的相反数是( )A .15-B .15C .5D .-52.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A .125°B .135°C .145°D .155°9.如图,直线l 1∥l 2,∠α=∠β,∠1=50°,则∠2的度数为( )A .130°B .120°C .115°D .100°10.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.式子3x -在实数范围内有意义,则 x 的取值范围是________.3.已知23的整数部分为a ,小数部分为b ,则a -b =________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程31571 46x x---=2.若关于x、y的二元一次方程组325233x y ax y a-=-⎧⎨+=+⎩的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、C6、B7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x≥33、4、40°5、﹣16、5三、解答题(本大题共6小题,共72分)1、x=﹣12、(1)a>1;(2)2;(3)a的值是2.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)A的单价30元,B的单价15元(2)购买A奖品8个,购买B奖品22个,花费最少。
2023-2024学年全国初中七年级下数学人教版模拟考试试卷(含答案解析)
20232024学年全国初中七年级下数学人教版模拟考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 2/3D. 1.52.下列各数中,是负数的是()A. 3B. 4C. 5/6D. 03.下列各数中,是正数的是()A. 3B. 0C. 2/3D. 44.下列各数中,是分数的是()A. 0B. 2C. 3/4D. 15.下列各数中,是正整数的是()A. 3B. 0C. 2/3D. 56.下列各数中,是负整数的是()A. 4B. 5C. 2/3D. 07.下列各数中,是正分数的是()A. 3/4B. 0C. 5/6D. 28.下列各数中,是负分数的是()A. 3/4B. 0C. 2/3D. 59.下列各数中,是零的是()A. 3B. 0C. 2/3D. 510.下列各数中,是自然数的是()A. 3B. 0C. 2/3D. 5二、填空题(每题2分,共20分)1.下列各数中,是整数的是__________。
2.下列各数中,是负数的是__________。
3.下列各数中,是正数的是__________。
4.下列各数中,是分数的是__________。
5.下列各数中,是正整数的是__________。
6.下列各数中,是负整数的是__________。
7.下列各数中,是正分数的是__________。
8.下列各数中,是负分数的是__________。
9.下列各数中,是零的是__________。
10.下列各数中,是自然数的是__________。
三、解答题(每题5分,共20分)1.解方程:2x + 3 = 7。
2.解方程:3x 2 = 5。
3.解方程:4x + 5 = 9。
4.解方程:5x 3 = 7。
四、应用题(每题10分,共20分)1.小明有5个苹果,小红有7个苹果,小华有3个苹果。
他们一共有多少个苹果?2.小明有3个苹果,小红有5个苹果,小华有7个苹果。
他们一共有多少个苹果?五、简答题(每题5分,共20分)1.简述整数的概念。
2023-2024学年人教版七年级数学下册期末模拟试题
2023-2024学年人教版七年级数学下册期末模拟试题一、单选题1)AB .C .3D .2.如图,若直线,165a b ∠=︒∥,那么2∠的度数是( )A .60︒B .65︒C .70︒D .125︒3.如果x y <,那么下列不等式正确的是( )A .33x y <B .x y -<-C .11x y -+>--D .11x y +>+ 4)A .3±B .3C .9±D .95.在平面直角坐标系中,点()2,3M -在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在一次有1万名八年级学生参加的数学质量监测中,随机抽取2000名学生的数学成绩进行分析,以下说法正确的是( )A .2000名考生是总体的一个样本B .2000名学生是样本容量C .每位考生的数学成绩是个体D .1万名考生是总体7.如图,这是小军同学在体育课上跳远留下的痕迹,其中①号线的长度作为他的跳远成绩,这样测量的数学道理是( )A .平行线之间的距离处处相等B .垂线段最短C .两点确定一条直线D .两点之间,线段最短8.估计 1的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间9.已知,点()26,2P m m -+在y 轴上,则点P 的坐标为( )A .()0,5B .()5,0C .()0,3D .()3,010.关于x 、y 的方程组3x y m x my n -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩,则3m n +的值是( ). A .4 B .9 C .5 D .1111.不等式组12213x x +>⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C .D .12.如图,将边长为2的正方形ABCD 沿对角线AC 平移,使点A 移至线段AC 的中点A '处,得新正方形A B C D '''',新正方形与原正方形重叠部分(图中阴影部分)的面积是 ( )A B .12 C .1 D .1413.杭州亚运会期间,某班组织亚运知识竞赛,成绩统计如下表:成绩在91分~100分的为优胜者,则优胜者的频率为( )A .18B .50C .0.30D .0.3614.运行程序如图所示,规定:从“输入一个值x ”到“结果是否94>”为一次程序操作,如果程序操作进行了三次才停止,则x 的取值范围是( )A .411x ≤<B .310x ≤<C .310x <≤D .411x <≤15.如图,在平面直角坐标系xOy 中,A ,B ,C ,D 是边长为1个单位长度的小正方形的顶点,开始时,顶点A ,B 依次放在点 1,0 , 2,0 的位置,然后向右滚动,第1次滚动使点C 落在点()3,0的位置,第2次滚动使点D 落在点()4,0的位置,…,按此规律滚动下去,则第2025次滚动后,顶点A 的坐标是( )A .()2024,1B .()2026,1C .()2025,0D .()2026,0二、填空题16.如图所示,请你添加一个条件(图中不得添加另外标记),使得AB DE ∥.17.用不等式表示x 的13倍加上6大于4-:. 18.将点()21,5P a a +-向下平移2个单位,向右平移3个单位得到点Q ,点Q 恰好落在y 轴上,则点Q 的坐标是.19.若关于x ,y 的方程组43623x y m x y +=+⎧⎨-=⎩的解满足9x y +=,则m 的值为.三、解答题20.计算:()2275÷-.21.解不等式组:()31412142x x x ⎧-<+⎪⎨-≤⎪⎩①②,并把解集在数轴上表示出来.22.为迎接春季运动会,学校先在体育用品商店购买30个足球和60条跳绳用去720元,后又购买10个足球和50条跳绳用去360元.(1)足球、跳绳的单价各是多少元?(2)该店最近正在开展促销活动,所有商品都按相同的折数打折销售,在该店促销期间购买100个足球和100条跳绳只需1800元,该店的商品按原价的几折销售?23.为了解某校九年级学生数学期末考试情况,小方随机抽取了部分学生的数学成绩(分数都为整数)为样本,分为A .120~96分;B .95~72分;C .71~48分;D .47~0分四个等级进行统计,并将统计结果制成如下两幅尚不完整的统计图.请根据图中信息解答下列问题:(1)这次随机抽取的学生共有多少人?(2)请将条形统计图补充完整;(3)该校九年级共有学生900人,若分数为72分以上(含72分)为及格,请估计这次九年级学生期末数学考试成绩为及格的学生约有多少人?24.嘉嘉和淇淇同解一个关于x ,y 的二元一次方程组142mx ny nx my +=⎧⎨+=⎩①②,嘉嘉把方程①抄错,求得方程组的解为13x y =-⎧⎨=⎩,淇淇把方程②抄错,求得方程组的解为32x y =⎧⎨=⎩. (1)求m 和n 的值;(2)求方程组的正确的解.25.如图,直线、AB CD 相交于点O ,EO AB ⊥,垂足为O .(1)直接写出AOC ∠的对顶角和邻补角;(2)若:=3:1AOC COE ∠∠,则COB ∠的度数为________.26.某中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树和3棵香樟树共需460元,购买3棵桂花树和2棵香樟树共需440元.(1)求桂花树和香樟树的单价各是多少元?(2)根据学校实际情况,需购买两种树苗共130棵,总费用不超过12000元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.27.如图1,直线MN 与直线AB CD 、分别交于点E F 、,12180∠+∠=︒.(1)求证:AB CD ∥;(2)如图2,在(1)的条件下,BEF ∠与EFD ∠的角平分线交于点P ,延长EP 交CD 于点G ,点H 是MN 上一点,且GH EG ⊥,求证:PF GH ∥.(3)如图3,在(2)的条件下,连接PH ,Q 是EF 上一点,且45HPQ ∠=︒,若15PHG ∠=︒,请直接写出QPE ∠的度数(不需要写过程).。
2023-2024学年人教版七年级数学下册期末综合模拟测试2
2023-2024学年人教版七年级数学下册期末综合模拟测试2一、单选题1.下列实数是无理数的是( ) A .()01π-B .3π C .5 D .3.142.如图,一辆汽车在笔直的公路上由A 向B 行驶,M 是学校的位置,当汽车行驶到下列哪一位置时,汽车离学校最近( )A .D 点B .E 点C .F 点D .N 点3.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是1±C 5=±D .2是4的平方根4.在平面直角坐标中,点A (4,-1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.为了了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下列叙述正确的是( ) A .32000名学生是总体 B .1600名学生的体重是总体的一个样本 C .每名学生是总体的一个个体D .样本容量是1600名6.如图,直线a b ∥,一块直角三角形ABC 按如图所示放置,若150∠=︒,则2∠的度数是( )A .105︒B .110︒C .115︒D .130︒7 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间8.若31a ->,两边都除以3-,得( )A .13a <-B .13a >-C .3a <-D .3a >-9.已知点(1,3)A m -与点(2,1)B n -关于x 轴对称,则m n +的值为( ) A .1B .1-C .0D .310.在解二元一次方程组259236x y x y +=⎧⎨-=⎩①②时,用①-②消去未知数x 后,得到的方程是( )A .23y =B .215y =C .83y =D .815y =11.如果关于x 的不等式()11a x a +>+的解集为1x <,则a 的取值范围是( )A .0a <B .1a <-C .1a >D .1>-a12.如图,90C ∠=︒,将直角三角形ABC 沿着射线BC 方向平移5cm ,得三角形A B C ''',已知3cm BC =,4cm AC =,则阴影部分的面积为( )2cm .A .18B .14C .20D .2213.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如图所示的条形图(D 组数据被污染).该调查的调查方式及D 组对应的频率分别为( )A .全面调查;52%B .全面调查;48%C .抽样调查;52%D .抽样调查;48%14.《九章算术》中记载这样一个问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设绳长、井深分别为x 、y 尺,则符合题意的方程组是( )A .()()3441y x y x ⎧=+⎪⎨=+⎪⎩B .3441y x y x =+⎧⎨=+⎩C .()()3441x y x y ⎧=+⎪⎨=+⎪⎩D .3441x y x y =+⎧⎨=+⎩15.如图,在平面直角坐标系中,有若干个整点,按图中→方向排列,即()0,0→ 0,1 →()1,1→()2,2→ 2,3 →()3,3→()4,4,……,则按此规律排列下去第23个点的坐标为( )A .(13,13)B .(14,14)C .(15,15)D .(14,15)二、填空题16.图,∠1+∠2=180°,∠3=110°,则∠4=度.17.已知43x y +=,且17y -<≤则x 的取值范围是.18.在已知点A 的坐标是()2,4A -,线段AB y ∥轴,且5AB =,则B 点的坐标是. 19.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是.三、解答题 20.计算:1-;3π- 21.解不等式组23(1)2223x x x x +<+⎧⎪+⎨-≤⎪⎩.22.有A 、B 两种型号台灯,若购买2台A 型台灯和6台B 型台灯共需610元.若购买6台A 型台灯和2台B 型台灯共需470元. (1)求A 、B 两种型号台灯每台分别多少元?(2)采购员小红想采购A 、B 两种型号台灯共30台,且总费用不超过2200元,则最多能采购B 型台灯多少台?23.疫情期间,学校为了解学生最喜欢以下4门网课:A .数学,B .语文,C .英语,D .道德与法制中的哪一门学科,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图1,图2),请回答下列问题:(1)这次被调查的学生共有多少人? (2)补全图2中的条形统计图;(3)图1扇形统计图中,B ,C ,D 所占的百分比各是多少?24.二元一次方程组23253x y m x y m +=+⎧⎨+=-⎩的解x ,y 的值是一个等腰三角形两边的长,且这个等腰三角形的周长为5,求腰的长.(注:等腰三角形中相等的两条边叫做等腰三角形的腰) 25.如图,已知AD BC ⊥,EF BC ⊥,垂足分别为D 、F ,23180∠+∠=︒,试说明:GDC B ∠=∠.请补充说明过程,并在括号内填上相应的理由.解:AD BC ⊥Q ,EF BC ⊥(已知)90ADB EFB ∴∠=∠=︒(), ∴EF AD ∥(), ∴2180+∠=︒().又23180∠+∠=︒Q (已知),13∠∠∴=(),∴AB P (), ∴GDC B ∠=∠().26.某商场有A 、B 两种商品,每件的进价分别为15元、35元.商场销售5件A 商品和2件B 商品,可获得利润45元;销售8件A 商品和4件B 商品,可获得利润80元. (1)求A 、B 两种商品的销售单价;(2)如果该商场计划购进A 、B 两种商品共80件,用于进货资金最多投入2 000元,但又要确保获利至少590元,请问有那几种进货方案?27.在综合与实践课上,老师让同学们以“两条平行线、AB CD 和一块含60︒角的直角三角尺EFG (90EFG ∠=︒,60EGF ∠=︒)”为主题开展数学活动.(1)如图1,若三角尺的60︒角的顶点G 放在CD 上,若221∠=∠,求1∠的度数; (2)如图2,小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,小亮把三角尺的直角顶点F 放在CD 上,30︒角的顶点E 落在AB 上,请你探索并说明AEG ∠与CFG ∠间的数量关系.。
新人教版七年级数学下册期末模拟考试(及参考答案)
新人教版七年级数学下册期末模拟考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A .点MB .点NC .点PD .点Q7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:34165633x y x y +=⎧⎨-=⎩2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、B6、C7、A8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、()()2a b a b++.3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、(4,2)或(﹣2,2).5、2或2.56、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、74n=-,38m=.3、略4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.。
2023年人教版七年级数学下册期末模拟考试(加答案)
2023年人教版七年级数学下册期末模拟考试(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定2.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m 等于()A.2 B.-2 C.4 D.-44.下列图形具有稳定性的是()A.B.C.D.5.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<06.设x y z234==,则x2y3zx y z-+++的值为()A.27B.23C.89D.577.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8 9.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.3 10.化简()23x-的结果是()A.6x-B.5x-C.6x D.6二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x2-2x+1=__________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是________.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.若+x x -有意义,则+1x =___________.5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x -7(x -1)=3-2(x +3) (2)12x -=413x --12.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时;(3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC ,∠NCB 的角平分线交于点Q ,试探索∠Q 、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.6.某水果批发市场苹果的价格如表购买苹果不超过2020千克以上但不超40千(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、A6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3、15°4、15、﹣16、1800°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=1.2、15943、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)50; 32;(2)16;10;15;(3)608人.6、(1)16,4;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.。
最新人教版七年级数学下册期末测试题及答案详解(共五套)
人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A.6m>-6 B .-5m<-5 C .m+1>0 D .1-m<2 2.下列各式中,正确的是( )A.16=±4 B .±16=4 C.327-=-3 D .2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A.⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C.⎩⎨⎧-<>b x a x D.⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A ) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠AB C=500,∠ACB=800,BP 平分∠AB C,CP 平分∠ACB ,则∠BPC 的大小是( )A.1000B.1100 C .1150 D.1200PBA小刚小军小华(1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B.3 C .2 D.1C 1A 1A BB 1CD8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5 B.6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 c m2,则四边形A 1DC C1的面积为( )A.10 cm 2 B .12 c m 2 C.15 cm 2D .17 c m210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4) B.(4,5) C.(3,4) D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x +1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠AB C=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DA C=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│0,则x =_______,y =_______. 三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.CBAD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, A D∥BC , A D平分∠EAC,你能确定∠B 与∠C的数量关系吗?请说明理由。
新人教版七年级数学下册期末模拟考试【及参考答案】
新人教版七年级数学下册期末模拟考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列图形中,不是轴对称图形的是()A.B.C.D.3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,D.21==,m n==m n==,B.10,C.12m n4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64x取最小值时,x的值是( )5.已知x是整数,当30A.5 B.6 C.7 D.86.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A .厉B .害C .了D .我7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________. 3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若264a =3a =________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、D5、A6、D7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、()()2a b a b ++.3、∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE4、-15、±26、2或-8三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=-72、(1)7x 2﹣x+2;(2)﹣14x 2+2x ﹣1;(3)﹣5773、(1)DE=3;(2)ADB S 15∆=.4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)3;(2)第5个台阶上的数x 是﹣5;应用:从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k ﹣1.。
数学人教版七年级下册数学期末模拟试卷及答案
数学人教版七年级下册数学期末模拟试卷及答案一、选择题1.对于算式20203﹣2020,下列说法错误的是( )A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣13.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy4.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 5.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 6.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±8 7.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .8.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .69.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6 10.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2 二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.不等式1x 2x 123>+-的非负整数解是______. 13.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.14.计算:5-2=(____________)15.若(x ﹣2)x =1,则x =___.16.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.17.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.18.()a b -+(__________) =22a b -.19.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .920.因式分解:=______. 三、解答题21.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.22.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.23.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
2023年人教版七年级数学下册期末模拟考试【含答案】
2023年人教版七年级数学下册期末模拟考试【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .32 2.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <06.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .157.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 10.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-二、填空题(本大题共6小题,每小题3分,共18分)1.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a ,b ,c ,d 中的________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5 (2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.5.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、C5、A6、C7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a,b,d或a,c,d2、-43、724、±10.5、2或2.56、百三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)5x2-3x-3,原式=107;(2)-xy+2xy 2;原式=-4.3、(1)①7;②12a;(2)略.4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册期末考试模拟试题
一 选择题(每小题3分,共12题,共计36分)
1.下列计算正确的是( )
A.9 =±3
B.|﹣3|=﹣3
C.9 =3
D.﹣32=9
2.如果c 为有理数,且c≠0,下列不等式中正确的是( )
A.3c >2c
B.c
c 23 C.3+c >2+c D.﹣3c <﹣2c 3.下列说法不正确的是( )
A.过任意一点可作已知直线的一条平行线
B.同一平面内两条不相交的直线是平行线
C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直
D.平行于同一直线的两直线平行
4.若点P (﹣a ,4﹣a )是第二象限的点,则a 的取值范围是( )
A.a <4
B.a >4
C.a <0
D.0<a <4
5.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )
A.∠1=∠2
B.∠2=∠4
C.∠3=∠4
D.∠1+∠4=180°
6.如图,直线a ∥b ,直线c 与a 、b 相交,∠1=70°,则∠2的大小是( )
A.20°
B.50°
C.70°
D.110°
7.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )
A.得分在70~80分之间的人数最多
B.该班的总人数为40
C.得分在90~100分之间的人数最少
D.及格(≥60分)人数是26
8.若方程mx+ny=6的两个解是⎩⎨⎧==11y x ,⎩
⎨⎧-==12y x ,则m ,n 的值为( ) A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4
9.如果不等式组⎩⎨⎧<->-m
x x x )1(312的解集是x <2,那么m 的取值范围是( )
A.m=2
B.m >2
C.m <2
D.m≥2
10.若(3x ﹣y+5)2+|2x ﹣y+3|=0,则x+y 的值为( )
A.2
B.﹣3
C.﹣1
D.3
11.为了改善住房条件,小亮的父母考察了某小区的A 、
B 两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均
价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,
B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( )
A. B. C. D.
12.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )
A.40%
B.33.4%
C.33.3%
D.30%
二 填空题(每小题3分,共6题,共计18分)
13.小于17的所有正整数和是 .
14..如图所示,若AB ∥DC ,∠1=39°,∠C 和∠D 互余,则∠D= ,∠B= .
15.若关于x 、y 的二元一次方程组⎩⎨
⎧=-=+k
y x k y x 95的解也是二元一次方程2x+3y=6的解,则k ﹣21的算术平方根为 .
16.将点A 先向下平移3个单位,再向右平移2个单位后得B (﹣2,5),则A 点关于y 轴的对称点坐标 为 .
17.若关于x 的不等式组⎩⎨⎧->->-22132x x a x 的解集中只有4个整数解,则a 取值范围是 18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为
2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按
A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标
是 .
三 计算综合题(共7题,共计66分)
19.(本小题8分)解下列方程组或不等式组:
(1)⎪⎩⎪⎨⎧=-=-132353y x y x (2)⎩⎨⎧-≥-->-3219235x x x .
20.(本小题8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全直方图;
(2)扇形统计图中“C 组”所对应的圆心角的度数是 度;
(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估算这所学校本次比赛听写不合格的学生人数.
21.(本小题10分)在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将三角形ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标;
(2)求三角形ABC的面积.
22.(本小题10分)已知:如图,B、E分别是AC、DF上一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.
23.(本小题8分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品多少件?
24.(本小题10分)已知2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8hm2.求1台大收割机和1台小收割机每小时各收割小麦多少公顷(hm2)?
(1)分析:如果设1台大收割机每小时各收割小麦x hm2,和1台小收割机每小时各收割小麦y hm2,则2台大收割机和5台小收割机同时工作1h共收割小麦hm2,3台大收割机和2台小收割机同时工作1h共收割小麦hm2(均用含x,y的代数式表示);
(2)根据以上分析,结合题意,请你列出方程组,求出1台大收割机和1台小收割机每小时各收割小苗多少公顷(hm2)?
25(本小题10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:
人数m 0<m≤100100<m≤200m>200
收费标准(元/人)90 85 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?。