平行四边形深刻复习课备课教案
认识平行四边形教案6篇
认识平行四边形教案6篇精心设计的教案可以有效提升学生们的学习积极性和参与度,教案的创新性能够激发学生的学习热情和动力,本店铺今天就为您带来了认识平行四边形教案6篇,相信一定会对你有所帮助。
认识平行四边形教案篇1教学目标:1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。
2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。
3、在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:认识平行四边形。
教学难点:感悟平行四边形的特征。
教学过程:一、情境导入同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。
二、自主探究同学们在生活中见过这样的图形吗?在哪见过?看,这是教师在生活中见到的四边形,你知道这是什么吗?课件出示:教材第14页例2图第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。
你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。
学生动手操作,尝试拼平行四边形,教师巡视指导。
组织交流,展示学生拼图结果,并让学生说说发现了什么?(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角) 老师边画平行四边形边指出:像这样的四边形叫做平行四边形。
三、巩固练习1.想想做做第1题。
学生独立完成,分小组讨论,汇报。
2.想想做做第2题。
组织学生想一想,再围一围。
3.想想做做第3题,学生在书上描一描,教师巡视检查。
4.想想做做第4题,学生动手完成。
5.想想做做第5题,学生在家长的帮助下完成。
三、全课总结提问:今天这节课你有什么收获?课后反思: 文章认识平行四边形教案篇2教学内容:数学人教版四年级上册第五课第二节《认识平行四边形》教学目标:1.让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。
新人教版八年级数学下册《平行四边形》教案设计(10篇)
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
平行四边形的性质及判定复习课教案
平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
《平行四边形》教案参考5篇
《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
《平行四边形》复习课教学设计新部编版
精品教学教案设计| Excellent teaching plan教师学科教案[20 -20 学年度第一学期]任教学科:任教年级:任教老师:xx市实验学校《平行四边形》复习课教学设计教学内容分析:主要内容是平行四边形判定以及特殊的平行四边形一一矩形、菱形、正方形的判定及应用。
教学目标:知识与技能:建立平行四边形及特殊平行四边形的知识框架,掌握平行四边形及特殊平行四边形的判定,并能熟练应用。
过程与方法:经历应用定理解决问题的过程,掌握解决平行四边形问题的一般方法。
情感态度与价值观:运用图形的变换探索图形特征与性质,体会数学研究和发现的过程,领悟知识的生成,发展与变化,发展空间观念。
教学重点:掌握解决平行四边形问题的一般方法,能够从边、角、对角线三个方面思考问题。
教学难点:平行四边形有关知识的综合运用。
教学过程:本节课设计了五个环节,第一个环节一一师生共同完成知识框架的建构,第二个环节一一解决问题,第三个环节一一探究提高,第四个环节一一课堂小结,第五个环节一一布置作业。
第一个环节:平行四边形的知识系统教师出示表格,学生完成填空判定:”形 正方形练一练:1 .四边形ABCD 中,已知AB //CD,若要使四边形ABCD 成为平行四边形,则 可再增加一个条件: .2 .已知:平行四边形 ABCD , AC 与BD 相交于点O,添加适当的条件(1)使它成为菱形的条件:(2)使它成为矩形的条件:(3)使它成为正方形的条件:3.在四边形ABCD 中,。
是对角线的交点,能判定这个四边形是正方形的条件是( )A. AC=BD, A B// CD ,AB=CD.B. AD // BC, / BADh BCD.C. AO=BO=CO=DO, ACBD.D. AO=CO, BO=DO, AB=BC.知识框架图:D设计意图:本环节主要是使学生将知识系统化,复习矩形、菱形、正方形判定定理及性质定理,明确平行四边形、矩形、菱形、正方形彼此间的联系。
(完整word版)平行四边形复习课教案
课题平行四边形复习时间1课时教学目标1.综合运用平行四边形的特征和识别方法进行计算及画图,初步学会简单的说理;2.会利用平行四边形的特征进行平行四边形面积的计算.教学重点应用平行四边形的性质与判定,学会解决平行四边形问题的基本方法.教学难点灵活应用平行四边形的性质和判定解决有关问题.教学设计︵内容、方法、过程、反馈、反思︶一、归纳平行四边形的定义:两组对边分别平行的四边形叫平行四边形.平行四边形的性质:(从边、角、对角线、对称性四个方面说)注:夹在两条平行线间的平行线段相等,平行线之间的距离处处相等.平行四边形的判定:(从边、角、对角线、三个方面说)平行四边形的面积公式: S平行四边形 = 底×高S平行四边形 = BC×AE = CD×AF二、实践应用例1在ABCD中,∠BAC = 68°,∠ACB = 36°求∠D和∠BCD的度数.例2 如图,在四边形ABCD中,DM⊥AC于点M,BN⊥AC于点N,DM = BN,AM = CN,试说明四边形ABCD是平行四边形。
补充例3 已知,ABCD 的周长是36cm,由钝角顶点D向AB、BC引两条高DE、DF,且DE = 4cm,DF = 5cm,求这个平行四边形的面积.例4如图,已知在ABCD中,E、F分别为AD、BC上的中点,试说明EB = DF.请根据此题适当改变题目的条件、结论,对此题加以引申和推广.推广一:如图(a),在ABCD中,E、F分别为AD、BC上的中点,BE交AF于G ,EC交DF于H.试说明四边形EGFH是平行四边形.推广二:如图(b),在ABCD中,E、F分别为AD、BC上的两点,AE = CF,试说明EB = DF.推广三:如图(c),在ABCD中,E、F为AD、BC上两点,∠ABE = ∠CDF,试说明EB = DF.推广四:如图(d),在ABCD中,E、F为AD、BC上两点,BE和DF分别平分∠ABC 和∠ADC,试说明EB = DF.推广五:如图(e),在ABCD中,AE⊥BC于点E,CF⊥AD于点F,试说明EB = DF.例5.如图,ABCD为平行四边形,E、F分别为AB、CD的中点,①求证:AECF也是平行四边形;②连接BD,分别交CE、AF于G、H,求证:BG=DH;③连接CH、AG,则AGCH也是平行四边形吗?A B CDEFG H例6. 如图,已知在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若∠EAF =60 o,CE=3cm,FC=1cm,求AB、BC的长及ABCD面积.60oAB C DEF例7.如图,若P是ABCD内的一点,连结AP、BP、CP、DP,再连结对角线AC,若△APB的面积为20,△APD的面积为15,试求△APC的面积.。
平行四边形复习课教案
《平行四边形》复习教案仁德一中妥连军一学习目标:1.知识目标:通过运用平行四边形、矩形、菱形、正方形的性质和判定解决问题,加深对平行四边形、矩形、菱形、正方形的性质和判定的理解.2.能力目标:(1)通过平行四边形、矩形、菱形、正方形性质和判定的归纳梳理,建立良好的思维体系.(2)通过探究平行四边形有关问题,建立模型,提高探究能力.3.情感目标:在学习过程中积累经验,体验成功,激发兴趣,发展创新精神和实践能力.二教学重点:平行四边形、矩形、菱形、正方形的性质和判定的灵活运用.三教学难点:综合运用平行四边形、矩形、菱形、正方形的性质和判定解决问题.四知识链接:平行四边形、矩形、菱形、正方形的性质和判定,三角形中位线定理.五课时安排:1课时六教学过程设计:昆明中考考情分析:1、考频及权重分析平行四边形在昆明市近五年的中考中,共考了9次。
其中市统测(2015,2016,2018)三年出现5次,省统测(2017,2019)两年出现4次。
分值在11-14分之间,所占比重为10%左右。
2、题型分析在填空题和选择题中主要考查平行四边形及特殊平行四边形的性质以及利用性质求长度、角度、三角函数值等计算;简答题中主要考查判定与计算,也常以平行四边形、特殊平行四边形为载体,考查全等、线段位置关系及圆的计算等。
在压轴题中以会出现平行四边形哦,主要考查平行四边形的存在性、探究性等问题。
【任务一】知识梳理(一)思维导图回顾平行四边的性质判定:(二)平行四边形及特殊平行四边形的性质(三)平行四边形及特殊平行四边形的判定【任务二】条件探索如图,在△ABC中,D、E、F分别是BC、AB、AC的中点,(1)猜想四边形AEDF是什么四边形,并证明你的结论.(2)当△ABC的边和角满足什么条件时,四边形AEDF是矩形?(3)当△ABC的边和角满足什么条件时,四边形AEDF是菱形?(4)当△ABC的边和角满足什么条件时,四边形AEDF是正方形?教学策略:学生看、说、展示思维,构建模型,教师展示规范答题格式。
平行四边形教案(优秀3篇)
平行四边形教案(优秀3篇)平行四边形教案篇一教学目标1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.教学重点掌握平行四边形的意义及特征.教学难点理解平行四边形与长方形、正方形的关系.教学过程一、复习准备.我们已经学过一些几何图形,观察一下这些图形有什么共同特点?在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.教师提问:我们学过哪些四边形呢?学生举例.说说哪些物体表面是平行四边形?教师出示下图,让学生初步感知平行四边形.二、学习新课.1.理解平行四边形的意义.首先出示一组图形.教师提问:这些图形是什么形?它们有什么特征?(1)看到这个名称你能想到什么?(板书:平行、四边形)教师提问:你认为什么是四边形?你学过的什么图形是四边形的?(2)动手测量.指名到黑板上用三角板检验一下,每个图形的对边怎样.(3)抽象概括.根据你测量的结果,能说说什么叫平行四边形吗?小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】2.平行四边形的特征和特性.(1)教师演示.教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.(2)动手操作.学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.(3)归纳平行四边形特性.根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)(4)对比.三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等.)3.学习平行四形的底和高.(1)认识平行四边形的底和高.教师边演示边说明:从平行四边形一条边上的`一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.(2)找出相应的底和高.【继续演示课件“平行四边形”】引导学生观察:图中有几条高?它位相对应的底各是哪条线段?使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.(3)画平行四边形的高.【继续演示课件“平行四边形”】教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)引导学生比较长方形和平行四边形的异同点,使学生明确:相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.②引导学生比较正方形和平行四边形的相同点和不同点.使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】三、巩固练习.【继续演示课件“平行四边形”】1.判断下列图形哪些是平行四边形?2.指出平行四边形的底,并画出相应的高.3.在钉子板上围出不同的平行四边形.4.数一数下图中有()个平行四边形.四、教师小结.1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)2.组织学生对所学知识提出质疑,并解疑.3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)五、布置作业.1.用一套七巧板拼出不同的平行四边形.2.在下面每个平行四边形中分别画出两条不同的高。
人教版数学四年级上册平行四边形的认识教案(精选3篇)
人教版数学四年级上册平行四边形的认识教案(精选3篇)〖人教版数学四年级上册平行四边形的认识教案第【1】篇〗教学目标:1.结合生活实际认识平行四边形,掌握平行四边形的特征。
2.通在动手画一画,加深对平行四边形概念的理解,认识平行四边形的底和高,会画平行四边形的高。
3.结合生活情境和操作活动,感悟平行四边形易变形的特性。
教学重难点:重点:平行四边形的意义。
难点:认识平行四边形的底和高,并会画高。
教学过程:一、复习引入师:上节课学习了同一平面内两条直线的位置关系,有什么呢?生:有平行、相交。
师:相交有一种特殊情况叫什么?生:叫互相垂直。
师:如果不相交它们是什么关系?生:是互相平行。
师:老师给你的是平行线吗?谁能说说平行线的特点?生:无线延伸不想交;平行线间的距离是相等的。
师:这组平行线的距离是多少?用格子图说。
生:是两个格子那么宽。
师:要是没有格子图,想知道平行线间的距离该怎么办?生:画出它们之间的距离然后测量。
师:好!我们现在用尺子量一下,几厘米?生:3厘米。
师:再量一处,几厘米?生:3厘米。
师:再量一处呢?生:还是3厘米。
小结:看来,我们想知道一组直线是不是平行线,可以无限延伸看它们是否相交,还可以去测量它们之间的距离。
师:以前我们研究的是一组平行线之间的关系,今天老师带来了两组平行线。
如果把这两组平行线相交,大家猜一猜会拼成哪个你学过的图形?生:会拼出平行四边形。
师:我们一起来看,真的是平行四边形!之前我们感性认识了平行四边形,今天我们一起进一步来学习平行四边形。
(板书课题:认识平行四边形)【设计意图:通过两组平行线相交让学生明白平行四边形就是平行线与平行线组成的图形,铺垫平行四边形的特征。
复习平行线的两个特点为后续的验证平行以及画高做铺垫。
】二、自主探究1. 生活中的平行四边形师:生活中,你在哪见过平行四边形?生:停车场的停车位、升降机等。
师:老师也带来了一些生活中的,你能找到平行四边形吗?让学生上来指一指。
《平行四边形总复习》教学设计及教学反思 八年级下册
平行四边形专题复习教学设计一、教学设计思考在数学课程标准中指出:"数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
"所以数学复习课同样要面向全体学生,要使各层次的学生对数学基础知识、基本技能和基本思想方法的掌握程度均有所提高,还要使尽可能多的学生形成较强的综合能力、创新意识和实践能力。
阶段性复习,通常是指几个知识点或一个单元中的几节课或单元结束时的复习。
阶段性复习是熟练掌握知识的一个重要途径,复习的目的就是巩固已经学习过的知识,找出那些被学生遗忘的或还没有弄明白的问题,进而解决它们,并使学生达到能灵活运用所学习的知识、综合解决问题的能力。
上好阶段性复习课,要求教师不重复旧课,不均匀用力,要根据平时的反馈积累,结合学生的弱点,注意突出知识的重点和提高学生的能力。
通常在进行阶段性复习课讲授时,很多教师会把大量难度较大的问题放在一起或者列举很多学生做过同类型的问题放在一起集中训练,学生整堂课忙于解题,没有时间总结解题规律和方法,既增重学生负担,又没有使学生熟练掌握知识。
从效率上来看题海战术是底下的,特别是在学生能力提高方面,往往会出现学生的付出和收获不成正比的现象。
教材分析:本节课是九年制义务教育课程标准新教材八年级第二学期第十八章的内容。
四边形和三角形一样,是基本的平面图形,是空间与图形部分的重要组成部分,平行四边形、菱形、矩形、正方形之间的区别与联系对灵活的掌握及运用四边形的知识起着重要的作用。
特殊平行四边形概念、性质与判定是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点.与基本图形(矩形、菱形、正方形、梯形)的概念、性质及其相互关系随之而来的是几何证明,学生要正确理解证明的本身,需要一个较长的过程,是本章的主要难点.本节课的目的就是通过一组基础练习与综合运用,的训练,掌握平行四边形、菱形、矩形、正方形之间的联系及区别,培养学生归纳、总结的能力,发展学生的合情推理能力,进一步学习有条理的思考与表达,理解推理与论证的基本过程,建构严谨的思维模式,树立科学、严谨、理论联系实际的良好学风。
平行四边形认识教案(汇总13篇)
平行四边形认识教案(汇总13篇)平行四边形认识教案第1篇[教学目标]1、知识与技能直观地认识平行四边形学会从各种平面图或实物中辨认平行四边形培养初步的观察能力,空间观念和动手能力。
2、过程与方法让学生在观察、操作、合作交流中探索新知3、情感态度与价值观渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]引导学生直观的认识平行四边形[教学难点]引导学生通过直观感知抽象出平行四边形。
[教学关键]在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]演示法、观察法、操作法等。
[教具准备]多媒体课件、可拉动的长方形框架、钉子板,方格纸[学具准备]可拉动的长方形框架,一张长方形的纸。
[教学过程]一、复习引入游戏引入(出示课件)以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形二、探索新知1、观察感知(课件展示)教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。
2、操作感知教学例2拉一拉:⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。
在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
平行四边形教案精选5篇
平行四边形教案精选5篇平行四边形的认识教案篇一教学目标:1、通过观察、讨论、测量、探索等数学活动,认识平行四边形的特征,了解其特性。
2、在探索平行四边形的特征的过程中,发展学生初步的空间观念。
3、在探索学习活动中,发展实践能力和创新意识,并学会与他人合作。
4、让学生通过亲身参与探索实践活动,去获得积极的情感体验和成功体验。
教学设想:自主探索发展学习,旨在改变教与学的方式。
教师的教是为学生的自主学习,主动探究创造条件,是让学生真正在探索学习中发展,因此,我设计平行四边形的认识这节课,对现行教材进行创造性处理,努力为学生创设一个广阔的活动空间,探索空间,让学生最大限度的参与探索平行四边形的特征的全过程,具体设计以下几个探索活动。
探索活动1:从各种各样的实物形体中找出平行四边形的实物,然后探索平行四边形的特征。
探索活动2:探索发现平行四边形的共同特点。
让学生利用自己所带的材料借助自己的思维去发现这一共同特点,学生通过自己动脑思考,探索出多种发现的方法,有困难的,小组共同研究,共同探索。
探索活动3:探索发现平行四边形的特性活动,根据小学生好动、好玩、好奇的特点,设计了小组合作制作一个平行四边形的框架和三角形的框子,通过让学生动手拉发现二者的不同特性。
探索活动4:拼摆平行四边形,学生在拼平行四边形的小组活动中,合作竞赛,课堂气氛活跃,学生的创造性思维得到发展。
教学过程:一、创设问题情境。
1、同学们把你找的周围四边形的物体,想大家做个汇报。
2、演示:出示以下图形3、这些四边形有什么共同特点?长方形4、在这些四边形中我们已经研究过那几种图形?他们各有那些特征?他们之间有什么关系?正方形板书:二、自主探索,合作交流。
1、以四个同学为一组,观察平行四边形的图形,探索平行四边形的共同特点。
(1)学生用自己喜欢的方法去探索平行四边形的特点。
(学生拿出准备好的平行四边形图用直尺、三角板、量角器等工具来测定)(2)小组汇报,学生互相评价汇报1:通过用三角板和直尺测出两组对边分别平行汇报2:用直尺量两组对边分别相等汇报3:用量角器和对比的方法,测出对角也相等。
18.1 平行四边形复习 教案-2022-2023学年人教版八年级下册数学
18.1 平行四边形复习教案一、教学目标1.理解平行四边形的定义和性质。
2.掌握平行四边形的判定方法。
3.能够运用平行四边形的性质解决相关问题。
二、教学内容1. 平行四边形的定义平行四边形是指有四个边两两平行的四边形。
2. 平行四边形的性质•对角线互相平分。
•对角线的交点是对角线的中点。
•相邻角互补,即和为180°。
•对边相等,即对边两两相等。
3. 平行四边形的判定方法•边对边平行:四边形的对边分别平行。
•角对角平行:四边形的对角线互相平行。
三、教学过程1. 导入教师可以通过引入生活中的实际例子,引起学生对平行四边形的兴趣,如讲解平行的铁轨、平行的道路等。
2. 学习平行四边形的定义和性质教师通过示意图和实例,引导学生认识平行四边形的定义和性质。
可以通过几个示例问题,让学生自己探讨并总结平行四边形的性质。
3. 运用平行四边形的性质解决问题教师出示一些实际问题,让学生运用所学的平行四边形的性质解决。
通过解决问题的过程,巩固学生对平行四边形的理解和应用能力。
4. 练习和巩固教师布置练习题,让学生在课堂上或课后完成,以巩固所学的知识。
可以提供一些多样化的题型,包括填空、选择和解答题,让学生全面复习和应用所学的内容。
四、教学评价1. 听说评价教师可以进行听说评价,即让学生回答一些与平行四边形相关的问题,检查学生的听说能力和对平行四边形的理解程度。
2. 错题讲解教师可以选取一些学生容易出错的题目进行讲解,帮助学生理解错题的原因,并给予正确的解题思路。
3. 综合评价教师可以布置一个综合性的评价活动,让学生将所学的知识和技能综合运用,解决一个较复杂的问题。
教师可以根据学生的解答情况,对学生的综合能力进行评价。
五、教学反思本节课通过引入实际例子、讲解定义和性质、解决问题等方式,帮助学生全面理解和掌握了平行四边形的相关知识。
同时,通过练习和评价,对学生的学习情况进行了有效的检查和总结。
在今后的教学中,可以进一步拓展学生对平行四边形的应用能力,引导他们发现更多与平行四边形相关的实际问题。
《第六章平行四边形》复习教案
第6章平行四边形复习目标:知识与技能: 1.知道平行四边形与各种特殊四边形的关系2.掌握平行四边形、矩形、菱形、正方形的定义、性质及判定方法3.掌握三角形的中位线定理过程与方法:1.通过回顾、观察、交流等数学活动进一步发展学生的发散思维能力.2.培养学生的逻辑推理能力和演绎能力.情感态度和价值观: 培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.学习重难点:重点:平行四边形、矩形、菱形、正方形的定义、性质及判定方法难点:三角形的中位线定理的应用.课前准备教具准备教师准备PPT课件教学过程:知识结构:【设计意图】:通过对本章知识的回顾,让学生系统了解本章所学知识的相互联系.平行四边形:性质①对边平行且相等,②对角相等,邻角互补,③对角线互相平分判别①两组对边分别平行的四边形,②两组对边分别相等的四边形,③一组对边平行且相等的四边形,④对角线互相平分的四边形对应练习:1、在ABCD中,已知AB=8,AO=3,∠B=50°则CD=_______,AC=______ ,∠A=______,∠D=________2、在ABCD中∠A:∠B= 5:4,那么∠B=_____,∠C=________3、请在横线上写出结论,在括号里填理由∵四边形ABCD是平行四边形∴_________________.矩形:定义:有一个内角是直角的平行四边形是矩形性质:边:对边平行且相等.角:四个角都是直角.对角线:对角线相等.对称性:是轴对称图形判别:(1)有一个角是直角的平行四边形(2)有三个角都是直角的四边形(3)对角线相等的平行四边形(4)对角线互相平分且相等的四边形对应练习1、如图,在矩形ABCD中,AC、BD相交于点O,∠AOB= 60°,AB=6,则AC=_______2、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边长为_______3、请在横线上写出原因,在括号里填理由∵四边形ABCD是矩形,∴____________________ ( )菱形性质:边:四条边都相等,对边平行.角:对角相等,邻角互补.对角线:对角线互相垂直.对称性:轴对称图形判别:⑴有一组邻边相等的平行四边形⑵四条边都相等的四边形⑶对角线互相垂直平分的四边形⑷对角线互相垂直的平行四边形对应练习1、如图,在菱形ABCD中,AB=10,OA=8,OB=6, 则菱形的周长是_____,面积是______2、如图,在菱形ABCD中,∠B= 120°,则∠DAC=_____3、菱形的一个内角为120°,较短的对角线长为10,那么菱形的周长是_____.正方形:定义:一组邻边相等且有一个角是直角的四边形叫正方形性质:边:四条边都相等,对边平行.角:四个角都是直角.对角线:对角线相等且互相垂直平分.对称性:轴对称图形判别:⑴先判定四边形是矩形;再判定这个矩形是菱形⑵先判定四边形是菱形;再判定这个菱形是矩形对应练习1、如图,已知正方形ABCD对角线交于点O,则∠BOC=_______2、如图,以定点A、B为其中两个顶点作为正方形,一共可以作()A、4个B、3个C、2个D、1个【设计意图】:通过知识点的整理对各个环节进一步学习,对应练习,层层递进,层层加深,解决了学困生吃不了,优生吃不饱的矛盾,培养了学生思维的严谨性、发散性、灵活性,培养了自己发现问题、分析问题和解决问题的能力,使学生真正成为知识的主动建构者.三角形的中位线:三角形的中位线平行于第三边,并且等于第三边的一半.几何语言:∵在△ABC中,D 、E分别是AB 、AC的中点. ∴DE∥BC, DE= 1/2 BC例:如图,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连结CP,试判断四边形CODP的形状.课堂小结:本节课复习了平行四边形的基础知识.作业:课本 P.35第7,8题板书设计:第6章平行四边形知识结构:平行四边形:定义、性质、判别矩形:定义、性质、判别菱形:定义、性质、判别正方形:定义、性质、判别三角形的中位线:定义、性质、判别。
数学教案-平行四边形及其性质【8篇】
数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
八年级数学上册《平行四边形(复习)》教案
平行四边形【学习内容】一. 知识结构:四边形平行两组对边分别平行四边形有一直角矩形邻边相等邻边相等菱形有一直角正方形对边平行只有一组梯形两腰相等等腰梯形一腰垂直于底直角梯形⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪四边形平行四边形菱形正方形矩形梯形等腰梯形直角梯形二. 具体知识点的梳理:1. 平行四边形:(1)定义:两组对边分别平行的四边形是平行四边形。
(2)性质:<1>平行四边形的对边相等,平行四边形的对角相等。
<2>平行四边形的对角线互相平分。
(3)识别方法:<1>用定义识别。
(从边看)<2>两组对边分别相等的四边形是平行四边形。
(从边看)<3>一组对边平行且相等的四边形是平行四边形。
(从边看)<4>两组对角分别相等的四边形是平行四边形。
(从角看)<5>对角线互相平分的四边形是平行四边形。
(从对角线看)(4)平行四边形的知识运用包括三个方面:<1>直接用平行四边形的性质去解决问题,求角、线段、证明角相等、互补、证明线段相等或倍分。
<2>判定一个四边形是平行四边形,从而判定两直线平行。
<3>先判定一个四边形是平行四边形,再用平行四边形的性质去解决某问题。
2. 矩形:(1)定义:有一个角是直角的平行四边形是矩形。
(2)性质:<1>矩形的四个内角都是直角。
<2>矩形的对角线相等且互相平分。
<3>除上面两条以外,它还有平行四边形的一切性质。
(3)矩形的识别方法:<1>有一个角是直角的平行四边形;<2>对角线相等的平行四边形;<3>有三个角是直角的四边形。
3. 菱形:(1)定义:有一组邻边相等的平行四边形是菱形。
(2)性质:<1>菱形的四条边都相等。
<2>菱形的对角线互相垂直平分且每一条对角线平分一组对角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18章平行四边形
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】
1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。
【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。
【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】
一、以题代纲,梳理知识
(一)开门见山,直奔主题
同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:
(1)AB=CD,AD=BC (平行四边形)
(2)∠A=∠B=∠C=90°(矩形)
(3)AB=BC,四边形ABCD是平行四边形(菱形)
(4)OA=OC=OB=OD ,AC⊥BD (正方形)
(5)AB=CD, ∠A=∠C ( ?)
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(三)归纳整理,形成体系
1、性质判定,列表归纳
(1)矩形、菱形、正方形都具有的性质是(C)
A.对角线相等(距、正)
B. 对角线平分一组对角(菱、正)
C.对角线互相平分
D. 对角线互相垂直(菱、正)(2)正方形具有,矩形也具有的性质是(A)
A.对角线相等且互相平分
B. 对角线相等且互相垂直
C. 对角线互相垂直且互相平分
D.对角线互相垂直平分且相等
(3)如果一个四边形是中心对称图形,那么这个四边形一定(D)
A.正方形
B.菱形
C.矩形
D.平行四边形
都是中心对称图形,A、B、C都是平行四边形
(4)矩形具有,而菱形不一定具有的性质是(B)
A. 对角线互相平分
B. 对角线相等
C. 对边平行且相等
D. 内角和为3600
问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
(5)正方形具有而矩形不具有的特征是(D)
A. 内角为3600
B. 四个角都是直角
C. 两组对边分别相等
D. 对角线平分对角
问:那么正方形具有而菱形不具有的特征是什么?对角线相等
2、集合表示,突出关系
二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗
已知:如图1,□ABCD 的对角线AC 、BD 交于点O ,
EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF .
证明: ∵
变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。
B
C
变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。
变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?
对角线互相平分的四边形是平行四边形。
变式4.在图
1中,若改为过
A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?
B
可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形。
变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?为什么?
可由变式1可知四边形BGDH 是平行四边形,
再由对角线互相垂直可得四边形BGDH 是菱形。
变式6.在变式5中,若将“□ABCD ”改为“矩形ABCD ”,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长。
)
略解:∵AB=6,BC=8 ∴BD=AC=10。
设OG = x ,则BG = GD=252+x .
在Rt △ABG 中,则勾股定理得:
AB 2 + AG 2 = BG 2 , 即()()
2
2
2
2
2
252586+=
+-+x
x ,
解得 4
15
=
x . ∴GH = 2 x = 7.5.
(二)一题多解,培养发散思维
B
B
C
A
G
〖例题2〗
已知:如图,在正方形ABCD ,E 是BC 边上一点,
F 是CD 的中点,且AE = DC + CE .
求证:AF 平分∠DAE .
证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)。
∵四边形ABCD 是正方形,
∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°,
∴∠C =∠GDF
在△EFC 和△GFD 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF GDF C 2
1 ∴△EFC ≌△GFD (ASA )
∴CE=DG ,EF=GF
∵AE = DC + CE ,
∴AE = AD + DG = AG ,
∴
AF 平分∠DAE .
证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2) ∵四边形ABCD 是正方形,
∴AD // BC ,DA=DC ,∠FCG=∠D=90°
(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°,
E
B C G
∴∠FCG =∠D
在△FCG 和△FDA 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF D
FCG 2
1 ∴△△FCG 和△FDA (ASA ) ∴CG=DA
∵AE = DC + CE ,
∴AE = CG + CE = GE ,
∴∠4 =∠G ,
∴∠3 =∠4,
∴AF 平分∠DAE .
思考:如果用“截取法”,即在AE 上取点G ,
使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?
三、综合训练,总结规律 (一) 综合练习,提高解题能力
1.在例2中,若将条件“AE = DC + CE ”和结论“AF 平分∠DAE ”对换, 所得命题正确吗?为什么?你有几种证法?
2.已知:如图,在□ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,
G 、H 分别是BC 、AD 的中点.
求证:四边形EGFH 是平行四边形.(用两种方法)
(二)课堂小结,领悟思想方法
1.一题多变,举一反三。
经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。
也只有这样,才能做到举一反三,提高应变能力。
2.一题多解,触类旁通。
在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。
3.善于总结,领悟方法。
数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。