华东师大版初中数学九年级上册 第24章解直角三角形 24.4 解直角三角形教案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形1
教学目标
巩固勾股定理,熟悉运用勾股定理。
学会运用三角函数解直角三角形。
掌握解直角三角形的几种情况。
教学重难点
重点:使学生养成“先画图,再求解”的习惯。
难点:运用三角函数解直角三角形。
教学过程
我们已经掌握了直角三角形边角之间的各种关系,这些都是解决与直角三角形有关的实际问题的有效工具.
例1 如图19.4.1所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?
解 利用勾股定理可以求出折断倒下部分的长度为
26241022=+
26+10=36(米). 所以,大树在折断之前高为36米. 在例1中,我们还可以利用直角三角形的边角之间的关系求出另外两个锐角.像这样,在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.
例2 如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东40゜的方向,炮台B 测得敌舰C 在它的正南方,试求敌舰与两炮台的距离.(精确到1米)
解 在Rt △ABC 中,因为
∠CAB =90゜-∠DAC =50゜, AB BC =tan ∠CAB , 所以 BC =AB •tan ∠CAB
=2000×tan50゜≈2384(米).
又因为
︒=50cos AC
AB , 所以 AC =)(311150cos 200050cos 米≈︒=︒AB 答:敌舰与A 、B 两炮台的距离分别约为3111米和2384米.
在解直角三角形的过程中,常会遇到近似计算,本书除特别说明外,边长保留四个有效数字,角度精确到1′.
解直角三角形,只有下面两种情况:
(1)已知两条边;
(2)已知一条边和一个锐角
课堂练习
1. 在电线杆离地面8米高的地方向地面拉一条长10米的缆绳,问这条缆绳应固定在距离电线杆底部多远的地方?
2. 海船以32.6海里/时的速度向正北方向航行,在A 处看灯塔Q 在海船的北偏东30゜处,半小时后航行到B 处,发现此时灯塔Q 与海船的距离最短,求灯塔Q 到B 处的距离.(画出图形后计算,精确到0.1海里)