连续波雷达介绍

连续波雷达介绍

连续波雷达介绍

?连续波雷达是发射持续的等幅波信号,用以探测活动目标的雷达。按信号形式,可分为非调制单频连续波雷达、调频连续波雷达、相位编码连续波雷达和多频连续波雷达等。

?

?

?非调制单频连续波雷达它发射未经任何调制的载频为单一频率(f0)的纯连续波信号。当电磁波遇到运动目标时,其回波信号的频率将产生多普勒频移,多普勒频移量与目标的径向速度成正比。接收天线收到的回波信号与发射信号混频后,其差频信号即为目标的多普勒频率信号,以此即可计算出目标的速度,并显示在荧光屏上。非调制单频连续波雷达能对具有任何速度的目标测速,并且不产生速度模糊,但不能测量目标的距离。

?

?

?调频连续波雷达它的工作频率按一定规律作周期性变化。常用的线性调频连续波雷达的工作频率随时间作周期性的线性变化。目标回波信号与发射信号混频而产生频差信号,测量频率差值的大小确定目标的距离,并根据回波的多普勒频率测定其速度。

?

?

?相位编码连续波雷达它的发射信号由周期性变化的编码子脉冲序列进行相位调制,根据目标回波信号与发射信号的相位变化的起始时间之差进行测

调频连续波雷达简要分析

连续波调频雷达 雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达,常规脉冲雷达是周期性地发射高频脉冲。而连续波雷达即是发射连续波信号的雷达,它的信号可以是单频、多频或者调频(多种调制规律如三角形、锯齿波、正弦波、噪声和双重调频或者是编码调制)的。单频连续波雷达可用于测速,多频(至少三个频点)和调频连续波雷达可用于测速和测距。它的优点是不存在距离盲点、精度高、带宽大、功率低、简单小巧,缺点是测距量程受限、存在多普勒距离耦合和收发很难完全隔离。 f 锯齿波调频 频率-时间特性曲线 调频连续波雷达参数与性能分析: 1、频率: 13.6GHz (±15MHz) (Ku 波段) 2、扫频带宽F ?: 30MHz 距离分辨率:m F C R 51030210326 8 =???==?? 3、调制周期T : ms 06.1=T 理论最大量程:Km C T R 1591031053.02 max 83=???=?=- 0 调制周期T 带宽 F t

4、实际回波最大迟延: s d m 16.0t max = 实际最大量程: Km C R d 241031008.02 t max 83max =???=?= -‘ 实际最大差拍频率: M T t F d b 53.4f max max =?=? 5、相干处理时间间隔:ms s d 9.0m 16.0ms 06.1t -T T max Coherent =-== f 锯齿波调频 频率-时间特性曲线 可采点数: 36000m 9.040T Fs N Coherent =?=?=s MHz 实际频率分辨率: Hz MHz N Fs 111136000 400f === 对应的实际距离分辨率:m F C T R 89.5103021111 1031006.120f 6 83=??????=??= ??‘ (量程越小,差拍频率越小,可获得的越大的相干处理时间,能该晒距离分辨率) 6、速度多普勒耦合: 速度较小不考虑,采用锯齿波调频信号时,一般直接将其影响加到系统误差中去。若采用三角波调频倒可以再信号处理时对其进行补偿。 0 调制周期T 带宽 F t

调频连续波(FMCW)雷达微波物位计的工作原理

调频连续波(FMCW)雷达/微波物位计的工作原理 FMCW是取英文Frequency Modulated Continuous Wave的词头的缩写。FMCW 技术是在雷达物位测量设备中最早使用的技术。 FMCW微波物位计采用线性的调制的高频信号,一般都是采用10GHz或24GHz微波信号。它是一种基于复杂数学公式的间接测量方法,由频谱计算出物位距离。天线发射出被线性调制的连续高频微波信号并进行扫描,同时接收返回信号。发射微波信号和返回的微波信号之间的频率差与到介质表面的距离成一定比例关系。 如果我们认为被线性调制的发射微波信号的斜率为K,发射信号和反射信号的频率为rf,滞后时间差为rt,发射天线到介质表面的距离为R,C为光速。 那么我们可以得到:rt = 2R/C 由于采用的是调频的微波信号,因此我们可得:rf = K×rt; 两式合并后,我们得到公式: R = C× rf/2K (公式2) 根据公式2,我们可以看到,天线到介质表面的距离R与发射 频率和反射频率差rf成正比关系。 信号处理部分将发射信号和回波信号进行混合处理,得到混合信号频谱,并通过独立的快速傅立叶(FFT)变化来区分不同的频率信号,最后得到准确地数字回波信号,计算出天线到介质表面的距离。 实际上,FMCW信号是在两个不同的频率之间循环。目前市场上的FMCW微波物位计主要以两种频率为主:9到10GHz和24.5到25.5GHz。 采用FMCW原理的微波物位计都具有连续自校准的处理功能。被处理的信号与一个表示已知固定距离的内部参照信号进行比较。任何差值会自动得到补偿,这样消除了由温度波动或变送器内部电子部件老化引起的可能的测量漂移。 2.2、脉冲 脉冲雷达物位计,与超声波技术相似,使用时差原理计算到介质表面的距离。设备传输固定频率的脉冲,然后接收并建立回波图形。信号的传播时间直接与到介质的距离成一定比例。但是与超声波使用声波不同,雷达使用的是电磁波。它利用好几万个脉冲来“扫描”容器并得到完整的回波图。 通常,采用脉冲方式的微波物位计的精度和可靠性都不如FMCW微波位计,但是脉冲物位计因为价格较FMCW低很多,因此是目前市场应用得最多的微波物位计。当然,很多生产厂商通过增强回波处理功能等方式大大提高了脉冲雷达的可靠性。

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

提高线性调频连续波雷达测距精度的ZFFT算法

航天电子对抗第22卷第1期 收稿日期:2005-07-06;2005-10-18修回。 作者简介:张红(1982-),女,硕士研究生,主要研究方向是雷达信号处理。 提高线性调频连续波雷达测距精度的ZFFT 算法 张 红,王晓红,郭 昕 (北京理工大学电子工程系,北京 100081) 摘要: 线性调频连续波(LFM CW )雷达在理论上有很高的测距精度,然而在实际系统中,由于FFT 变换的栅栏效应,使得其距离分辨力和测距精度处于同一数量级,满足不了近距离测距时高精度的要求。在传统的FFT 处理的基础上,采用ZFFT 算法,在运算量增加不多的情况下,完成对中频回波主瓣的局部细化,大大提高了LFM CW 雷达的测距精度,以满足高精度测距的要求。 关键词: 雷达;测距;LFM CW;ZFFT 中图分类号: TN958.94 文献标识码: A Improving ra nge measuring precision o f LFMC W radar usin g ZFFT method Zhang Hong,Wang Xiaohong,Guo Xin (Department of Electronic and Engineering,Beijing Institute of Technology ,Beijing 100081,China) Abstract:T he L inea r Fr equency M o dulated Continuous W ave (L FM CW )Radar has high theor etical r ang e measuring precision.But its practical range precision is of the same mag nitude as the rang e resolut ion because of the inher ent frequency space of FFT ,w hich can not satisfy the high precisio n requirement fo r the near r ang e measuring.ZF FT met ho d is adopted to r educe fr equency space of the main lo be of echo r ang e spectr um o n the FFT with incr easing less operat ion.T his method can gr eatly improv e the range precisio n of L FM CW r adar and satisf y the pr actical needs o f high precisio n r adar rang measuring. Key words:rada r;range measur ing;L FM CW;ZFF T 1 引言 线性调频连续波(LFM CW)能实现较高的距离和多普勒频率的分辨力,在各种近距离雷达,防撞雷达,末制导雷达,远距离天波、地波雷达以及飞机高度表中已得到广泛应用。LFM CW 雷达回波中频的处理普遍采用数字信号处理方式来获取回波中频的距离谱,然后根据一定的判决准则来判定目标的有无,并通过计算过门限的目标频谱值来测量目标的距离[1] ,其系统 框图如图1所示。 该方法是通过目标的回波和目标发射波形混频后得到差拍信号,对差拍信号进行FFT 运算,计算出回波中频在距离轴上的功率谱曲线(即距离谱),可以充分利用LFM CW 雷达的高距离分辨和高测距精度的特点,适用于更为复杂的目标环境,是微波、毫米波测 图1 L FM CW 雷达系统示意图 距和成像的重要手段。但是,由于FFT 的 栅栏效应 [2-3],使得通过FFT 变换得到的距离谱具有固定的采样间隔 R ( R 为雷达的距离分辨力),从而产生 R /2的测距误差。当测量的距离较远时, R R ,测量误差远远小于目标的距离,相对误差较小;但当测量距离较近时, R !R ,相对测量误差较大。为此,如何克服FFT 的栅栏效应、提高近距离的测距精度的问题,就成为LFMCW 测距雷达重要的研究课题。本文采用ZFFT 对距离谱进行局部细化,可在增加较少运算量的情况下,大幅提高LFM CW 测距雷达的测距精度。 48

连续波雷达及信号处理技术探讨

连续波雷达及信号处理技术探讨 摘要随着社会的进步和科学技术的发展,雷达的信号处理技术也在不断更新升级。近年来连续波雷达的使用在不断增多,因其自身具有发射功率小、隐蔽性强以及抗反辐射导弹等特点,被广泛应用于各种军事以及民用雷达之中。本文就针对连续波雷达进行概述,然后针对其信号处理方面的技术进行探讨,希望能给有关人士以借鉴。 关键词连续波;雷达信号;处理技术 前言 在我们现阶段所有雷达的使用中,主要以连续波和脉冲多普雷体制的雷达数量最多。连续波雷达具有十分明显的特点,发射功率小,抗干扰能力强以及抗反辐射导弹能力强,有了这些特点,就会使得连续波雷达不仅具有很大的作用距离,而且信号不容易被截获和干扰。不仅如此,连续波雷达还具有体积小、重量轻以及高机动性灯优势,明显的增强雷达的使用范围,也能够更好地适应各种不良环境。就现阶段而言,连续波雷达一般是用于直升机载预警、地面战场侦察以及炮瞄装备上,当然,民用方面的应用也很广泛,这里就不一一赘述了。 1 连续波雷达的定义和特点 所谓连续波雷达,顾名思义,就是可以对电磁波进行连续发射,然后根据信号发射形式的差异其分为两大类,分别是非调质单频与调频这两种。连续波雷达出现的非常早,早在1924年,英国就可是对连续波调频测距等方面进行细致的分析,然后对相关的电离层进行观测。但是在应用方面,连续波雷达最早被用于二战中,当时主要承担着飞机侦察以及对面观测这两方面的任务。但是在当时大规模使用后,发现雷达经常会出现手法隔离的情况,导致工作效果很不理想,然后又通过大量的研究,最终通过收发开关的出现解决了这个问题。随着科技不断发展,现在已经可以仅通过一天线就可以实现对信号的接收和发送,并且具有好的效果。 在连续波雷达的整个使用过程中,不需要高压的输入,也不需要点火,整个过程是通过多元化的方式进行信号的调制,大大增强了信号的稳定性以及雷达的信号处理能力。因此,在相同条件下,连续波雷达无疑受到更多的青睐,在世界上都得到了广泛的应用。而且,连续波雷达还具有体积小、重量轻、线体传输损耗低、使用方便等特点,这些特点使得连续波雷达的接收机可以使用较窄的宽带脉冲,有效了解决了杂波出现的问题,大大提高了雷达的抗干扰能力。连续波雷达对速度以及距离进行测量的过程中,具有十分高的精准度,而且几乎不受外因的干扰,具有十分优越的性能。连续波雷达的特点如下: 首先是运行频率低。运行频率低的这个特点,使得这种雷达广泛应用于军事中,对于侦察工作十分有利。而且在对信号进行接收以后,可以用连续波雷达对

调频连续波

信号采集与处理单元关键技术研究 1.1 太赫兹频段线形调频连续波雷达系统及工作原理 1.1.1 LFMCW雷达的基本特点 调频连续波(FMCW)雷达一种通过对连续波进行频率调制来获得距离与速度信息的雷达体制。雷达调频可以采用多种方式,线性和正弦调制在过去都已经得到广泛的运用。其中线性调频是最多样化的,在采用FFT处理时它也是最适合于在大的范围内得到距离信息的。鉴于此原因,有关调频连续波的焦点问题基本上都集中在LFMCW雷达上。 线性调频连续波(LFMCW)雷达是具有高距离分辨率、低发射功率、高接收灵敏度、结构简单等优点,不存在距离盲区,具有比脉冲雷达更好的反隐身、抗背景杂波及抗干扰能力的特点,且特别适用于近距离应用,近年来在军事和民用方面都得到了较快的发展。主要优点可归结为以下三方面: LFMCW最大的优点是其调制很容易通过固态发射机实现; 要从LFMCW系统中提取出距离信息,必须对频率信息进行处理,而现在这一步可以通过基于FFT的处理器来完成; LFMCW的信号很难用传统的截获雷达检测到。 除了上述优点外,LFMCW雷达也存在一些缺点。主要表现在两个方面: 作用距离有限:LFMCW雷达发射机和接收机是同时工作的,作用距离增大时,

发射机泄漏到接收机的功率也增加; 距离-速度耦合问题:LFMCW雷达采用的是超大时带积的线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统的实际分辨能力下降,而且会引起运动目标测距误差。 1.1.2 太赫兹频段LFMCW雷达系统 根据目前国内的元器件水平和技术条件,在能够满足太赫兹波探测系统技术指标的前提下,本系统工作频率为220GHz,采用宽带线性调频探测体制方案,依靠天线测量目标的散射特性获取目标信息和距离信息。线性调频连续波雷达具有低截获特性,在距离速度模糊方面与普通的脉冲雷达相比具有较大优势。对于调频体制,利用在时间上改变发射信号的频率并与接收信号频率进行混频处理不仅能测定目标距离,而且能够精确测量目标径向速度,所以线性调频探测系统实现了太赫兹频段雷达的主动探测功能。 现代的连续波雷达普遍采用零拍接收机,也可称为零中频超外差接收机,本地振荡器就用发射机泄漏过来的信号代替,与回波信号直接混频,产生窄带差拍信号,经特性滤波和放大后,由A/D采样进行数字化处理。因此,LFMCW雷达结构较 为简单,易于实现。 频率合成器在基准信号源作用下产生线性调频信号,并通过正交解调和倍频,生成所需频段的线性调频信号,一路经过多级放大后由发射天线发射出去,另一路耦合到混频器作为本振信号,高频电磁波遇目标后反射回接收天线,经放大后

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、 适用范围 脉冲多普勒(PD )雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、 PD 雷达的定义及其特征 (1) 定义:PD 雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2) 特征:①具有足够高的脉冲重复频率(简称PRF ),以致不论杂波或所观 测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF 很高,通常对所观测的目标产生距离模糊。 3、 PD 雷达的分类 图1 PD 雷达的分类图 ① MTI 雷达(低PRF ):测距清晰,测速模糊 ② PD 雷达(中PRF ):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③ PD 雷达(高PRF ):测距模糊,测速清晰 4、 机载下视PD 雷达的杂波谱分析 机载下视PD 雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 表 1

5、PRF的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线;

连续波雷达测速测距原理

连续波雷达测速测距原理 一. 设计要求 1、当测速精度达到s ,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率; 2、若调频信号带宽为50MHz ,载频24GHz ,三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),请用matlab 对算法进行仿真。 二. 实验原理和内容 1. 多普勒测速原理 依据芯片参数,发射频率为24GHz ,由上式可以得出,当测速精度达到s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz 。 2.连续波雷达测距基本原理 设天线发射的连续波信号为:① 则接收的信号为:② 若目标距离与时间关系为:③ ) 2cos()(000?π+=t f t x f T ] )(2cos[)(000 ?π+-=r f R t t f t x t v R t R r -=0)(图 频域测速原理 N f f f f s d m d 2/||max max =-=?max max /2/4/4r d s v f f N T λλλ?=?==

则延迟时间应满足以下关系:④ 将④代入②中得到 其中 2 f c v f r d = 根据上图可以得到,当得到 t ?,便可以实现测距,要想得到 t ?,就必须测得fd 。 已知三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),则可以通过:③ ④ 分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。 02() r r r t R v t c v =--} )](2 [2cos{)(0000?π+---=t v R v c t f t x r r f R ] 22)(2cos[00 000?ππ+-+=c R f t f f d t v R t R r -=0)(02()r r r t R v t c v =--

FMCW可调连续波雷达原理

调频连续波FMCW雷达理 FMCW是取英文Frequency Modulated Continuous Wave的词头的缩写。FMCW 技术是在雷达物位测量设备 中最早使用的技术。 FMCW微波物位计采用线性的调制的高频信号,一般都是采用10GHz或24GHz微波信号。它是一种基于复杂数学公式的间接测量方法,由频谱计算出物位距离。天线发射出被线性调制的连续高频微波信号并进行扫描,同时接收返回信号。发射微波信号和返回的微波信号之间的频率差与到介质表面的距离成一定比例 关系。 如果我们认为被线性调制的发射微波信号的斜率为K,发射信号和反射信号的频率为rf,滞后时间差为rt, 发射天线到介质表面的距离为R,C为光速。 那么我们可以得到:rt = 2R/C 由于采用的是调频的微波信号,因此我们可得: rf = K×rt; 两式合并后,我们得到公式: R = C× rf/2K (公式2) 根据公式2,我们可以看到,天线到介质表面的 距离R与发射频率和反射频率差rf成正比关系。 信号处理部分将发射信号和回波信号进行混合处理,得到混合信号频谱,并通过独立的快速傅立叶(FFT)变化来区分不同的频率信号,最后得到准确地数字回波信号,计算出天线到介质表面的距离。 实际上,FMCW信号是在两个不同的频率之间循环。目前市场上的FMCW微波物位计主要以两种频率为主: 9到10GHz和24.5到25.5GHz。 采用FMCW原理的微波物位计都具有连续自校准的处理功能。被处理的信号与一个表示已知固定距离的内部参照信号进行比较。任何差值会自动得到补偿,这样消除了由温度波动或变送器内部电子部件老化引 起的可能的测量漂移。 2.2、脉冲 脉冲雷达物位计,与超声波技术相似,使用时差原理计算到介质表面的距离。设备传输固定频率的脉冲,然后接收并建立回波图形。信号的传播时间直接与到介质的距离成一定比例。但是与超声波使用声波不同,雷达使用的是电磁波。它利用好几万个脉冲来“扫描”容器并得到完整的回波图。 通常,采用脉冲方式的微波物位计的精度和可靠性都不如FMCW微波位计,但是脉冲物位计因为价格较FMCW 低很多,因此是目前市场应用得最多的微波物位计。当然,很多生产厂商通过增强回波处理功能等方式大

线性调频连续波合成孔径雷达成像算法

第6卷 第3期 信 息 与 电 子 工 程 Vo1.6,No.3 2008年6月 INFORMATION AND ELECTRONIC ENGINEERING Jun.,2008 文章编号:1672-2892(2008)03-0167-05 线性调频连续波合成孔径雷达成像算法 杨 蒿,蔡竟业 (电子科技大学 通信与信息工程学院140教研室,四川 成都 610054) 摘 要:线性调频连续波(LFMCW)合成孔径雷达(SAR)因体积小,重量轻,成本相对低,成为 近来研究的热点。连续波SAR 的回波信号通常经过相干解调处理。针对其独特的应用背景和信号模 型,对现有的各种成像处理算法进行了讨论和比较,总结出其优缺点及应用范围。并对LFMCW- SAR 今后的发展提出了展望。 关键词:线性调频连续波;合成孔径雷达;成像算法 中图分类号:TN958 文献标识码:A Linear Frequency Modulated Continuous Wave-Synthetic Aperture Radar Imaging Algorithm YANG Hao,CAI Jing-ye (School of Communication and Information Engineering,UESTC,Chengdu Sichuan 610054,China ) Abstract:Linear Frequency Modulated Continuous Wave(LFMCW)-Synthetic Aperture Radar(SAR) has become a focus in recent researches,due to its compactness and low cost. This paper analyses and compares various imaging algorithms,based on the special application background and signal model derived from its dechirped raw data. Then the advantages,disadvtanges and application fields of the algorithms are presented. Future development of LFMCW SAR is prospected. Key words:Linear Frequency Modulated Continuous Wave;Synthetic Aperture Radar;imaging algorithm 目前机载对地观测受到越来越广泛的关注,其应用领域不仅涵盖搜索救援、区域监测、灾害监视与控制等民用方面,还包括小型无人机对地侦察等军事领域。合成孔径雷达与光电成像设备相比可以全天候、全天时工作,如在云雨雾等恶劣气候及夜晚条件下工作,而且具有实时大面积连续成像能率[1]。但是,传统的脉冲SAR 由于其设备复杂,体积大,重量重,成本相对较高等缺陷限制了其应用层面,特别是不能安装到小型飞机如直升机和无人机上完成一些紧急任务,也不适于低成本的民用项目[2]。因此,LFMCW ?SAR [3]以其紧凑、低耗、相对便宜且高分辨力的优点逐渐发展起来[4?10]。连续波SAR 概念自1988年被提出,并应用于飞机高度计之后,特别是连续波SAR 在发射能量一定的前提下,与脉冲SAR 相比拥有更低的发射功率,并且具有更好的隐蔽性,发射机也可以使用全固态设计,使得系统具备了高可靠性和较少维护的优点[11?14]。同时,连续波SAR 接收机前端通过相干混频处理得到差频信号,在成像带较窄的情况下,可以大大降低信号带宽,从而降低对信号高速采集与处理的需求。 本文描述了LFMCW ?SAR 的去调频信号模型,在该信号模型的基础上,讨论针对去调频信号的各种成像处理算法,对各种算法进行了比较总结,最后对未来LFMCW ?SAR 的发展进行了展望。 1 LFMCW ?SAR 的信号模型 LFMCW ?SAR 接收到的回波信号经去斜、下变频后可表示为: 2 022444(,;)exp (j )exp [j ()()]exp [j ()]c r r a r t r t c t c r k k S t t r C r t r r r r c c c λπππ=????? (1) 收稿日期:2007-11-22;修回日期:2008-01-08

调频连续波

三、信号采集与处理单元关键技术研究 Equation Section 3 3.1 太赫兹频段线形调频连续波雷达系统及工作原理 3.1.1 LFMCW雷达的基本特点 调频连续波(FMCW)雷达一种通过对连续波进行频率调制来获得距离与速度信息的雷达体制。雷达调频可以采用多种方式,线性和正弦调制在过去都已经得到广泛的运用。其中线性调频是最多样化的,在采用FFT处理时它也是最适合于在大的范围内得到距离信息的。鉴于此原因,有关调频连续波的焦点问题基本上都集中在LFMCW雷达上。 线性调频连续波(LFMCW)雷达是具有高距离分辨率、低发射功率、高接收灵敏度、结构简单等优点,不存在距离盲区,具有比脉冲雷达更好的反隐身、抗背景杂波及抗干扰能力的特点,且特别适用于近距离应用,近年来在军事和民用方面都得到了较快的发展。主要优点可归结为以下三方面: LFMCW最大的优点是其调制很容易通过固态发射机实现; 要从LFMCW系统中提取出距离信息,必须对频率信息进行处理,而现在这一步可以通过基于FFT的处理器来完成; LFMCW的信号很难用传统的截获雷达检测到。 除了上述优点外,LFMCW雷达也存在一些缺点。主要表现在两个方面: 作用距离有限:LFMCW雷达发射机和接收机是同时工作的,作用距离增大时,发射机泄漏到接收机的功率也增加; 距离-速度耦合问题:LFMCW雷达采用的是超大时带积的线性调频信号,根据雷达信号模糊函数理论,它必然存在距离与速度的耦合问题,这不仅导致系统

的实际分辨能力下降,而且会引起运动目标测距误差。 3.1.2 太赫兹频段LFMCW雷达系统 根据目前国内的元器件水平和技术条件,在能够满足太赫兹波探测系统技术指标的前提下,本系统工作频率为220GHz,采用宽带线性调频探测体制方案,依靠天线测量目标的散射特性获取目标信息和距离信息。线性调频连续波雷达具有低截获特性,在距离速度模糊方面与普通的脉冲雷达相比具有较大优势。对于调频体制,利用在时间上改变发射信号的频率并与接收信号频率进行混频处理不仅能测定目标距离,而且能够精确测量目标径向速度,所以线性调频探测系统实现了太赫兹频段雷达的主动探测功能。 现代的连续波雷达普遍采用零拍接收机,也可称为零中频超外差接收机,本地振荡器就用发射机泄漏过来的信号代替,与回波信号直接混频,产生窄带差拍信号,经特性滤波和放大后,由A/D采样进行数字化处理。因此,LFMCW雷达结构较为简单,易于实现。基本框图如图19所示: 图1调频连续波雷达基本组成框图 频率合成器在基准信号源作用下产生线性调频信号,并通过正交解调和倍频,生成所需频段的线性调频信号,一路经过多级放大后由发射天线发射出去,另一路耦合到混频器作为本振信号,高频电磁波遇目标后反射回接收天线,经放大后

【CN109946659A】一种车载毫米波雷达线性调频连续波运动频率扩展校正方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910170757.8 (22)申请日 2019.03.07 (71)申请人 东南大学 地址 210000 江苏省南京市玄武区四牌楼2 号 (72)发明人 黄永明 曹孟德 宫玉琴 张铖  王海明  (74)专利代理机构 南京经纬专利商标代理有限 公司 32200 代理人 许方 (51)Int.Cl. G01S 7/40(2006.01) (54)发明名称一种车载毫米波雷达线性调频连续波运动频率扩展校正方法(57)摘要本发明公开一种车载毫米波雷达线性调频连续波频率扩展校正方法,该方法步骤为:首先对每根接收天线的线性调频连续波中频信号,按慢时间维补零并进行FFT运算;其次,根据系统的速度分辨率计算新的慢时间维频谱单元对应的速度刻度;接着按照每个新的慢时间维频谱单元和快时间维时域单元,根据对应的速度刻度,对每根接收天线中频信号慢时间维FFT结果进行匹配重排并进行运动相位补偿;最后对匹配重排及相位补偿后的慢时间维FFT运算结果按照快时间维进行FFT运算,得到无运动频率扩展影响的线性调频连续波二维FFT运算结果。该方法能够解决已有技术方案中车载毫米波雷达线性调频连续波的运动频率扩展问题,明显地提升系统性能,其复杂度较低、 实现简单。权利要求书2页 说明书5页 附图4页CN 109946659 A 2019.06.28 C N 109946659 A

1.一种车载毫米波雷达线性调频连续波频率扩展校正方法,其特征在于,所述的方法步骤包括: (1)对每根接收天线的中频信号按照慢时间维补零并进行FFT运算; (2)按照雷达系统参数计算系统速度分辨率,并由此计算得到速度刻度向量,作为新的慢时间维坐标刻度对应的速度值; (3)对每根接收天线中频信号的慢时间维FFT运算结果,按照每个快时间维时域单元和每个新的慢时间维频谱单元,根据对应的速度刻度向量进行频谱单元位置重排; (4)对每根接收天线中频信号进行频谱单元位置重排后的慢时间维FFT运算结果,按照每个快时间维时域单元和新的慢时间维频谱单元,计算其对应的运动相位补偿因子,并根据其进行运动相位补偿; (5)对每根接收天线中频信号进行频谱单元位置重排和相位补偿后的慢时间维FFT运算结果,按照快时间维进行FFT运算,得到无运动频率扩展的车载毫米波雷达线性调频连续波中频信号二维FFT运算结果。 2.根据权利要求1所述的一种车载毫米波雷达线性调频连续波运动频率扩展校正算法,其特征在于,所述步骤(1)中,对每根接收天线的中频信号按照慢时间维补零并进行FFT 运算, 得到其计算结果为其中,N q 为系统单个扫频率的采样点数,即快时间维采样点数,N s 为系统的慢时间维FFT运算点数,M为系统的扫频重复个数,即慢时间维采样点数,N c 为系统慢时间维FFT运算时的补零点数。 3.根据权利要求2所述的一种车载毫米波雷达线性调频连续波运动频率扩展校正算法,其特征在于, 所述步骤(2)中的系统速度分辨率为: 式中,c为电磁波在自由空间的传播速度,T为系统扫频重复时间,f 0为载波中心频率,由式(1)与系统慢时间维采样点数M计算新的慢时间维频谱单元位置m对应的速度值为: V[m]=(M -m+1)·v res ,m=1,2,...M。 (2) 4.根据权利要求3所述的一种车载毫米波雷达线性调频连续波运动频率扩展校正算法,其特征在于:所述步骤(3)中,对每根接收天线中频信号慢时间维FFT运算结果,按照每个新的慢时间维频谱单元和快时间维时域单元根据其对应的速度值进行频谱单元位置重排,具体方法为: (3.1)对每根接收天线中频信号慢时间维FFT运算结果,按照每个慢时间维频谱单元位置n s 和快时间维时域单元位置 计算其对应的速度参数为: 式中,μ为扫频斜率,μ=B/T,B为扫频带宽; (3.2)按照每个新的慢时间维频谱单元位置m和快时间维时域单元位置 在不同的原慢时间维频谱单元中搜索对应速度值与V[m]最接近的频谱单元位置为: 权 利 要 求 书1/2页2CN 109946659 A

连续波雷达及信号处理技术初探

龙源期刊网 https://www.360docs.net/doc/1c13476591.html, 连续波雷达及信号处理技术初探 作者:祁玉芬霍立双 来源:《科学与财富》2018年第01期 摘要:连续波雷达,主要就是连续发生电磁波的雷达,可以根据不同发射信号的形式,将其划分成为非调制单频与调频两种类型。在连续波雷达系统实际应用的过程中,应当科学使用信号处理技术开展相关处理工作,在实际观测的过程中,解决收发开关中存在的问题,保证雷达信号接收与发射工作效果。 关键词:连续波雷达;信号处理技术;应用措施 在使用信号处理技术对连续波雷达进行控制的过程中,应当建立多元化的管理机制,明确各方面工作要求,创新信号处理工作形式,保证能够提升信号处理技术的应用水平,创建专门的管理机制。 一、连续波雷达定义与特征分析 对于连续波雷达而言,主要是针对电磁波进行连续的发射,根据发射信号形式将其划分成为非调制单频与调频两种类型。在1924年的时候,英国就开始通过连续波课调频测距相关分析,对电离层开展观测工作。且在第二次世界大战的过程中,已经使用连续波雷达开展飞机观测与地面观测工作。然而,在实际使用的过程中,经常会出现收发隔离的现象,难以保证工作效果,因此,使用收发开关对此类问题进行了解决。当前,在使用连续波雷达的过程中,已经能够通过同一天线开展信号接收与发射工作,产生良好的工作效果。 在使用连续波雷达发射机设备的过程中,不需要高压的支持,也不会出现打火的现象,能够利用多元化的方式开展信号调制工作,有利于提升信号的发射效率,增强雷达处理效果,因此,在相同体积、重量的雷达设备中,连续波雷达受到广泛关注与重视,应用于世界的各个国家。同时,连续波雷达的体积很小,重量很轻,馈线的损耗最低,使用流程简单,与其他雷达相较可以得知,连续波雷达在接收机方面,所使用的宽带脉冲较窄,有利于抵抗杂波问题,提升电磁干扰的抵抗能力。在应用连续波雷达对距离与速度进行测量的过程中,其测量准确性较高,不会受到其他因素的干扰。对于连续波雷达而言,其特点主要表现为以下几点: (一)发射机的运行功率较低 连续波雷达的发射机运行功率很低,有利于应用在侦查工作中。一般情况下,在使用侦查接收机的过程中,可以利用连续波雷达对其进行处理,提升工作效率,加快侦查速度,保证瞬时频率符合相关规定。同时,在使用连续波雷达的过程中,还要使用伪随机码调相方式对其进行处理,减少外界带来的干扰,做好反侦察工作,保证可以符合实际发展需求。 (二)接收机的宽带很窄

连续波雷达方案

全固态连续波导航雷达 性能与指标论证一、体制 调频连续波(FMCW)。 二、系统组成 系统组成见下图。 图1.系统组成框图 三、技术指标 1、频率 X波段,9.3GHz~9.4GHz

2、峰值功率 100mW 3、扫频带宽 小于等于75MHz 4、扫频重复频率 200Hz 5、扫频时宽 1.2ms 6、接收机噪声系数 小于等于6dB 7、天线转速 24rpm,+/-10% 8、收/发天线水平波束宽度 5.2o+/-10%(-3dB宽度) 9、收/发天线垂直波束宽度 25o+/-20%(-3dB宽度)

10、收/发天线旁瓣电平 小于等于-18dB(正负10o内) 小于等于-24dB(正负10o外) 11、极化方式 水平极化 12、通信协议 高速以太网或串口 四、性能指标 1、探测距离 典型目标探测距离见下表。 表1.探测距离表

2、量程 50m~24nm, 17档可调 3、功耗 工作:19W @13.8Vdc 待机:2W @13.8Vdc~150ma 4、电源 9V~31.2V直流 5、使用环境 工作温度:-25o~+55 o 相对湿度:+35o,95%RH

防水:IPX6 相对风速:51m/s(最大100节) 五、 组成原理 1、收发系统组成 图2.收发系统原理框图 2、信号处理系统组成 图3.信号处理原理框图 六、 关键指标分析论证 1、A/D 采样率与采样位数 雷达最大量程24nm ,回波最大延迟: max 8 2241852 296.32310 d t s μ??==?

最大差拍频率: max max 75 296.3218.521200 b d m F f t MHz T ?= =?= 应选择A/D 采样频率f s ≥2f bmax , 实际可选: f s =40MHz 。 采样位数选16位,对应动态范围96dB 。 2、距离分辨率 (1)、理论分辨率 发射波形扫频带宽ΔF=75MHz ,理想距离分辨率为: 8 06 3102227510 C R m F ??===??? 对自差式FMCW 雷达,当目标回波延时t d ,有效带宽降为: (1)d m t F F T '?=?- 式中T m 为调制时宽。实际目标距离分辨率为: 2(1) d m C R t F T ?= ?- 从上式可以看出,FMCW 雷达在不同的探测距离上有不同的距离分辨率。距离越远,分辨率越差。取T m =1.2ms,最小和最大量程的距离分辨率为: 量程=50m, 距离分辨率ΔR ≤2m 量程=24nm, 距离分辨率ΔR ≤2.66m 以上给出的是距离分辨率的理论计算值,实际距离分辨率还与信

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

相关文档
最新文档