2021届全国天一大联考新高考模拟试卷(九)数学(理)试题

合集下载

2021届全国天一大联考新高考模拟考试(九)理科数学

2021届全国天一大联考新高考模拟考试(九)理科数学

2021届全国天一大联考新高考模拟考试(九)理科数学★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21iz i=+在复平面内对应点的坐标为( ) A. ()1,1-- B. ()1,1-C. ()1,1D. ()1,1-【答案】C 【解析】 【分析】由除法法则计算复数,化为复数的代数形式,得对应点坐标.【详解】21i i +2(1)1(1)(1)-==+-+i i i i i ,对应点为(1,1). 故选:C.【点睛】本题考查复数的除法运算,考查复数的几何意义.属于基础题.2.已知集合{}2|20A x x x =--<,{}|3B x a x a =<<+,若{}|02A B x x ⋂=<<,则AB =( )A. {}|23x x -<<B. {}|13x x -<<C. {}|03x x <<D. {}|21x x -<<【答案】B【解析】 【分析】先根据一元二次不等式的解法,求出集合{|12}A x x =-<<,然后根据{|02}A B x x ⋂=<<得出0a =,从而可得出集合B ,然后进行并集的运算,即可求出AB .【详解】解:由题可知,{}2}|20{|12A x x x x x =-<-=<-<, 由于{|3}B x a x a =<<+,且{|02}A B x x ⋂=<<,0a ∴=,{|03}B x x ∴=<<,{|13}A B x x ∴=-<<.故选:B .【点睛】本题考查了描述法的定义,一元二次不等式的解法,交集和并集的运算,属于基础题. 3.已知向量()0,1a =,()1,3b =,则a 在b 上的投影为( )D.12【答案】B 【解析】 【分析】由向量的数量积公式得出a 与b 的夹角的余弦值,再由cos a θ得出a 在b 上的投影. 【详解】设a 与b 的夹角为θ11a ==,(12b =+=,011a b =⨯+=⋅2cos 3a b ba θ⋅∴=⋅=则a 在b 上的投影为cos 1a θ==故选:B【点睛】本题主要考查了平面向量数量积的几何意义,属于中档题.4.某校2名教师、4名学生分成2个小组,分别到两个不同的实验室做实验.每个小组由1名教师和2名学生组成,则教师A 和学生B 在同一个小组的概率为( )A.16B.14C.13D.12【答案】D 【解析】 【分析】把四个学生编号,分配两个给教师A ,写出所示有基本事件可知教师A 和学生B 在同一个小组所含基本事件的个数.即可计算出概率.【详解】4名学生编号为,,,B C D E ,与教师A 同一组的基本事件有,,,,,BC BD BE CD CE DE 共6个,其中教师A 和学生B 在同一个小组所含基本事件有,,BC CD BE 共3个,所以所求概率为3162P ==. 故选:D .【点睛】本题考查古典概型,解题关键是用列举法写出事件空间中的所有基本事件.5.某数学小组在国际数学日(每年3月14日)开展相关活动,其中一个活动是用随机模拟实验的方法获得π的近似值.现通过计算器随机获得500个点的坐标()(),y 01,01x x y <<<<,其中有399个点的坐标满足221x y +≤,据此可估计π的值约为( )A. 3.19B. 3.16C. 3.14D. 3.11【答案】A 【解析】 【分析】本题首先可以通过绘图明确点()(),y 01,01x x y <<<<所在区域以及221x y +≤所表示的区域,然后求出重合的区域面积,最后根据题意以及几何概型的性质即可得出结果.【详解】如图所示,点()(),y 01,01x x y <<<<落在一个边长为1的小正方形内,正方形面积为1,221x y +≤指一个半径为1的圆以及此圆内部的所有区域,圆与小正方形重合的区域面积为4π, 因为获得500个点()(),y 01,01x x y <<<<的坐标,有399个点的坐标满足221x y +≤,所以π43991500,π 3.19, 故选:A.【点睛】本题考查几何概型,能否根据题意准确的绘出图像是解决本题的关键,考查几何概型概率计算公式的灵活使用,体现了基础性,是中档题.6.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为4,且两条渐近线夹角为60,则该双曲线的焦距为( )A.B. 8C. 4D. 8 【答案】D 【解析】 【分析】本题首先可以根据双曲线方程得出渐近线方程为b y x a =±,然后根据两条渐近线夹角为60得出3b a =或ba=222c a b =+即可得出结果. 【详解】令22220x y a b -=,则2222y x b a =,b y x a =±,故双曲线2222:1x y C a b-=的渐近线方程为b y x a =±,因为两条渐近线夹角为60,所以其中一条渐近线的切斜角为30或60,b a =ba = 因为实轴长为4,所以2a =,当b a =时,3b =,22443433c a b ,焦距832c ;当ba=b =224124c a b ,焦距28c =,综上所述,该双曲线的焦距为8, 故选:D.【点睛】本题考查根据双曲线的渐近线的相关性质求焦距,能否根据双曲线夹角的度数得出a 、b 之间的关系是解决本题的关键,考查双曲线实轴、虚轴以及焦距三者之间的关系,考查计算能力,是中档题. 7.著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载填创立了十二平均律是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如下表所示,其中1213,,,a a a ⋅⋅⋅表示这些半音的频率,它们满足()1212log 11,2,,12i i a i a +⎛⎫==⋅⋅⋅ ⎪⎝⎭.若某一半音与#D )A. #FB. GC. #GD. A【答案】B 【解析】 【分析】先根据已知条件求得公比,结合题目所求半音与#D 的频率之比,求得该半音. 【详解】依题意可知()01,2,,12,13n a n >=.由于1213,,,a a a ⋅⋅⋅满足()1212log 11,2,,12i i a i a +⎛⎫==⋅⋅⋅ ⎪⎝⎭,则121111222i i i i a a a a ++⎛⎫=⇒=⎪⎝⎭,所以数列{}()1,2,,12,13n a n =为等比数列,设公比1122q =,#D 对应的频率为4a ,题目所求半音与#D 的频率之41131222⎛⎫= ⎪⎝⎭,所以所求半音对应的频率为4112482a a ⎛⎫⋅= ⎪⎝⎭.即对应的半音为G .故选:B【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.8.已知函数()tan 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为2π,其图象过点(,则其对称中心为( )A. (),046k k ππ⎛⎫-∈⎪⎝⎭Z B. (),0412k k ππ⎛⎫-∈⎪⎝⎭Z C. (),026k k ππ⎛⎫-∈⎪⎝⎭Z D. (),0212k k ππ⎛⎫+∈⎪⎝⎭Z 【答案】A 【解析】 【分析】由正切函数的最小正周期公式T πω=求出ω,将点(代入求出ϕ,得出()tan y x ωϕ=+的解析式,根据正切函数的对称中心和利用整体代入法得出232k x ππ+=,即可求出对称中心. 【详解】解:已知函数tan()(0,||)2y x πωϕωϕ=+><的最小正周期为2ππω=,2ω∴=,即函数tan(2)y x ϕ=+,其图象过点,tan ϕ∴=2πϕ<,3πϕ∴=,则函数tan(2)3y x π=+,令232k x ππ+=()k Z ∈,求得46k x ππ=-,k Z ∈, 则该函数的对称中心为(46k ππ-,0),k Z ∈. 故选:A.【点睛】本题考查正切函数的图象和性质,以及利用整体代入法求正切型函数的对称中心,考查分析和运算能力.9.某空间几何体的三视图如图所示,则该几何体的表面积为( )A. 472πB. 47π+C. 872π+D. 872π【答案】C 【解析】 【分析】由三视图可得该几何体为长方体中挖去半个圆锥,根据所给数据可计算出表面积. 【详解】由三视图可得该几何体为长方体中挖去半个圆锥,如图所示: 其中2AD DC ==3 所以2PA PB ==,22PC PD == 所以侧面PAD 和侧面PBC 面积相等,均为12222⨯⨯=, 侧面PCD 的面积为()221222172⨯-=半个圆锥的侧面积为1122ππ⨯⨯⨯=,底面积为21221422ππ⨯-⨯=-, 所以该几何体的表面积为22748722πππ++-=,故选:C.【点睛】本题考查几何体的表面积的求法,考查几何体的三视图等基础知识,考查空间想象能力、运算求解能力,属于中档题.10.已知函数21,2()log ,2x f x x x ⎧<⎪=⎨≥⎪⎩,则不等式(21)(4)f x f x +<的解集为( ) A. 11(,)(,)64-∞-+∞ B. 11(,)(,)42-∞-+∞ C. (,1)(1,)-∞⋃+∞ D. 11(,)(,)22-∞-+∞【答案】D 【解析】 【分析】利用分段函数图象解不等式求解可得.【详解】画出函数图象,由图得:()f x 是偶函数且在(,2)-∞-上单减,在(2+)∞,上单减; (21)(4)f x f x +<,由偶函数性质得当2214x x ≤+<,满足不等式,则12x >因为22x -<<时()1f x = 42x ∴<-时,满足不等式,则21x <- 综上有11(,)(,)22x ∈-∞-+∞ 故选:D【点睛】本题考查利用函数的奇偶性和单调性解不等式.利用指对数函数的单调性,要特别注意底数的取值范围,并在必要时进行讨论 11.若面积为1的ABC 满足2AB AC =,则边BC 的最小值为( )A. 1D. 2【答案】C 【解析】 【分析】由已知利用三角形的面积公式可得21sin AC A=,由余弦定理可求2sin 4cos 5BC A A +=,利用辅助角公式和正弦函数的性质即可求解. 【详解】解:ABC 的面积1S =,且2AB AC =,21sin sin 12ABC S AB AC A AC A ∴===△, 21sin AC A∴=, 根据余弦定理得:2222cos BC AB AC AB AC A =+-⋅⋅ 22422cos AC AC AC AC A =+-⋅⋅⋅ 22254cos 54cos (54cos )sin AAC AC A A AC A-=-⋅=-=,即254cos sin ABC A-=,可得2sin 4cos 5BC A A +=,2sin 4cos )5BC A A A α∴+=+=,55sin()A α=≥+,解得:BC ≥即边BC 故选:C.【点睛】本题考查三角形的面积公式、余弦定理和辅助角公式的应用,以及正弦函数的性质在解三角形中的应用,考查了化简和运算能力.12.当[],x m n ∈时,函数()2sin cos 2310f x x x x x ππ=--++≥恒成立,则n m -的最大值为( )A.52B. 2C.32D. 1【答案】C 【解析】 【分析】根据题意,将原不等式恒成立转化为2sin cos 231x x x x ππ---恒成立,设()sin cos g x x x ππ=-,2()231h x x x =--,转化为()()g x h x ≥恒成立,求得它们的交点(0,1)-,3(2,1)-,画出()y g x =和()y h x =的图象,即可得到所求区间和n m -的最大值.【详解】解:由题可知,[],x m n ∈时,函数2()sin cos 2310f x x x x x ππ=--++恒成立, 即为2sin cos 231x x x x ππ---恒成立,设()sin cos g x x x ππ=-,即()2sin()4g x x ππ=-,()g x 为最小正周期为2的函数,且(0)1g =-,35()2sin124g π==-, 设2()231h x x x =--,可得3(0)()12h h ==-,分别作出()y g x =和()y h x =的图象,可得它们有两个交点(0,1)-,3(2,1)-,由题意可得当[0x ∈,3]2时,()()g x h x ≥恒成立,即()0f x 恒成立,此时n m -取得最大值32. 故选:C .【点睛】本题考查不等式恒成立问题,以及正弦函数和二次函数的图象和性质,考查转化思想和数形结合思想,属于中档题.二、填空题:本大题共4小题,每小题5分13.若命题“[]01,2x ∃∈-,00x a ->”为假命题,则实数a 的最小值为_______. 【答案】2 【解析】 【分析】根据命题为假得到[]1,2x ∀∈-,0x a -≤恒成立,简单计算,可得答案. 【详解】命题“0x R ∃∈,20020x x a --=”为假命题, 故[]1,2x ∀∈-,0x a -≤恒成立.所以[]1,2x ∀∈-,a x ≥恒成立, 故2a ≥ 所以实数a 的最小值为2 故答案为:2.【点睛】本题考查了根据命题的真假求参数,掌握等价转化的思想,化繁为简,意在考查学生的推断能力,属基础题.14.执行如图所示的程序框图,运行相应的程序.若输入的a ,b ,c 分别为0.61.5,1.50.6,0.6log 1.5,则输出的结果为________.(结果用a ,b ,c 表示)【答案】b 【解析】 【分析】模拟程序运算,确定变量值.【详解】模拟程序运算,变量值变化如下:开始输入 1.50.60.60.6, 1.5,log 1.5a b c ===, 1.50.6x =,判断0.6 1.51.510.6x >>=,0.61.5x =,判断0.60.61.50log 1.5x =>>,输出0.61.5x =,故答案为:b .【点睛】本题考查程序框图,考查选择结构,模拟程序运行,观察变量值的变化,判断条件是否满足,可得结论.15.已知点()A ,)B ,动点P 满足APB θ∠=且2cos 12PA PB θ⋅⋅=,则点P 的轨迹方程为__________【答案】2213x y +=【解析】 【分析】根据题意得||AB =由半角公式和余弦定理可得||||PA PB +的值为定值,且大于两个定点A ,B 的距离,由椭圆的定义可得P 的轨迹为椭圆,根据椭圆的几何性质求出a ,c ,b 的值,进而求出椭圆的方程.【详解】解:根据题意,可知||AB = 由2||||cos12PA PB θ=,(0,)θπ∈,则1cos ||||12PA PB θ+=, ||||||||cos 2PA PB PA PB θ∴+=,在ABP △中22222||||||||||8cos 2||||2||||PA PB AB PA PB PA PB PA PB θ+-+-==,222||||cos 8PA PB PA PB θ∴=+-,即22||||cos 42PA PBPA PB θ+=-,22||||||||cos ||||422PA PBPA PB PA PB PA PB θ+∴+=+-=,22||||||||62PA PB PA PB +∴+=,即222||||||||12PA PB PA PB ++=,2(||||)12PA PB ∴+=,所以||||PA PB +=为定值且大于||AB , 可得P 的轨迹为椭圆,且长轴长223a =,焦距222c =,焦点在x 轴上,中心在原点的椭圆, 即3a =,2c =,所以2221b a c =-=,所以P 的轨迹方程为:2213x y +=.故答案为:2213x y +=.【点睛】本题考查点的轨迹方程和椭圆的定义及性质的应用,还涉及半角公式及余弦定理的应用,考查化简和计算能力,属于中档题.16.已知四棱锥S ABCD -,底面ABCD 是边长为6的菱形,ACBD O =,SO ⊥底面ABCD 且8SO =.若此四棱锥的内切球的表面积为16π,则该四棱锥的体积为_______. 【答案】642 【解析】 【分析】利用数形结合,根据题意可知球心1O 在SO 上,作1,⊥⊥OE CD O F SE ,可知11,O F O O 为内切球的半径,然后计算SE ,利用等体积法,求得ABCD S ,最后根据体积公式可得结果. 【详解】由题可知:球心1O 在SO 上,作1,⊥⊥OE CD O F SE ,如图由SO ⊥底面ABCD ,CD ⊂底面ABCD ,则SO CD ⊥⋂=SO OE O ,所以,CD ⊥平面SOE ,又1,⊂O F SE 平面SOE所以1,⊥⊥SE CD O F CD ,又1⊥O F SE ,⋂=SE CD E ,所以1O F ⊥平面SCD 由此四棱锥的内切球的表面积为16π,可知半径为2 所以1112,6===O F O O SO ,由111∠+∠=∠+∠SO F O SF O SF SEO ,所以1∠=∠SO F SEO11121cos cos 63∠=∠===O F SEO SO F O S,则sin 3∠=SEO所以sin ∠==⇒=OS SEO SE SE则11142332⎛⎫⋅=⋅⋅⋅⋅+⋅⇒= ⎪⎝⎭ABCD ABCD ABCD S SO CD SE S S所以13-=⋅=S ABCD ABCD V S SO故答案为:【点睛】本题考查几何体内切球问题,本题关键在于找到球心,以及计算底面菱形的面积,考验分析能力以及计算能力,同时结合数形结合的方法,形象直观,便于理解与计算,属难题.三、解答题:共70分,解答应写出文字说明、证明过程和演算步骤,第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答 (一)必考题:共60分17.已知等差数列{}n a 中,11a =且1a ,2a ,74a -成等比数列、数列{}n b 的前n 项和为n S ,满足321n n b S -=.(1)求数列{}n a ,{}n b 的通项公式;(2)将数列{}n a ,{}n b 的公共项12,,,n k k k a a a ⋅⋅⋅按原来的顺序组成新的数列,试求数列{}n k 的通项公式,并求该数列的前n 项和n T . 【答案】(1)21n a n =-;13n n b -=(2)13122n n k -=+;31424n n n T =+-【解析】 【分析】(1)根据等比数列的性质,可求等差数列{}n a 的公差,从而求得数列{}n a 的通项公式,由()()1112n nn S n b S S n -⎧=⎪=⎨-≥⎪⎩,可求得数列{}n b 的通项公式; (2)由(1)得1213n nk --=,所以可得13122n n k -=+,再求和.【详解】(1)设等差数列{}n a 的公差为d ,因为1a ,2a ,74a -成等比数列,所以()21274a a a -=,即()()112164a a d a d +-=+,()()21631d d -=+⨯,解得2d =.所以21n a n =-.当1n =时,111321b S b -==,因为321n n b S -=,得11321n n b S ---=,(2n ≥) 所以()()1132320n n n n b S b S -----=,得13n n b b -=, 所以数列{}n b 是首项为1,公比3q =的等比数列,所以13n n b -=.(2)依题意,n k n a b =,由(1)得1213n nk --=,113131222n n n k --+==+,所以()0121131333322424n n n n n T -=+++++=+-.【点睛】本题主要考查等差、等比数列的通项公式、求和等基础知识,考查运算求解能力,逻辑推理能力,化归与转化思想等,属于中档题.18.如图,在ABC 中,AC BC ⊥,30BAC ∠=︒,4AB =,E ,F 分别为AC ,AB 的中点,PEF 是由AEF 绕直线EF 旋转得到,连结AP ,BP ,CP .(1)证明:AP ⊥平面BPC ;(2)若PC 与平面ABC 所成的角为60°,求二面角P CF B --的余弦值.【答案】(1)证明见解析;(2)13- 【解析】 【分析】(1)要证AP ⊥平面BPC ,则证AP PC ⊥和BC AP ⊥;证AP PC ⊥由平面几何知识可得,证BC AP ⊥,只需证EF AP ⊥,即证EF ⊥平面APC ,利用线面垂直判定可得.(2)建立空间直角坐标系,根据PC 与平面ABC 所成的角为60°,可知PEC 为等边三角形,分别计算平面CFB 、平面PCF 的一个法向量,然后根据向量的夹角公式,可得结果. 【详解】解法一:(1)因为PEF 由AEF 沿EF 旋转得到,且E 为AC 中点, 所以AE EC EP ==.所以AP PC ⊥ 又因为F 为AB 的中点,所以EF BC ∥, 又BC AC ⊥,所以EF AC ⊥, 从而EF EP ⊥,又ACEP E =,所以EF ⊥平面ACP ,即BC ⊥平面ACP ,又AP ⊂平面ACP ,所以BC AP ⊥, 又AP PC ⊥且PC BC C ⋂=,所以AP ⊥平面BPC (2)由(1)得EF ⊥平面AEP ,因为EF ⊂平面ABC , 所以平面ABC ⊥平面ACP 过点P 作PM AC ⊥,交AC 于M 又平面ACP平面ABC AC =,故PM ⊥平面ABC ,所以PCM ∠为PC 与平面ABC 所成的角, 所以60PCM ∠=︒,又EC EP =,所以PEC 为等边三角形, 得MEC 中点,由BC ⊥平面ACP ,AC BC ⊥分别以CA ,CB 为x ,y 轴的正方向, 建立如图所示的空间直角坐标系C xyz -,()0,0,0C ,()23,0,0A ,()0,2,0B ,)3,1,0F,3M ⎫⎪⎪⎝⎭,332P ⎫⎪⎪⎝⎭, 易得平面CFB 的一个法向量为()10,0,1n =,()3,1,0CF =,332CP ⎛⎫= ⎪ ⎪⎝⎭ 设()2,,n x y z =为平面PCF 的一个法向量,则:2200n CF n CP ⎧⋅=⎪⎨⋅=⎪⎩,即303302x y x z +=+=, 令3x =,得()23,3,1n =--,12121213cos ,13n n n n n n ⋅==又因为二面角P CF B --的大小为钝角, 故二面角P CF B --的余弦值为1313- 解法二:(1)因为PEF 由AEF 沿EF 旋转得到,所以EP AE =,又因为E 为AC 的中点,所以AE EC EP ==. 所以2APC π∠=,即AP PC ⊥,同理,AF BF PF ==,得AP BP ⊥, 又BPCP P =,所以AP ⊥平面BPC(2)由(1)得⊥AP BC ,又AC BC ⊥,所以BC ⊥平面APC ,又因为BC ⊂平面ABC , 所以平面ABC ⊥平面ACP . 过点P 作PM AC ⊥,垂足为M , 因为平面ACP平面ABC AC =,所以PM ⊥平面ABC ,所以PCM ∠为PC 与平面ABC 所成的角,所以60PCM ∠=︒, 因为EC EP =,所以PEC 为等边三角形,所以M 为EC 中点, 取FB 的中点N ,连接MN ,所以MN EF ∥,所以MN ⊥平面PAC , 分别以MN ,MC ,MP 为x ,y ,z 轴的正方向, 建立如图所示的空间直角坐标系M xyz -,()0,0,0M ,330,2A ⎛⎫- ⎪ ⎪⎝⎭,32,2B ⎛⎫⎪ ⎪⎝⎭,30,2C ⎛⎫ ⎪ ⎪⎝⎭,31,2F ⎛⎫- ⎪ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭, 易得平面CFB 的一个法向量为()10,0,1n =,()1,3,0CF =-,330,22CP ⎛⎫=- ⎪ ⎪⎝⎭设()2,,n x y z =为平面PCF 的一个法向量,则:2200n CF n CP ⎧⋅=⎪⎨⋅=⎪⎩,即303302x x z ⎧-=⎪⎨+=⎪⎩, 令3x =,得()23,3,1n =,12121213cos ,n n n n n n ⋅==又因为二面角P CF B --的大小为钝角, 故二面角P CF B --的余弦值为13-【点睛】本题考查空间直线与直线、直线与平面的位置关系、平面与平面位置关系,以及线面角,面面角知识,考查推理论证能力、运算求解能力,审清题意细心计算,属中档题.19.某药业公司统计了2010-2019年这10年某种疾病的患者人数,结论如下:该疾病全国每年的患者人数都不低于100万,其中有3年的患者人数低于200万,有6年的患者人数不低于200万且低于300万,有1年的患者人数不低于300万.(1)药业公司为了解一新药品对该疾病的疗效,选择了200名患者,随机平均分为两组作为实验组和对照组,实验结束时,有显著疗效的共110人,实验组中有显著疗效的比率为70%.请完成如下的2×2列联表,并根据列联表判断是否有99.9%把握认为该药品对该疾病有显著疗效;(2)药业公司最多能引进3条新药品的生产线,据测算,公司按如下条件运行生产线:每运行一条生产线,可产生年利润6000万元,没运行的生产线毎条每年要亏损1000万元.根据该药业公司这10年的统计数据,将患者人数在以上三段的频率视为相应段的概率、假设各年的患者人数相互独立.欲使该药业公司年总利润的期望值达到最大,应引进多少条生产线?附:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)填表见解析;有99.9%的把握认为该药品对该疾病有显著疗效;(2)应引进2条生产线. 【解析】 【分析】(1)通过计算,直接列出2×2列联表,根据公式计算2K ,即可判断出结果;(2)分引进1条,2条,3条生产线三种情况,分别求解总利润的期望值,即可得出结论. 【详解】(1)列联表如下:由于()222007060403020018.210.8281001001109011K ⨯⨯-⨯==≈>⨯⨯⨯,所以有99.9%的把握认为该药品对该疾病有显著疗效; (2)根据提议:()31002000.310P x ≤<==,()62003000.610P x ≤<==, ()13000.110P x ≥==, 记药业公司年总利润为ξ(单位:万元), ①引进1条生产线的情形:由于每年的患者人数都在100万以上,因此运行1条生产线的概率为1,对应的年利润,()600016000E ξ=⨯=;②引进2条生产线的情形:当100200x ≤<时,运行1条生产线,此时600010005000ξ=-=,因此()()5000 1002000.3P P x ξ==≤<=), 当200x ≥时,运行2条生产线,此时6000212000ξ=⨯=, 因此()()12000200= 0.60.10.7P P x ξ==≥+=, 由此得ξ与的分布列如下:所以()50000.3120000.79900E ξ=⨯+⨯=; ③引进3条生产线的情形:当100200x ≤<时,运行1条生产,此时6000100024000ξ=-⨯=, 因此()()40001002000.3P P x ξ==<<=,当200300x ≤<时,运行2条生产线,此时60002100011000ξ=⨯-=, 因此()()11000 2003000.6P P x ξ==<<=,当300x ≥时,运行3条生产线,此时6000318000ζ=⨯=, 因此()()18000 3000.1P P x ξ==≥=, 由此得ξ与的分布列如下:所以()40000.3110000.618000 0.19600E ξ=⨯+⨯+⨯=,因为9900>9600>6000,所以欲使该药业公司年总利润的期望值达到最大,应引进2条生产线.【点睛】本题主要考查随机变量的分布列与期望的计算,考查了独立性检验的应用,考查学生的运算求解能力、数据处理能力与应用意识.20.已知函数()()1ln 0x e f x a x a x x ⎛⎫=++≤ ⎪⎝⎭. (1)讨论()f x 的单调性;(2)若()()1ln 0xf x a x x +->,求a 的取值范围. 【答案】(1)答案不唯一,具体见解析(2)0e a -<≤ 【解析】 【分析】(1)求出导数后,对a 分类讨论,利用导数可求得函数的单调区间; (2)分离参数后得n 11l xx a e +->在(0,)+∞上恒成立,再构造函数利用导数求出最大值即可得到答案. 【详解】(1)()222(1)e e (1)11()xx x a x f x a x xx x -+-⎛⎫'=+-+= ⎪⎝⎭, 由定义域为()0,∞+,所以e 1x >.当10a -≤≤时,0x e a +>,由()0f x '>,得1x >,由()0f x '<,得01x <<, 所以函数()f x 的单调递减区间为()0,1,递增区间为()1,+∞; 当1a <-时,令()0f x '=,则1x =或()ln x a =-, 当a e =-时,()ln 1a -=,()0f x '≥恒成立, 所以函数()f x 的递增区间为()0,∞+,无减区间;当1e a -<<-时,()0ln 1a <-<,由()0f x '>,得0ln()x a <<-或1x >,由()0f x '<,得ln()1a x -<<,所以函数()f x 的单调递减区间为()()ln ,1a -,递增区间为()()0,ln a -和()1,+∞;当a e <-时,()ln 1a ->,由()0f x '>,得01x <<或ln()x a >-,由()0f x '<,得1ln()x a <<-, 所以函数()f x 的单调递减区间为()()1,ln a -,递增区间为()0,1和()()ln ,a -+∞.综上,当10a -≤≤时,函数()f x 的单调递减区间为()0,1,递增区间为()1,+∞; 当a e =-时,函数()f x 的递增区间为()0,∞+,无减区间;当1e a -<<-时,函数()f x 的单调递减区间为()()ln ,1a -,递增区间为()()0,ln a -和()1,+∞; 当a e <-时,函数()f x 的单调递减区间为()()1,ln a -,递增区间为()0,1和()()ln ,a -+∞. (2)依题意得,()()1ln ln 0xxf x a x x e a a x +-=++>在()0,∞+恒成立.①当0a =时,不等式显然成立; ②当0a <时,()1ln xa x e -+<,即n 11l x x a e+->成立, 设()1ln xx g x e +=,则()11ln xxx g x e --'=,设()11ln h x x x=--,则()h x 在()0,∞+单调递减,()10h =,所以,当()0,1x ∈时,()0h x >,()0g x '>,()g x 单调递增; 当()1,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减. 所以()()max 11g x g e== 所以11a e->,解得(),0a e ∈-. 综上,当0e a -<≤时,()()1ln 0xf x a x x +->.【点睛】本题主要考查导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.属于中档题. 21.平面直角坐标系xOy 中,动直线AB 交抛物线2:4y x Γ=于A ,B 两点.(1)若90AOB ∠=︒,证明直线AB 过定点,并求出该定点;(2)点M 为AB 的中点,过点M 作与y 轴垂直的直线交抛物线2:4y x Γ=于C 点;点N 为AC 的中点,过点N 作与y 轴垂直的直线交抛物线2:4y x Γ=于点P .设△ABC 的面积1S ,△APC 的面积为2S . (i )若AB 过定点()2,1,求使1S 取最小值时,直线AB 的方程;(ii )求12S S 的值.【答案】(1)证明见解析;定点()4,0(2)(i )230x y --=(ii )128S S = 【解析】 【分析】(1)设直线AB 的方程,并代入抛物线方程,利用韦达定理和12120x x y y +=可解决;(2)(i )得到M 、C 的坐标,得到||CM ,进而得到31121211||232S CM y y y y =⋅-=-,再根据二次函数可求得最小值;(ii )求出122112111||||||2222y y S PN y PN y y +=⋅⋅-=⋅-,求出2121||||64PN y y =-代入12||2||S CM S PN =即可得到结果. 【详解】(1)证明:依题意可设直线AB 的方程为x ty m =+, 代入24y x =消去x 得:2440y ty m --=,216160t m ∆=+>,即20t m +>,设()11,A x y ,()22,B x y ,则124y y t +=,124y y m =-, 因为90AOB ∠=︒,所以12120x x y y +=, 又21114x y =,22214x y =,所以2212121016y y y y +=,故1216y y =-,(120y y =已舍去) 所以416m -=-,得4m =,因此直线AB 的方程为4x ty =+,该直线过定点()4,0. (2)(i )因为AB 过定点()2,1,所以由(1)得2t m =+,即2mt ,()2216161620t m t t ∆=+=-+>恒成立,124y y t +=,12448y y m t =-=-,由题知得1212,22x x y y M ++⎛⎫ ⎪⎝⎭,()21212,162y y y y C ⎛⎫++ ⎪ ⎪⎝⎭, 所以()()()2222212121212121144||21621616y y y y y y y y x x CM +++-+=-=-=, 所以31121211||232S CM y y y y =⋅-=-, 因为12y y -==≥12t =时等号成立,所以331121132324S y y=-≥=当1S取到最小值4时,12t=,32m=,直线AB的方程为1322x y=+,即230x y--=.(ii)依题知可得1121||2S CM y y=⋅-,122112111||||||2222y yS PN y PN y y+=⋅⋅-=⋅-,所以12||2||S CMS PN=,由(2)(i)可知212||16y yCM-=(此处12y y-可以理解为A,B两点的纵向高度差)同理可得22121212121()122||161664y y y yyPN y y⎛⎫+-- ⎪⎝⎭===-,所以21212122||1628||64y ySy yS-==-.【点睛】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想、数形结合思想,考查考生分析问题和解决问题的能力,属于中档题.(二)选考题共10分・请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为cossinx ry rθθ=⎧⎨=⎩(θ为参数,0r>).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的圾坐标方cos4πρθ⎛⎫+=⎪⎝⎭l与曲线C相交于A,B两点.(1)求曲线C的普通方程和l的直角坐标方程;(2)若4r>,点()4,0P满足11PA PB-=r的值.【答案】(1)222x y r +=,40x y --=(2)r =【解析】 【分析】(1)曲线C 的普通方程为222x y r +=, 将cos x ρθ=,sin y ρθ=代入直线l 的极坐标方程中,可得到l 的直角坐标方程.(2)写出l的参数方程可设为422x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将l 的参数方程与曲线C的普通方程联立,得22160t r ++-=,设点A 、B 对应的参数分别为1t 、2t,则由韦达定理得1221216t t t t r ⎧+=-⎪⎨⋅=-⎪⎩得所求值.【详解】(1)曲线C 的普通方程为222x y r +=,将cos x ρθ=,sin y ρθ=代入直线l 的极坐标方程中,得到l 的直角坐标方程为40x y --=.(2)点()4,0P 在直线l 上,则l的参数方程可设为422x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将l 的参数方程与曲线C的普通方程联立,得22160t r ++-=,()()2232416432>4r r r ∆=--=->0,设点A 、B 对应的参数分别为1t 、2t,则由韦达定理得1221216t t t t r⎧+=-⎪⎨⋅=-⎪⎩4r >时,212160t t r =-<⋅.所以21212212111616t t t t PA B t P t r r----====--⋅r =. 【点睛】本题主要考查极坐标与直角坐标的互化、参数方程的应用,意在考查考生综合运用知识和运算求解能力,属于中档题.[选修4-5:不等式选讲]23.已知函数()1f x x a x =-+-.(1)当0a =时,求不等式()1f x ≤的解集A .(2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 【答案】(1){|01}A x x =≤≤(2)12【解析】 【分析】(1)将0a =代入,则|||1|1x x +-,再利用绝对值不等式的性质即可得解; (2)问题等价于1122x a --在[0x ∈,1]上恒成立,由此建立关于a 的不等式组,解出即可. 【详解】解:(1)当0a =时,()|||1|f x x x =+-,即解不等式|||1|1x x +-, 由绝对值不等式知,|||1||(1)|1x x x x +---=,当且仅当(1)0x x -时取等号,因此()1f x 的解集{|01}A x x =;(2)由A B ⊆,即[0x ∈,1],不等式3()||2f x x -恒成立,即3||12x a xx -+--,整理得1||2x a -, 故1122x a --在[0x ∈,1]上恒成立, 则1212a x a x ⎧-⎪⎪⎨⎪+⎪⎩在[0x ∈,1]上恒成立,得1212a a ⎧⎪⎪⎨⎪⎪⎩, 故12a =. 【点睛】本题考查含绝对值、参数的不等式有解问题与基本不等式的应用,考查运算求解能力、推理论证能力,考查化归与转化思想等,属于中档题.。

2021年河南省天一大联考高考数学模拟试卷(理科)

2021年河南省天一大联考高考数学模拟试卷(理科)

河南省天一大联考高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x+2≤0},B={(x,y)|x∈A,y∈A},则A∩B=()A.A B.B C.A∪B D.∅2.已知i表示虚数单位,则=()A.1 B.5 C.D.3.在区间[﹣3,3]上随机选取一个实数x,则事件“2x﹣3<0”发生的概率是()A.B.C.D.4.执行如图所示的程序框图,输出的结果为()A.1 B.2 C.3 D.45.已知点A(﹣1,﹣2)在抛物线C:y2=2px的准线上,记C的焦点为F,过点F且与x轴垂直的直线与抛物线交于M,N两点,则线段MN的长为()A.4 B.C.2 D.16.设向量,满足,,则=()A.4 B.8 C.12 D.167.已知变量x,y满足则的最大值为()A.B.C.2 D.18.已知a是大于0的常数,把函数y=a x和的图象画在同一坐标系中,选项中不可能出现的是()A.B.C.D.9.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.4 D.710.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<)的部分图象如图所示,则f()的值为()A.﹣1 B.0 C.1 D.211.设{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,则下列结论正确的是()A.a1008>a1009B.a2016<b2016C.∀n∈N*,1<n<2017,a n>b n D.∃n∈N*,1<n<2017,使得a n=b n 12.已知f(x)=,若方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,则实数a的取值范围为()A.(0,)B.(,e)C.(0,e)D.(e,+∞)二、填空题《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是.14.(2a+b)4的展开式中,a2b3项的系数为.15.三棱锥P﹣ABC的底面ABC是等腰直角三角形,∠A=90°,侧面PAB是等边三角形且与底面ABC垂直,AB=6,则该三棱锥的外接球半径为.16.过双曲线(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐近线截得的线段长为,则该双曲线的离心率为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.(Ⅰ)求AB的长;(Ⅱ)求sinC.18.(12分)如图1,2,E是正方形ABCD的AB边的中点,将△AED与△BEC 分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P﹣CDE.(Ⅰ)求证:平面PED⊥平面PCD;(Ⅱ)求二面角P﹣CE﹣D的余弦值.19.(12分)某金匠以黄金为原材料加工一种饰品,由于加工难度大,该金匠平均每加工5个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响.(Ⅰ)若该金匠加工4个饰品,求其中废品的数量不超过1的概率?(Ⅱ)若该金匠加工了3个饰品,求他所获利润的数学期望.(两小问的计算结果都用分数表示)20.(12分)已知椭圆方程,其左焦点、上顶点和左顶点分别为F,A,B,坐标原点为O,且线段FO,OA,AB的长度成等差数列.(Ⅰ)求椭圆的离心率;(Ⅱ)若过点F的一条直线l交椭圆于点M,N,交y轴于点P,使得线段MN 被点F,P三等分,求直线l的斜率.21.(12分)已知函数的图象的一条切线为x轴.(Ⅰ)求实数a的值;(Ⅱ)令g(x)=|f(x)+f'(x)|,若不相等的两个实数x1,x2满足g(x1)=g (x2),求证:x1x2<1.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=sinθ.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)若曲线C1和C2共有四个不同交点,求a的取值范围.[选修4-5:不等式选讲]23.已知a>0,b>0,且.(Ⅰ)求的最小值;(Ⅱ)求a2b的最大值.2017年河南省天一大联考高考数学模拟试卷(理科)(五)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x+2≤0},B={(x,y)|x∈A,y∈A},则A∩B=()A.A B.B C.A∪B D.∅【考点】1E:交集及其运算.【分析】求解一元二次不等式化简集合A,可知A是数集,集合B是点集,则A ∩B是空集.【解答】解:集合A={x|x2﹣3x+2≤0}={x|1≤x≤2},B={(x,y)|x∈A,y∈A}={(x,y)|},∵A为数集,B为点集,∴A∩B=∅.故选:D.【点评】本题考查了集合的定义与运算问题,是基础题.2.已知i表示虚数单位,则=()A.1 B.5 C.D.【考点】A5:复数代数形式的乘除运算.【分析】复数的分子、分母同乘分母的共轭复数,化成a+bi(a、b∈R)的形式,再求其模即可.【解答】解:===﹣﹣i,∴=|﹣﹣i|=,故选:C【点评】本题考查复数代数形式的乘除运算和模的计算,是基础题.3.在区间[﹣3,3]上随机选取一个实数x,则事件“2x﹣3<0”发生的概率是()A.B.C.D.【考点】CF:几何概型.【分析】由题意,利用区间的长度比求概率即可.【解答】解:在区间[﹣3,3]上随机选取一个实数x,对应事件的为区间才6,而满足事件“2x﹣3<0”发生的事件为,由几何概型的公式得到所求概率为;故选B【点评】本题考查了几何概型的概率求法;明确事件的测度为区间的长度是关键.4.执行如图所示的程序框图,输出的结果为()A.1 B.2 C.3 D.4【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b,i的值,当i=3时,满足条件i≥3,退出循环,输出a的值为4.【解答】解:模拟执行程序框图,可得a=,b=1,i=1,不满足条件i≥3,a=,b=,i=2,不满足条件i≥3,a=4,b=1,i=3,满足条件i≥3,退出循环,输出a的值为4.故选:D.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a,b,i的值是解题的关键,属于基础题.5.已知点A(﹣1,﹣2)在抛物线C:y2=2px的准线上,记C的焦点为F,过点F且与x轴垂直的直线与抛物线交于M,N两点,则线段MN的长为()A.4 B.C.2 D.1【考点】K8:抛物线的简单性质.【分析】由抛物线的准线方程,求得p的值,求得抛物线的方程及焦点坐标当x=1时,y=±2,即可求得M和N点坐标,即可求得线段MN的长.【解答】解:由点A(﹣1,﹣2)在抛物线C:y2=2px的准线上,则﹣=﹣1,则p=2,则抛物线方程y2=4x,焦点F(1,0),当x=1时,y=±2,则M(1,2),N(1,﹣2),∴线段MN的长丨MN丨=4,故选:A.【点评】本题考查抛物线的标准方程及简单性质,抛物线的通径求法,考查计算能力,属于基础题.6.设向量,满足,,则=()A.4 B.8 C.12 D.16【考点】9R:平面向量数量积的运算.【分析】分别平方,再相减即可求出答案.【解答】解:∵,,∴||2+2+||2=25,||2﹣2+||2=9,∴4=16,∴=4,故选:A【点评】本题考查了向量的模的计算和向量的数量积公式,属于基础题.7.已知变量x,y满足则的最大值为()A.B.C.2 D.1【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求的最大值.【解答】解:作出不等式组对应的平面区域:的几何意义为区域内的点到P(﹣3,﹣2)的斜率,由图象知,PA的斜率最大,由,得P(﹣2,0),故PA的斜率k==2.故选:C.【点评】本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.8.已知a是大于0的常数,把函数y=a x和的图象画在同一坐标系中,选项中不可能出现的是()A.B.C.D.【考点】3O:函数的图象.【分析】0<a<1,x>0,的最小值大于等于2,函数y=a x和的图象不可能有两个交点,可得结论.【解答】解:a>0,是对勾函数,0<a<1,x>0,的最小值大于等于2,函数y=a x和的图象不可能有两个交点,故选D.【点评】本题考查指数函数、对勾函数图象,考查了两个函数图象间的关系,是基础题.9.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.4 D.7【考点】L!:由三视图求面积、体积.【分析】由三视图可知,直观图是正方体截去两个三棱锥所得,利用所给数据,即可求出体积.【解答】解:由三视图可知,直观图是正方体截去两个三棱锥所得,体积为=,故选A.【点评】本题考查由三视图求体积,考查学生的计算能力,确定直观图的形状是关键.10.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<)的部分图象如图所示,则f()的值为()A.﹣1 B.0 C.1 D.2【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数f(x)的部分图象求出A、B的值,再根据x=时f(x)取得最大值,x=2π时f(x)=0,列出方程组求出ω、φ的值,写出f(x)的解析式,再计算f().【解答】解:由函数f(x)=Asin(ωx+φ)+B的部分图象知,2A=3﹣(﹣1)=4,解得A=2,∴B==1;又x=时,f(x)取得最大值3,∴ω+φ=①;x=2π时,f(x)=0,∴2πω+φ=②;由①②组成方程组,解得ω=,φ=;∴f(x)=2sin(x+)+1,∴f()=2sin(×+)+1=2×(﹣)+1=0.故选:B.【点评】本题考查了函数f(x)=Asin(ωx+φ)+B的图象与性质的应用问题,是基础题.11.设{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,则下列结论正确的是()A.a1008>a1009B.a2016<b2016C.∀n∈N*,1<n<2017,a n>b n D.∃n∈N*,1<n<2017,使得a n=b n【考点】88:等比数列的通项公式;84:等差数列的通项公式.【分析】由{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,推导出a n=n,b n=()n﹣1,由此能求出结果.【解答】解:∵{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,∴a2017=1+2016d=2017,解得d=1,∴a1018=1+2017=1018,a1019=1+1018=1019,∴a1018<a1019,故A错误;b2017==2017,∴q=,a2016=1+2015=2016,,∴a2016<b2016不一定成立,故B错误;∀n∈N*,1<n<2017,a n=n,,∴a n>b n,故C正确;当a n=n=b n=()n﹣1时,n=1或n=2017,∴不存在n∈N*,1<n<2017,使得a n=b n,故D不正确.故选:C.【点评】本题考查命题真假的判断,考查等差数列、等比数列的性质,考查推理论证能力、运算求解能力,考查转化化归思想,是中档题.12.已知f(x)=,若方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,则实数a的取值范围为()A.(0,)B.(,e)C.(0,e)D.(e,+∞)【考点】54:根的存在性及根的个数判断.【分析】画函数f(x)的图象,利用数形结合的思想探讨方程f2(x)+2a2=3a|f (x)|的根的情况,即可得出结论.【解答】解:f(x)=的图象,如图所示,极小值点x=1,f(1)=e.f(x)>0,方程f2(x)+2a2=3a|f(x)|化为f(x)=a或f(x)=2a;f(x)<0,方程f2(x)+2a2=3a|f(x)|化为f(x)=﹣a或f(x)=﹣2a;∵方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,∴<a<e.故选:B.【点评】本题主要考查函数图象的应用,利用数形结合、函数与方程的相互转化思想解题,属于高档题.二、填空题(2017•河南模拟)《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是6.【考点】84:等差数列的通项公式.【分析】设第一个人分到的橘子个数为a1,由等差数列前n项和公式能求出得到橘子最少的人所得的橘子个数.【解答】解:设第一个人分到的橘子个数为a1,由题意得:,解得a1=6.∴得到橘子最少的人所得的橘子个数是6.故答案为:6.【点评】本题考查等差数列的首项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.(a+2b)(2a+b)4的展开式中,a2b3项的系数为32.【考点】DC:二项式定理的应用.【分析】展开(a+2b)(2a+b)4=(a+2b)[(2a)4+4(2a)3b+6(2a)2b2+4×2a×b3+b4],即可得出a2b3项的系数.【解答】解:(a+2b)(2a+b)4=(a+2b)[(2a)4+4(2a)3b+6(2a)2b2+4×2a×b3+b4],∴a2b3项的系数=8+6×22=32.故答案为:32.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.三棱锥P﹣ABC的底面ABC是等腰直角三角形,∠A=90°,侧面PAB是等边三角形且与底面ABC垂直,AB=6,则该三棱锥的外接球半径为.【考点】LG:球的体积和表面积.【分析】求出P到平面ABC的距离为3,可得球心O到平面ABC的距离,即可求出三棱锥的外接球半径.【解答】解:设球心O到平面ABC的距离为h,则由P到平面ABC的距离为3,可得球心O到平面ABC的距离为h=,∴该三棱锥的外接球半径为=,故答案为.【点评】本题考查三棱锥的外接球半径,考查面面垂直,比较基础.16.过双曲线(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐近线截得的线段长为,则该双曲线的离心率为2或.【考点】KC:双曲线的简单性质.【分析】求出切线方程,与渐近线方程联立,利用该切线与双曲线的两条渐近线截得的线段长为,建立方程,即可得出结论.【解答】解:由题意,切线方程为y=(x+c),与y=x联立,可得(,),与y=﹣x联立,可得(﹣,),∵该切线与双曲线的两条渐近线截得的线段长为,∴(+)2+(﹣)2=3a2,化简求得e=2或.故答案为2或.【点评】本题考查双曲线的方程与性质,考查直线与圆位置关系的运用,考查学生的计算能力,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•河南模拟)如图,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.(Ⅰ)求AB的长;(Ⅱ)求sinC.【考点】HT:三角形中的几何计算.【分析】(Ⅰ)根据tanθ=,tan2θ=,利用正切函数的二倍角公式,即可求得tanθ,即可求得AB的长;(Ⅱ)sinC=sin(﹣∠BAC)cos∠BAC=cos(θ+2θ),利用二倍角公式即可求得sinC..【解答】解:(Ⅰ)设∠BAD=θ<90°,在Rt△ABD中,tanθ=,AB=,在Rt△ABE中,tan2θ=,AB=,∴=,则5tanθ=2tan2θ,即5tanθ=,即5tan2θ=1,解得(负值舍去),因此.(Ⅱ)由题意知0°<θ<2θ<3θ<90°.因为,则,,则sin2θ=2sinθcosθ=,cos2θ=cos2θ﹣cos2θ=,即,.sinC=sin(﹣∠BAC)cos∠BAC=cos(θ+2θ)=cosθcos2θ﹣sinθsin2θ,=×﹣×=∴sinC=.【点评】本题考查同角三角函数的基本关系,诱导公式,二倍角公式,两角和的余弦公式,考查计算能力,属于中档题.18.(12分)(2017•河南模拟)如图1,2,E是正方形ABCD的AB边的中点,将△AED与△BEC分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P﹣CDE.(Ⅰ)求证:平面PED⊥平面PCD;(Ⅱ)求二面角P﹣CE﹣D的余弦值.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)由PE⊥PD,PE⊥PC.得PE⊥平面PCD,即可得平面PED⊥平面PCD.(Ⅱ)设正方形ABCD的边长为2,取DC中点F,连接PF,EF,过点P作PO⊥EF于点O,易证CD⊥PO,PE⊥PF,由EF=2PE=2,得∠PFE=30°且,,.以F为坐标原点建立如图所示的空间直角坐标系,则,C(1,0,0),E(0,2,0),利用向量法求解【解答】解:(Ⅰ)证明:∵∠A=∠B=90°,∴PE⊥PD,PE⊥PC.∵PD交PC于点P,PC,PD在平面PCD内,∴PE⊥平面PCD,∵PE在平面PED内,∴平面PED⊥平面PCD.(Ⅱ)设正方形ABCD的边长为2,取DC中点F,连接PF,EF,过点P作PO⊥EF于点O,易证CD⊥平面PEF,所以CD⊥PO,又CD∩EF=F,所以PO⊥平面CDE,∵PE⊥平面PCD,PF在平面PCD内,∴PE⊥PF,∵EF=2PE=2,∴∠PFE=30°且,,.以F为坐标原点建立如图所示的空间直角坐标系,则,C(1,0,0),E(0,2,0),所以,,设平面PCE的法向量为,则令z=1,得,又平面CDE的一个法向量为,记二面角P﹣CE﹣D的平面角为α,则.【点评】本题考查了空间面面垂直,向量法求二面角,属于中档题.19.(12分)(2017•河南模拟)某金匠以黄金为原材料加工一种饰品,由于加工难度大,该金匠平均每加工5个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响.(Ⅰ)若该金匠加工4个饰品,求其中废品的数量不超过1的概率?(Ⅱ)若该金匠加工了3个饰品,求他所获利润的数学期望.(两小问的计算结果都用分数表示)【考点】CH:离散型随机变量的期望与方差;C5:互斥事件的概率加法公式.【分析】(Ⅰ)依题意,该金匠加工饰品的废品率为,由此利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出他加工的4个饰品中,废品的数量不超过1的概率.(Ⅱ)设X为加工出的成品数,则X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出该金匠所获利润的数学期望.【解答】解:(Ⅰ)依题意,该金匠加工饰品的废品率为,他加工的4个饰品中,废品的数量不超过1的概率为:p=.(Ⅱ)设X为加工出的成品数,则X可能的取值为0,1,2,3,,,,,∴,故该金匠所获利润的数学期望是万元.【点评】本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法及应用,考查推理论证能力、运算求解能力,考查函数与方程思想、化归转化思想,是中档题.20.(12分)(2017•河南模拟)已知椭圆方程,其左焦点、上顶点和左顶点分别为F,A,B,坐标原点为O,且线段FO,OA,AB的长度成等差数列.(Ⅰ)求椭圆的离心率;(Ⅱ)若过点F的一条直线l交椭圆于点M,N,交y轴于点P,使得线段MN 被点F,P三等分,求直线l的斜率.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)依题意有,将其变形可得b=2c,结合椭圆的几何性质以及离心率公式可得,计算可得答案;(Ⅱ)设直线l的方程为y=k(x+c),当k>0时,表示出k和x M、y M,将直线l的方程和椭圆方程联立,解可得x M、y M的值,由斜率公式计算可得k的值,同理分析k<0时可得k的值,综合可得答案.【解答】解:(Ⅰ)依题意有,把上式移项平方并把a2=b2+c2,代入得b=2c,又由a2=b2+c2;所以椭圆的离心率.(Ⅱ)设直线l的方程为y=k(x+c),先研究k>0的情况,要使|MF|=|FP|,则x M=﹣2c,,因此.将直线l的方程和椭圆方程联立可得解得由于点N的横坐标为c,因此|PN|也等于|PF|,同理,当k<0时,由对称性可知k=;直线l的斜率为或.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是依据题意,求出椭圆的标准方程.21.(12分)(2017•河南模拟)已知函数的图象的一条切线为x轴.(Ⅰ)求实数a的值;(Ⅱ)令g(x)=|f(x)+f'(x)|,若不相等的两个实数x1,x2满足g(x1)=g (x2),求证:x1x2<1.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)设出切点坐标,得到关于a的方程组,求出a的值即可;(Ⅱ)令,根据函数的单调性求出g(x)的表达式,令G(x)=g(x)﹣g(),根据函数的单调性得到,从而证明结论即可.【解答】解:(Ⅰ),x>0,设切点坐标为(x0,0),由题意得,解得;(Ⅱ)证明:,令,则,当x≥1时,,h'(x)>0,h'(x)又可以写成,当0<x<1时,,h'(x)>0.因此h'(x)在(0,+∞)上大于0,h(x)在(0,+∞)上单调递增,又h(1)=0,因此h(x)在(0,1)上小于0,在(1,+∞)上大于0,且g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,g(1)=0.当x>1时,,记,记函数y=f'(x)的导函数为y=f''(x),则==,故G(x)在(1,+∞)上单调递增,所以G(x)>G(1)=0,所以,不妨设0<x1<1<x2,则,而0<x1<1,,有单调性知,即x1x2<1.【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•河南模拟)在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=sinθ.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)若曲线C1和C2共有四个不同交点,求a的取值范围.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)由于两方程表示的曲线均关于y轴对称,所以只要关于y的方程有两个大于0的不等实根,即代表两个曲线有4个不同交点,即可求a的取值范围.【解答】解:(Ⅰ)曲线C1的普通方程为x2+(y﹣a)2=4,表示一个以(0,a)为圆心,2为半径的圆;曲线C2的极坐标方程可化为ρ2cos2θ=ρsinθ,故对应的直角坐标方程为y=x2.(Ⅱ)将两方程联立得得y2+(1﹣2a)y+(a2﹣4)=0,由于两方程表示的曲线均关于y轴对称,所以只要关于y的方程有两个大于0的不等实根,即代表两个曲线有4个不同交点,因此有解得.【点评】本题考查三种方程的转化,考查学生分析解决问题的能力,正确转化是关键.[选修4-5:不等式选讲]23.(2017•河南模拟)已知a>0,b>0,且.(Ⅰ)求的最小值;(Ⅱ)求a2b的最大值.【考点】7G:基本不等式在最值问题中的应用.【分析】(Ⅰ)根据题意,由基本不等式可得,进而可得ab 的最大值,由基本不等式分析可得≥,即可得答案;(Ⅱ)根据题意,将变形可得1=+=++,由基本不等式分析可得答案.【解答】解:(Ⅰ)由,可得,,当且仅当时等号成立,因此的最小值为8.(Ⅱ)因为,即3•≤1,变形可得,即a2b的最大值为,当且仅当,即且时,等号成立.【点评】本题考查基本不等式的应用,注意基本不等式成立的条件.。

2021届全国天一大联考新高考模拟试卷(十九)数学(理)试题

2021届全国天一大联考新高考模拟试卷(十九)数学(理)试题

2021届全国天一大联考新高考模拟试卷(十九)数学(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|20190M x x =+>,{}2|3N x x =>,则MN =( )A. 19|20x x ⎧-<<⎨⎩ B. {|x x >C. 19|20x x ⎧⎫<<-⎨⎬⎩⎭D. {|x x <【答案】B 【解析】 【分析】求出M 和N ,然后直接求解即可【详解】19|20M x x ⎧⎫=>-⎨⎬⎩⎭,{|N x x =< x >,{|M N x x ∴⋂=>,故选:B.【点睛】本题考查集合的运算,属于简单题2.满足条件|4|2||z i z i +=+的复数z 对应点的轨迹是( ) A. 直线 B. 圆 C. 椭圆 D. 双曲线【答案】B 【解析】 【分析】设复数z x yi =+,然后代入|4|2||z i z i +=+,得2222(4)44(1)x y x y ++=++,化简即可得答案【详解】设复数z x yi =+,则:|4||(4)|z i x y i +=++=,|||(1)|z i x y i +=++=结合题意有:2222(4)44(1)x y x y ++=++, 整理可得:224x y +=. 即复数z 对应点的轨迹是圆. 故选:B.【点睛】本题考查复数的模的运算,属于简单题3.已知()0,1x ∈,令log 5x a =,cos b x =,3x c =,那么a b c ,,之间的大小关系为( ) A. a b c << B. b a c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】因为(0,1)x ∈,所以log 50x a =<, 因为y cosx =在0,2π⎡⎤⎢⎥⎣⎦单调递减,所以,cos cos1cos 02b π<<<,所以01b << 因为函数3x y =在(0,1)上单调递增,所以0333x <<,即13c <<,比较大小即可求解【详解】因为()0,1x ∈,所以0a <.因为12π>,所以01b <<, 因为()0,1x ∈,所以13c <<,所以a b c <<, 故选:A.【点睛】本题考查指数函数,对数函数和三角函数的单调性,以及利用单调性判断大小的题目,属于简单题4.给出关于双曲线的三个命题:①双曲线22194y x -=的渐近线方程是23y x =±;②若点()2,3在焦距为4的双曲线22221x y a b-=上,则此双曲线的离心率2e =;③若点F 、B 分别是双曲线22221x y a b-=的一个焦点和虚轴的一个端点,则线段FB 的中点一定不在此双曲线的渐近线上.其中正确的命题的个数是( ) A. 0 B. 1C. 2D. 3【答案】C 【解析】【详解】对于①:双曲线22194y x -=的渐近线方程是32y x =±,故①错误;对于②:双曲线的焦点为()()2,0,2,0-,22,1a a ===,从而离心率2ce a==,所以②正确; 对于③:()(),0,0,,F c B b FB ±±的中点坐标,22c b ⎛⎫±± ⎪⎝⎭均不满足渐近线方程,所以③正确; 故选C. 5.已知函数()f x 图象如图所示,则函数()f x 的解析式可能是( )A. ()()44||x xf x x -=+B. ()4()44log||x xf x x -=-C. ()14()44log ||xxf x x -=+D. ()4()44log||x xf x x -=+【答案】D 【解析】 【分析】结合图像,利用特值法和函数的奇偶性,即可求解【详解】A 项,(0)0f =,与所给函数图象不相符,故A 项不符合题意B 项,4()(44)log ||()x xf x x f x --=-=-,()f x 为奇函数,与所给函数图象不相符,故B 项不符合题意C 项,4414(2)(22)log 20f -=+<,与所给函数图象不符.故C 项不符合题意 综上所述,A 、B 、C 项均不符合题意,只有D 项符合题意, 故选:D.【点睛】本题主要考查函数的概念与性质,属于简单题6. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A. 40种 B. 60种C. 100种D. 120种【答案】B 【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有=60种.故选B .7.已知向量a ,b 满足||2a =,||1b =,且||2b a -=则向量a 与b 的夹角的余弦值为( )A.2 B.23C.2 D.2【答案】C 【解析】 【分析】先由向量模的计算公式,根据题中数据,求出12a b ⋅=,再由向量夹角公式,即可得出结果. 【详解】因为向量a ,b 满足||2a =,||1b =,且||2b a -=,所以2||2-=b a ,即2222+-⋅=b a a b ,因此12a b ⋅=, 所以2cos ,22⋅<>===a b a b a b.故选:C【点睛】本题主要考查由向量的模求向量夹角余弦值,熟记向量夹角公式,以及模的计算公式即可,属于常考题型.8.如图,给出的是求1111 (24636)++++的值的一个程序框图,则判断框内填入的条件是( )A. 18?i >B. 18?i <C. 19?i >D. 19?i <【答案】D 【解析】 【分析】由已知中程序的功能是计算111124636+++⋯+的值,根据已知中的程序框图,我们易分析出 进行循环体的条件,进而得到答案.【详解】模拟程序的运行,可知程序的功能是计算111124636+++⋯+的值,即36n ,19i <时,进入循环,当19i =时,退出循环, 则判断框内填入的条件是19i <.故选D .【点睛】本题考查的知识点是循环结构的程序框图的应用,解答本题的关键是根据程序的功能判断出 最后一次进入循环的条件,属于基础题.9.非负实数x 、y 满足ln (x +y -1)≤0,则关于x -y 的最大值和最小值分别为 A. 2和1 B. 2和-1C. 1和-1D. 2和-2【答案】D 【解析】【详解】试题分析:依题意有,作出可行域,如下图所示:设x y z -=,则有y x z =-,平移y x z =-,当直线y x z =-经过点(0,2)A 时,z 有最小值,其值为2-,当直线y x z =-经过点(2,0)B 时,z 有最大值,其值为2, 因此 x -y 的最大值和最小值分别为2和-2, 故选:D.考点: 简单的线性规划问题.10.如图所示,在著名的汉诺塔问题中有三根针和套在一根针上的若干金属片,按下列规则,把金属片从根针上全部移到另一根针上:①每次只能移动一个金属片;②在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n 个金属片从1号针移到3号针最少需要移动的次数记为()f n ,则()6f =( )A. 61B. 33C. 63D. 65【答案】C 【解析】 【分析】根据题意,求出(1)1f =,同理,求出(2)21+1=3f =⨯,(3)2(2)17f f =+=,(4)2(3)115f f =+=,推导出(1) 2 ()1f n f n +=+ 【详解】由题设可得(1)1f = 求出(2)21+1=3f =⨯,(3)2(2)17f f =+=,(4)2(3)115f f =+=,推导出(1) 2 ()1f n f n +=+, 所以()663f =. 故选:C【点睛】本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数是解题的关键.11.已知函数()|cos |(0)f x x x =的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则()221sin 2θθθ=+( ) A. 2- B. 1-C. 0D. 2【答案】B 【解析】 【分析】依题意,设直线为y kx =,则直线y kx =与(0)y cosx x =切于3(,2)2ππ上的一点,求出切点坐标为(,cos )θθ,然后利用切线方程,即可求出θ,进而得到22(1)sin 2θθθ+的值【详解】函数()|cos |(0)f x x x =的图象与过原点的直线恰有四个交点,∴直线与函数()|cos |(0)f x x x =在区间3,22ππ⎛⎫⎪⎝⎭内的图象相切,在区间3,22ππ⎛⎫⎪⎝⎭上, ()f x 的解析式()cos f x x =,故由题意切点坐标为(,cos )θθ.∴切线斜率0sin sin x k y x θ==-=-'=,∴由点斜式得切线方程为:cos sin ()y x θθθ-=--,即sin sin cos y x θθθθ=-++直线过原点,sin cos 0θθθ∴+=,得1tan θθ=-, ()221222tan tan 1sin 11sin 2212sin cos cos tan θθθθθθθθθθ--∴===-⎛⎫++ ⎪⎝⎭. 故选:B.【点睛】本题考查三角函数的图像问题,难点在于利用切线方程求出θ的值,属于中档题12.过正方体1111ABCD A B C D -的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作( ) A. 1个 B. 2个C. 3个D. 4个【答案】D 【解析】 【分析】每条棱在平面α的正投影的长度都相等,等价于每条棱所在直线与平面α所成角都相等,从而棱AB ,AD ,1AA 所在直线与平面α所成的角都相等,三棱锥1A A BD -是正三棱锥,直线AB ,AD ,1AA 与平面1A BD所成角都相等,过顶点A 作平面α平面1A BD ,由此能求出这样的平面α的个数.【详解】在正方体1111ABCD A B C D -中,每条棱在平面α的正投影的长度都相等⇔每条棱所在直线与平面α所成的角都相等⇔棱1AB AD AA 、、所在直线与平面α所成的角都相等,易知三棱锥1A A BD -是正三棱锥,直线1AB AD AA 、、与平面1A BD 所成的角都相等.过顶点A 作平面α平面1A BD ,则直线1AB AD AA 、、与平面α所成的角都相等.同理,过顶点A 分别作平面α与平面1C BD 、平面1B AC 、平面1D AC 平行,直线1AB AD AA 、、与平面α所成的角都相等.所以这样的平面α可以作4个,故选:D.【点睛】本题考查立体几何中关于线面关系和面面关系的相关概念,属于简单题第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.函数()e 22019x f x x =-+在()()0,0f 处的切线方程是_______. 【答案】2020y x =-+ 【解析】 【分析】求出原函数的导函数,得到(0)f ',再求出(0)f ,然后列出利用切线方程可得答案. 【详解】求导函数可得()2xf x e =-,当0x =时,0(0)21f e '=-=-,0(0)020192020f e =-+=,切点为()0,2020,∴曲线()22019x f x e x =-+在点()()0,0f 处的切线方程是2020y x -=-,故答案为:2020y x =-+.【点睛】本题考查切线方程问题,属于简单题14.数列{}n a 是各项为正且单调递增的等比数列,前n 项和为n S ,353a 是2a 与4a 的等差中项,5484S =,则3a =_____. 【答案】36 【解析】 【分析】由题意可得:1q >,由353a 是2a 与4a 的等差中项,5484S =,可得324523a a a ⨯=+即 523111(1)(),4841a q a q a q q q-=+=-,联立解得:1a ,q ,再利用通项公式即可得出答案【详解】由题意得()2311151510314841a q a q a q a q S q ⎧⋅=⋅+⎪⎪⎨-⎪==⎪-⎩,解得3q =,14a =,23136a a q ∴=⋅=. 故答案为:36【点睛】本题考查差比混合问题,设方程求解即可,属于简单题15.点M 是抛物线2:2(0)C x py p =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在FPM 中,sin sin PFM PMF λ∠=∠,则λ的最大值为__________. 【答案】2 【解析】 【分析】由正弦定理求得||||PMPF λ=,根据抛物线的定义,得1||||PB PM λ=,即1sin αλ=,则λ取得最大值时,sin α最小,此时直线PM 与抛物线相切,将直线方程代入抛物线方程,由0∆=求得k 的值,即可求得λ的最大值【详解】如图,过P 点作准线的垂线,垂足为B ,则由抛物线的定义可得||||PF PB =, 由sin sin PFM PMF λ∠=∠,在PFM △中正弦定理可知:||||F PM P λ=, 所以||||PM PB λ=,所以1||||PB PM λ=, 设PM 的倾斜角为α,则1sin αλ=,当λ取得最大值时,sin α最小,此时直线PM 与抛物线相切,设直线PM 的方程为2p y kx =-,则222x py p y kx ⎧=⎪⎨=-⎪⎩,即2220x pkx p -+=, 所以222440p k p ∆=-=, 所以1k =±,即tan 1α=±,则sin 2α=, 则λ得最大值为1sin α=【点睛】本题属于综合题,难度较大,难点(1)利用sin sin PFM PMF λ∠=∠,通过正弦定理转化为||||F PM P λ=;难点(2)设PM 的倾斜角为α,则1sin αλ=,通过λ取得最大值时,sin α最小,得出PM 与抛物线相切,本题属于难题16.甲乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上6,这样就可得到一个新的实数2a ,对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当31a a >时,甲获胜,否则乙获胜,若甲胜的概率为34,则1a 的取值范围是____.【答案】(,6][12,)-∞⋃+∞ 【解析】 【分析】由题意可知,进行两次操作后,得出3a 的所有可能情况,根据甲胜的概率,列出相应的不等式组,即可求解.【详解】由题意可知,进行两次操作后,可得如下情况:当3112(26)6418a a a =--=-,其出现的概率为211()24=, 当3111(26)632a a a =-+=+,其出现的概率为211()24=, 当1312(6)662a a a =+-=+,其出现的概率为211()24=, 当1132(6)6924a aa =++=+其出现的概率为211()24=, ∵甲获胜的概率为34,即31a a >的概率为34, 则满足111111114184189944a a a a a a a a -≤->⎧⎧⎪⎪⎨⎨+>+≤⎪⎪⎩⎩或整理得11612a a ≤≥或.【点睛】本题主要考查了概率的综合应用,以及数列的实际应用问题,其中解答中认真审题,明确题意,得出3a 的所有可能情况,再根据甲胜的概率,列出相应的不等式组求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分.解答应写出文字说明证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且cos (2)cos a B c b A =-. (1)求角A 的大小;(2)若6a =,求ABC ∆面积的最大值. 【答案】(1)3π;(2)【解析】 【分析】(1)利用正弦定理化简边角关系式,结合两角和差正弦公式和三角形内角和的特点可求得1cos 2A =,根据A 的范围求得结果;(2)利用余弦定理构造等式,利用基本不等式可求得bc 的最大值,代入三角形面积公式即可求得结果.【详解】(1)由正弦定理得:()2sin sin cos sin cos C B A A B -=,即:()2sin cos sin cos cos sin sin C A A B A B A B =+=+,A B C π++= ()sin sin 0A B C ∴+=≠ 1cos 2A ∴=()0,A π∈ 3A π∴=(2)由(1)知:13sin 2ABCSbc A bc == 由余弦定理得:2221236cos 222b c a bc A bc bc+--==≥(当且仅当b c =时等号成立) ∴036bc ∴<≤(当且仅当b c =时等号成立)ABC S ∆∴的最大值为:33693⨯= 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、两角和差正弦公式的应用、余弦定理和三角形面积公式的应用、利用基本不等式求最值的问题,属于常考题型.18.如图在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB AD ⊥,AB ∥CD ,2224AB AD CD PC ====,,E 为线段PB 上一点.(1)求证:平面EAC ⊥平面PBC ; (2)若点E 满足13BE BP =,求二面角P AC E --的余弦值. 【答案】(1)见解析(2)63【解析】 【分析】(1)由已知条件分别证明AC BC ⊥、PC AC ⊥,由此可证得AC ⊥平面PBC ,进而可证EAC PBC ⊥平面平面(2)以C 为原点,取AB 的中点H ,CH ,CD ,CP 分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,由13BE BP =,求得224,,333E ⎛⎫- ⎪⎝⎭,进而求得平面ACE 的一个法向量为()1,1,1n =--,平面PAC 的一个法向量为(1,1,0)CB =-,设二面角P AC E --的平面角为θ,根据||cos |cos ,|||||n CB n CB n CB θ⋅=〈〉=⋅求解即可【详解】(1)如图,由题意,得2AC BC ==2AB =,BC AC ∴⊥.PC ⊥底面ABCD ,PC AC ∴⊥,又PC BC C =,AC ∴⊥平面PBC ,AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)如图,以C 为原点,取AB 中点M ,以CM CD CP ,,所在直线为x y z ,,轴建立空间直角坐标系, 则()()()1,1,0,0,0,4,1,1,0B P A -,设(),,E x y x ,且13BE BP =,得 1(1,1,)(1,1,4)3x y z -+=-,即224,,333E ⎛⎫- ⎪⎝⎭,(1,1,0)CA =,224,,333CE ⎛⎫=- ⎪⎝⎭,设平面EAC 的法向量为()111,,n x y z =,由00CE n CA n ⎧⋅=⎨⋅=⎩,即1111122403330x y z x y ⎧-+=⎪⎨⎪+=⎩, 令11x =,得(1,-1,-1)n =.又BC AC ⊥,且BC PC ⊥,所以BC ⊥平面PAC ,故平面PAC 的法向量为(1,1,0)m BC ==-, 设二面角P AC E --的平面角为θ,则||cos |cos ,|||||3m n m n m n θ⋅=〈〉==⋅. 【点睛】本题主要考查点、线、面的位置关系和空间直角坐标系,属于简单题19.某学校为了了解全校学生“体能达标”的情况,从全校1000名学生中随机选出40名学生,参加“体能达标”预测,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为“合格”若该校“不合格”的人数不超过总人数的5%,则全校“体能达标”为“合格”;否则该校“体能达标”为“不合格”,需要重新对全校学生加强训练现将这40名学生随机分为甲、乙两个组,其中甲组有24名学生,乙组有16名学生经过预测后,两组各自将预测成绩统计分析如下:甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6(题中所有数据的最后结果都精确到整数).(1)求这40名学生测试成绩的平均分x 和标准差s ; (2)假设该校学生的“体能达标”预测服从正态分布()2,N μσ用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ.利用估计值估计:该校学生“体能达标”预测是否“合格”? 附:①n 个数12,,,n x x x 的平均数11n i i x x n ==∑,方差(22221111)n n i i i i s x x x nx n n ==⎛⎫=-=- ⎪⎝⎭∑∑;②若随机变量Z 服从正态分布()2,N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.【答案】(1)平均分为74,标准差为7.(2)该校学生“体能达标”预测合格. 【解析】 【分析】(1)根据甲组的平均成绩为70,乙组的平均成绩为80,根据公式可得x设甲组24名学生的测试成绩分别为:1224 ,x x x ⋯,乙组16名学生的测试成绩分别为:252640,x x x ⋯,将公式2211()n i i s x x n ==-∑变形变形为()22222121n s x x x nx n ⎡⎤=+++-⎣⎦,分别求得21s 和22s ,即可根据公式解得解得()22221224241670x x x +++=⨯+和()2222252640163680x x x +++=⨯+,最后整理公式得()()22222222122425264014040s x x x x x x x ⎡⎤=+++++++-⨯⎣⎦,计算并求解即可(2)由(1)可得ˆ74μ=,ˆ7σ=,由(22)0.9544P Z μσμσ-<<+=, 得(6088)0.9544P X <<=,进而得到1(60)(10.9544)0.02282P X <=⨯-=, 求出全校学生“不合格”的人数占总人数的百分比,与5%进行比较即可 【详解】(1)这40名学生测试成绩的平均分702480167440x ⨯+⨯==.将()2211n i i s x x n ==-∑变形为()()22222212111n i n i s x x x x x nx n n =⎡⎤=-=+++-⎣⎦∑.设第一组学生的测试成绩分别为12324,,,,x x x x , 第二组学生的测试成绩分别为25262740,,,,x x x x ,则第一组的方差为()2222221122412470424s x x x ⎡⎤=+++-⨯=⎣⎦, 解得()22221224241670x x x +++=⨯+.第二组的方差为()222222225264011680616s x x x ⎡⎤=+++-⨯=⎣⎦, 解得()2222252640163680x x x +++=⨯+.这40名学生的方差为()()22222222122425264014040s x x x x x x x ⎡⎤=+++++++-⨯⎣⎦()()222124167016368040744840⎡⎤=⨯++⨯+-⨯=⎣⎦,所以7s ==≈.综上,这40名学生测试成绩的平均分为74,标准差为7.(2)由74x =,7s ≈,得μ的估计值为ˆ74μ=,σ的估计值ˆ7σ=. 由(22)0.9544P X μσμσ-<<+=,得(74277427)0.9544P X -⨯<<+⨯=,即(6088)0.9544P X <<=.所以11(60)(88)[1(6088)](10.9544)0.022822P X P X P X <==-<<=-=,从而,在全校1000名学生中,“不合格”的有10000.022822.823⨯=≈(人), 而23505%10001000<=, 故该校学生“体能达标”预测合格.【点睛】本题主要考查用样本估计总体,难点在于运算量较大,属于基础题20.已知椭圆()22122:10x y C a b a b +=>>()2,1P -是1C 上一点.(1)求椭圆1C 的方程;(2)设A B Q 、、是P 分别关于两坐标轴及坐标原点的对称点,平行于AB 的直线l 交1C 于异于P Q 、的两点C D 、.点C 关于原点的对称点为E .证明:直线PD PE 、与y 轴围成的三角形是等腰三角形.【答案】(1)22182x y +=;(2)证明见解析. 【解析】试题分析:(1)因为1C 所以224a b =;即1C 的方程为:222214x y b b +=,代入()2,1P -即可;(2)设直线PD PE 、的斜率为12,k k ,则要证直线PD PE 、与y 轴围成的三角形是等腰三角形需证120k k +=.由已知可得直线l 的斜率为12,则直线l 的方程为:12y x t =+,联立直线和椭圆的方程,找到斜率,代入相应的量即可.试题解析:(1)因为1C 离心率为2,所以224a b =, 从而1C 的方程为:222214x y b b+=代入()2,1P -解得:22b =, 因此28a =.所以椭圆1C 的方程为:22182x y +=(2)由题设知A B 、的坐标分别为()()2,1,2,1--, 因此直线l 的斜率为12, 设直线l 的方程为:12y x t =+, 由2212{182y x t x y =++=得:222240x tx t ++-=, 当0∆>时,不妨设()()1122,,,C x y D x y , 于是212122,24x x t x x t +=-=-,分别设直线PD PE、的斜率为12,k k ,则,则要证直线PD PE 、与y 轴围成的三角形是等腰三角形, 只需证()()()()212112210y x x y ---++=,而()()()()()()212121122112122124y x x y y y x y x y x x ---++=--++--()()211212121212224424240x x x x t x x x x x x t x x t t =---++--=--+-=-++-=所以直线PD PE 、与y 轴转成的三角形是等腰三角形 考点:1.椭圆的方程;2.直线与椭圆综合题. 21.已知函数()1e cos x f x x -=+. (1)求()f x 的单调区间;(2)若12,(,)x x π∈-+∞,12x x ≠,且()()1212e e 4x xf x f x +=,证明:120x x +<.【答案】(1)单调递减区间为32,2,44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ;单调递增区间为52,2,44k k k ππππ⎛⎫--∈ ⎪⎝⎭Z .(2)见解析 【解析】 【分析】(1)先求函数定义域,对函数求导,分别解不等式()0f x >和()0f x <,得函数的增区间和减区间即可; (2)由2112()()4xxe f x e f x +=,得21124xxe cosx e cosx +++=,可构造函数()x g x e cosx =+,则12()()4g x g x +=,探究()g x 在(,)π-+∞上的单调性,构造函数()()()G x g x g x =+-,探究()G x 在(,)π-+∞上的单调性,再结合关系式12()()4g x g x +=,利用单调性可得出结论【详解】(1)()f x 的定义域为(,)-∞+∞,()cos sin sin 4x x x f x e x e x x π---⎛⎫'=--=+ ⎪⎝⎭,由()0f x '<,得sin 04x π⎛⎫+> ⎪⎝⎭,从而322,44k x k k ππππ-<<+∈Z ; 由()0f x '>,得sin 04x π⎛⎫+< ⎪⎝⎭,从而522,44k x k k ππππ-<<-∈Z ; 所以,()f x 的单调递减区间为32,2,44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ; 单调递增区间为52,2,44k k k ππππ⎛⎫--∈ ⎪⎝⎭Z . (2)()()12124xxe f x e f x +=,即1212cos cos 4xxe x e x +++=, 令()cos xg x e x =+,则()()124g x g x +=,()sin xg x e x '=-.当0x >时,()1sin 0g x x '>-;当0x π-<时,sin 0x ,()sin 0xg x e x '=->,故(,)x π∈-+∞时,()0g x '>恒成立,所以()g x 在(),π-+∞上单调递增,不妨设12x x π-<<,注意到0(0)cos 02g e =+=,所以120x x π-<<<,令()()(),(,0)G x g x g x x π=+-∈-,则'()2sin xxG x e ex -=--,令()2sin x xx e ex ϕ-=+-,则()2cos 2(1cos )0x x x e e x x ϕ-'=+--,所以()x ϕ在(),0π-上单调递增,从而()(0)0x ϕϕ<=,即()0G x '<,所以()G x 在(),0π-上单调递减,于是()(0)(0)(0)4G x G g g >=+-=, 即()()4g x g x +->,又1(,0)x π∈-,所以()()114g x g x +->,于是()()()1124g x g x g x ->-=, 而()g x 在(),0π-上单调递增,所以12x x ->,即120x x +<.【点睛】本题主要考查导数在研究函数中的应用,属于含三角函数与指数函数的极值点偏移问题,难点在于选取合适的函数求导以及通过放缩对不等式进行转换,属于难题请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.做答时请写清题号.选修4-4:坐标系与参数方程22.选修4-4:坐标系与参数方程: 在平面直角坐标系xoy 中,已知曲线C 的参数方程为,x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为242,131013x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),点P 的坐标为()2,0-.(1)若点Q 在曲线C 上运动,点M 在线段PQ 上运动,且2PM MQ =,求动点M 的轨迹方程. (2)设直线l 与曲线C 交于,A B 两点,求PA PB ⋅的值.【答案】(1)222439x y =⎛⎫++ ⎪⎝⎭(2)3【解析】 【分析】(1)设()Q cos ,sin θθ,(),M x y ,由2PM MQ =即得动点M 的轨迹方程;(2)由题得直线l 的参数方程可设为122,13513x t y t ⎧=-+⎪⎪⎨⎪='⎩'⎪(t '为参数),代入曲线C 的普通方程,得2483013t t +=''-,再利用直线参数方程t 的几何意义求解.【详解】(1)设()Q cos ,sin θθ,(),M x y ,则由2PM MQ =,得()()2,2cos sin θθ+=--x y x,y ,即323cos ,32sin .x y θθ+=⎧⎨=⎩ 消去θ,得222439x y =⎛⎫++ ⎪⎝⎭,此即为点M 的轨迹方程. (2)曲线C 的普通方程为221x y +=,直线l 的普通方程()5212y =x +, 设α为直线l 的倾斜角,则5tan 12α=,512sin ,cos 1313αα==, 则直线l 的参数方程可设为122,13513x t y t ⎧=-+⎪⎪⎨⎪='⎩'⎪(t '为参数), 代入曲线C 的普通方程,得2483013t t +=''-, 由于24827612013169⎛⎫∴∆=--=> ⎪⎝⎭, 故可设点,A B 对应的参数为1t ',2t ', 则21213PA PB t t t t ''''⋅=⋅==. 【点睛】本题主要考查参数方程与普通方程的互化,考查动点的轨迹方程,考查直线参数方程t 的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.选修4-5:不等式选讲23.(1)已知,,+∈a b c R ,且1a b c ++=,证明:1119a b c++; (2)已知,,+∈a b c R ,且1abc =,证明:111c b a b c+++【答案】(1)见解析(2)见解析【解析】【分析】 (1)结合1a b c ++=代人所证不等式的左边中的分子,通过变形转化,利用基本不等式加以证明即可 (2)结合不等式右边关系式的等价变形,通过基本不等式来证明即可【详解】证明:(1)111a b c a b c a b c a b c a b c++++++++=++111b c a c a b a a b b c c=++++++++ 39b a b c a c a b c b c a=++++++, 当a b c ==时等号成立.(2)因为11111111111222a b c a b a c b c ab ⎛⎛⎫++=+++++⨯ ⎪ ⎝⎭⎝, 又因为1abc =,所以1c ab =,1b ac =,1a bc=, 111c b a b c ∴++++.当a b c ==时等号成立,即原式不等式成立.【点睛】本题考查基本不等式的应用,考查推理论证能力,化归与转化思想。

2021届全国天一大联考新高考模拟考试(九)数学(理科)

2021届全国天一大联考新高考模拟考试(九)数学(理科)

2021届全国天一大联考新高考模拟考试(九)理科数学★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填涂在答题卡上.1.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A. {|0}x x <B. {|01}x xC. {|10}x x -<D. {|1}x x -【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 补集,然后求()RAB【详解】{|11},{|0}A x x B x x =-=<,所以 (){|1}RA B x x =-.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题. 2.若复数z 与其共轭复数z 满足213z z i -=+,则||z =( )A.B.C. 2D.【解析】 【分析】设z a bi =+,则2313z z a bi i -=-+=+,得到答案.【详解】设z a bi =+,则222313z z a bi a bi a bi i -=+-+=-+=+,故1a =-,1b =,1z i =-+,z =.故选:A .【点睛】本题考查了复数的计算,意在考查学生的计算能力.3.已知某企业2020年4月之前的过去5个月产品广告投入与利润额依次统计如下:由此所得回归方程为ˆ12yx a =+,若2020年4月广告投入9万元,可估计所获利润约为( ) A. 100万元 B. 101 万元C. 102万元D. 103万元.【答案】C 【解析】 【分析】由题意计算出x 、y ,进而可得12a y x =-,代入9x =即可得解. 【详解】由题意()18.27.887.98.185x =++++=,()19289898793905y =++++=, 所以12901286a y x =-=-⨯=-,所以ˆ126y x =-, 当9x =时,ˆ1296102y=⨯-=. 故选:C.【点睛】本题考查了线性回归方程的应用,考查了运算求解能力,属于基础题. 4.已知向量()()3,2,1,1a x b =-=,则“1x >”是“a 与b 夹角为锐角”的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件【答案】A【详解】当51x =>时,()()2,2,1,1,a b a ==与b 的夹角为0, 不是锐角,所以充分性不成立,若a 与b 的夹角为锐角,则320,1a b x x ⋅=-+>>必要性成立,∴“1x >”是“a 与b 夹角为锐角”的必要不充分条件.故选:A .5.已知函数()y f x =的部分图象如图,则()f x 的解析式可能是( )A. ()tan f x x x =+B. ()sin 2f x x x =+ C. 1()sin 22f x x x =- D. 1()cos 2f x x x =-【答案】C 【解析】 【分析】首先通过函数的定义域排除选项A ,再通过函数的奇偶性排除选项D,再通过函数的单调性排除选出B ,确定答案.【详解】由图象可知,函数的定义域为R ,而函数()tan f x x x =+的定义域不是R,所以选项A 不符合题意; 由图象可知函数是一个奇函数,选项D 中,存在实数x , 使得1()cos ()2f x x x f x -=--≠-,所以函数不是奇函数,所以选项D 不符合题意; 由图象可知函数是增函数,选项B ,()12cos 2[1,3]f x x =∈-'+,所以函数是一个非单调函数,所以选项C 不符合题意;由图象可知函数是增函数,选项C ,()1cos 20f x x =-≥,所以函数是增函数,所以选项C 符合题意. 故选:C【点睛】本题主要考查函数的图象和性质,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平.6.已知二项式121(2)n x x+的展开式中,二项式系数之和等于64,则展开式中常数项等于( ) A. 240 B. 120 C. 48 D. 36【答案】A 【解析】 【分析】由题意结合二项式系数和的性质可得264n =即6n =,写出二项式展开式的通项公式3362162r rr r T C x--+=⋅⋅,令3302r -=即可得解. 【详解】由题意264n=,解得6n =,则1162211(2)(2)n x x x x+=+,则二项式1621(2)x x +的展开式的通项公式为6133622166122rrr r r r r T C x C x x ---+⎛⎫⎛⎫=⋅⋅=⋅⋅ ⎪⎪⎝⎭⎝⎭, 令3302r -=即2r ,则6426622240rr C C -⋅=⋅=.故选:A.【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题.7.已知三棱锥A BCD -中,侧面ABC ⊥底面BCD ,ABC 是边长为3的正三角形,BCD 是直角三角形,且90BCD ∠=︒,2CD =,则此三棱锥外接球的体积等于( )A. B.323π C. 12π D.643π【答案】B 【解析】 【分析】取BD 的中点1O ,BC 中点G ,连接1GO 、AG ,过点1O 作直线垂直平面BCD ,可知三棱锥外接球的球心在该直线上,设为O ,过点O 作OH AG ⊥于H ,连接AO 、BO ,设1OO m =,由勾股定理可得22134OD m =+、221OA m ⎫=+-⎪⎪⎝⎭,利用22OD OA =即可得m =,进而可得外接球半径2R =,即可得解.【详解】取BD 的中点1O ,BC 中点G ,连接1GO 、AG ,由题意可得1O 为BCD 的外心,AG ⊥平面BCD ,过点1O 作直线垂直平面BCD ,可知三棱锥外接球的球心在该直线上,设为O , 过点O 作OH AG ⊥于H ,连接AO 、OD ,可知四边形1OHGO 为矩形,ABC 是边长为3,2CD =,∴33AG =,13BD =11O G =,设1OO m =,则33HA m =, ∴222211134OD DO OO m =+=+,22223312OA OH HA m ⎛⎫=+=+- ⎪ ⎪⎝⎭, 由22OD OA =可得22133314m m ⎫+=+⎪⎪⎝⎭,解得32m =, ∴三棱锥A BCD -外接球的半径21324R m =+=, ∴此三棱锥外接球的体积343233V R ππ==. 故选:B.【点睛】本题考查了三棱锥几何特征的应用及外接球的求解,考查了面面垂直性质的应用和空间思维能力,属于中档题.8.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()0||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭, 的部分图像如图所示,n S 为数列{}n a 的前n 项和,则2020S 的值为( )A. 1-B. 0C.12D. 3 【答案】D 【解析】 【分析】根据图像得到()sin(2)3f x x π=+,sin 33n n a ππ⎛⎫=+ ⎪⎝⎭,6n n a a +=,计算每个周期和为0,故20201234S a a a a =+++,计算得到答案.【详解】741234T πππ=-=,故T π=,故2ω=,()sin(2)f x x ϕ=+,2sin()033f ππϕ⎛⎫=+= ⎪⎝⎭, 故2,3k k Z ϕππ+=∈,故2,3k k Z πϕπ=-∈,当1k =时满足条件,故3πϕ=, ()sin(2)3f x x π=+,sin 633n n n a f πππ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭,()66sin 33n n a n a ππ++⎛⎫= ⎪⎝⎭=+, 13a =,20a =,332a =-,432a =-,50a =,632a =,每个周期和为0, 故202012343S a a a a =+++=. 故选:D .【点睛】本题考查了数列和三角函数的综合应用,意在考查学生计算能力和综合应用能力. 9.从0,1,2,3,4,5,6,7,8,9这十个数中任取6个不同的数,则这6个数的中位数恰好是112的概率为( ) A.11050B.1525C.435D.635【答案】D 【解析】 【分析】首先利用组合求出任取6个不同的数的取法,然后再分类讨论:以5,6为中间两个数或以4,7为中间两个数,利用组合分别求出取法,再利用古典概型的概率公式即可求解.【详解】从10个数中任取6个不同的数的取法有610210C =种,其中中位数是112的取法要分两类: 一类以5,6为中间两个数,取法共有225330C C =种;另一类以4,7为中间两个数,取法共有22426C C =. 则所求的概率为306621035+=. 故选:D【点睛】本题考查了计数原理、古典概型,考查了计算能力,属于基础题.10.在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下三个命题:①异面直线1AC 与1B F 所成的角是定值; ②三棱锥1B A EF -的体积是定值;③直线1A F 与平面11B CD 所成的角是定值. 其中真命题的个数是( ) A. 3 B. 2C. 1D. 0【答案】B 【解析】 【分析】以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系, 可得1AC =(1,1,1),1B F =(t-1,1,-t),可得11AC B F =0,可得①正确; 由三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,可得②正确;可得1A F =(t ,1,-t),平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值可得③错误,可得答案.【详解】解:以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为1,可得B(1,0,0),C(1,1,O),D(0,1,0),1A (0,0,1),1B (1,0,1),1C (1,1,1),1D (0,1,1),设F(t ,1,1-t),(0≤t≤1),可得1AC =(1,1,1),1B F =(t-1,1,-t),可得11AC B F =0,故异面直线1AC 与1B F 所的角是定值,故①正确;三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,点F 是线段1CD 上的一个动点,可得F 点到底面1A BE 的距离为定值,故三棱锥1B A EF -的体积是定值,故②正确;可得1A F =(t ,1,-t),1B C =(0,1,-1),11B D =(-1,1,0),可得平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值,故③错误; 故选B.【点睛】本题主要考查空间角的求解及几何体体积的求解,建立直角坐标系,是解题的关键. 11.抛物线22(0)y px p =>的焦点为F ,准线为l ,点,A B 是抛物线上的两个动点,且满足3AFB π∠=,点,A B 在l 上的投影分别为点,M N ,若四边形ABNM 的面积为S ,则2S AB的最大值为( )A.12B. 1C.32D. 2【答案】B 【解析】 【分析】设AF x =,BF y =,由抛物线的定义得AF AM x ==,BF BN y ==,在ABF 中,根据余弦定理可得()22AB x y xy --=,从而求出梯形ABNM =,利用梯形的面积公式结合基本不等式即可求解.【详解】设AF x =,BF y =,则由抛物线的定义得AF AM x ==,BF BN y ==, 在ABF 中,由余弦定理得2222cos AB AF BF AF BF AFB =+-⋅∠ ()2222cos3x y xy x y xy π=+-=-+,即()22AB x y xy --=, 所以梯形ABNM=,所以四边形ABNM的面积为S =故()22222222x yx y S x y AB x y ++⋅=≤⎛⎫++- ⎪⎝⎭()()()22222222222122x y x y x y xy x y x y +++++=≤=++, 当且仅当x y =时取等号,所以2S AB的最大值为1.故选:B【点睛】本题考查了抛物线的定义与几何性质、基本不等式的应用、余弦定理,属于中档题.12.已知2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,则t 的取值范围是( )A. 1(]46e ⎧⎫-∞⋃⎨⎬⎩⎭, B. 1(,]6-∞C. 1[0]46e ⎧⎫⋃⎨⎬⎩⎭,D. 1(,]4-∞【答案】D 【解析】 【分析】由题意结合导数转化条件得()22x t e x =+在()0,∞+上无解,令()()()022xe g x x x =≥+,求导后确定函数()g x 的值域即可得解.【详解】由题意,函数()f x 的定义域为()0,∞+, 对函数()f x 求导得()()()2221212()2(1)21xx x e x e f x t x x xt x x ⎡⎤-+⎣⎦'--=-+-=,2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,∴()220xe x t +=-在()0,∞+上无解,即()22xt e x =+在()0,∞+上无解,令()()()022xe g x x x =≥+,则()()()()()222222102222x x x e x e e x g x x x +-+'==>++, ∴函数()g x 在[)0,+∞单调递增,当()0,x ∈+∞时,()()104g x g >=, ∴14a ≤. 故选:D.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于基础题.二、填空题:本大题4个小题,每小题5分,共20分,把答案填写在答题卡相应的位置上.13.已知0a >,0b >,且2a b +=,则515a b+的最小值是________. 【答案】185【解析】 【分析】 由条件可得511511526()525255b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,然后利用基本不等式求解即可. 【详解】因为2a b +=,所以511511526()525255b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭. 因为0,0a b >>,所以525b a a b +≥(当且仅当53a =,13b =时,等号成立), 所以511261825255a b ⎛⎫+≥⨯+= ⎪⎝⎭. 故答案为:185【点睛】本题考查的是利用基本不等式求最值,属于典型题.14.已知正项等比数列{}n a 中, 11a =,其前n 项和为()*n S n N ∈,且123112a a a -=,则4S =__________. 【答案】15 【解析】解:由题意可知:2111111a a q a q -= ,结合11,0a q => 解得:2q ,则4124815S =+++= .15.已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为34yx ,点P 是双曲线的左支上异于顶点的一点,12,F F 分别为双曲线的左、右焦点,M 为12PF F ∆的内心,若1MPF ∆,2MPF ∆,12MF F ∆的面积满足1212MPF MPF MF F S S S λ∆∆∆=-,则λ的值为_____. 【答案】45【解析】 【分析】先根据双曲线的渐近线方程为34yx ,得到34b a,再根据1212MPFMPF MF F S S S λ∆∆∆=-,结合双曲线的定义得到a c λ==.【详解】因为双曲线22221(0,0)x y a b a b-=>>的渐近线方程为34yx , 所以34b a , 设内切圆的半径为r ,因为1212MPF MPF MF F S S S λ∆∆∆=-, 所以1212111222PF r PF r F F r λ⋅=⋅-⋅, 所以2112PF PF F F λ-=, 所以22a c λ=,所以a c λ==45===.故答案为:45【点睛】本题主要考查双曲线定义和几何性质以及内切圆问题,还考查了数形结合的思想和运算求解的能力,属于中档题.16.已知定义在R 上的函数()y f x =为增函数,且函数()1y f x =+的图象关于点()1,0-成中心对称,若实数a 、b 满足不等式()()224230f a a f bb -+--≤,则当24a ≤≤时,()221a b +-的最大值为_________. 【答案】20 【解析】 【分析】推导出函数()y f x =为奇函数,且在R 上为增函数,由()()224230f a af bb -+--≤得出()()130a b a b --+-≥,由此将问题转转化为在约束条件()()13024a b a b a ⎧--+-≥⎨≤≤⎩下求()221a b +-的最大值,作出不等式组所表示的平面区域,将代数式()221a b +-转化为点()0,1P 到平面区域内的动点(),M a b 的距离的平方,数形结合可得出结果.【详解】函数()1y f x =+的图象关于点()1,0-成中心对称,则函数()y f x =的图象关于原点对称,所以,函数()y f x =为奇函数,且该函数在R 上为增函数, 由()()224230f a af bb -+--≤,得()()22423f a a f b b -≥--,22423a a b b ∴-≥--,()()2221a b ∴-≥-,则有()()130a b a b --+-≥,不等式组()()13024a b a b a ⎧--+-≥⎨≤≤⎩所表示的平面区域如下图所示的ABC :联立410a a b =⎧⎨--=⎩,得43a b =⎧⎨=⎩,可得点()4,3A ,同理可得点()4,1B -,代数式()221a b +-可视为点()0,1P 到平面区域内的动点(),M a b 的距离的平方, 由图象可知,当点M 与点A 或点B 重合时,()221a b +-取最大值()2243120+-=. 故答案为:20.【点睛】本题考查抽象函数单调性与奇偶性的应用,将问题转化为线性规划下非线性目标函数的最值问题是解答的关键,考查化归与转化思想以及数形结合思想的应用,属于难题.三、解答题:解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.17.在锐角△ABC 中,3a =________, (1)求角A ;(2)求△ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos(),()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】(1)若选①,3π(2)(623,63+ 【解析】 【分析】(1)若选①,12m n ⋅=-,得到1cos 2A =,解得答案. (2)根据正弦定理得到4sin sin sin a b c ABC ===,故43236ABC l B π⎛⎫=++ ⎪⎝⎭△到答案.【详解】(1)若选①,∵(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-221cos sin 222A A ∴-+=-,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)4sin sin sin a b cA B C===, 故24sin 4sin 234sin 4sin 233ABC l B C B B π⎛⎫=++=-++⎪⎝⎭△, 43sin 236ABClB π⎛⎫∴=++ ⎪⎝⎭,锐角△ABC ,故62B ππ⎛⎫∠∈ ⎪⎝⎭,.2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,(623,63ABC l ⎤∴∈+⎦△. (1)若选②,()cos 2cos A b c a C =-,则2cos cos cos b A a C c A =+,2sin cos sin B A B =,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭,(2)问同上;(1)若选③131()cos (cos sin )224f x x x x =+-=21cos 2x +3cos sin x x -14=12×1+cos 22x +3×sin 22x -141131=(cos 2sin 2)=sin(2)2226x x x π++, ()11sin 2462f A A π⎛⎫=∴+= ⎪⎝⎭,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力. 18.2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在[2585],之间,根据统计结果,做出频率分布直方图如下:(Ⅰ)求这100位作者年龄的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,作者年龄X 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求(6073.4)P X <<;(ii )央视媒体平台从年龄在[4555],和[6575],的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间[4555],的人数是Y ,求变量Y13.4≈,若2~(,)X N μσ,则()0.683P X μσμσ-<<+=,(22)0.954P X μσμσ-<<+=【答案】(1)60x =,2180s =;(2)(i )0.3415;(ii )详见解析. 【解析】 【分析】(1) 利用离散型随机变量的期望与方差的公式计算可得答案;(2)(i )由(1)知,~(60180X N ,),从而可求出(6073.4)P X <<; (ii )可得Y 可能的取值为0,1,2,3,分别求出其概率,可列出Y 的分布列,求出其Y 的数学期望. 【详解】解:(1)这100位作者年龄的样本平均数x 和样本方差2s 分别为300.05400.1500.15600.35700.2800.1560x =⨯+⨯+⨯+⨯+⨯+⨯=()()()222222300.05200.1100.1500.35100.2200.15180s =-⨯+-⨯+-⨯⨯+⨯+⨯+⨯=(2)(i )由(1)知,()~60180X N ,, 从而1(6073.4)(6013.46013.4)0.34152P X P X <<=-<<+=; (ii )根据分层抽样的原理,可知这7人中年龄在[]4555,内有3人,在[]6575,内有4人, 故Y 可能的取值为0,1,2,3()0334374035C C P Y C ===,()12343718135C C P Y C ===, ()21343712235C C P Y C === ()3034371335C C P Y C === 所以Y 的分布列为P 435 1835 1235 135所以Y 的数学期望为()41812190123353535357E Y =⨯+⨯+⨯+⨯= 【点睛】本题主要考查了离散型随机变量的期望与方差,正态分布的应用,其中解答涉及到离散型随机变量的期望与方差公式的计算、正态分布曲线的概率的计算等知识点的考查,着重考查了学生分析问题,解答问题的能力及推理与运算的能力,属于中档题型. 19.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CM CP的值;若不存在,说明理由.【答案】(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD = 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD , 平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-, 解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.20.己知椭圆22221(0)y x C a b a b +=>>:过点2P ,1(0,1)F -,2(0,1)F 是两个焦点.以椭圆C 的上顶点M 为圆心作半径为()0r r >的圆, (1)求椭圆C 的方程;(2)存在过原点的直线l ,与圆M 分别交于A ,B 两点,与椭圆C 分别交于G ,H 两点(点H 在线段AB 上),使得AG BH =,求圆M 半径r 的取值范围.【答案】(1)22:12y C x +=(2)【解析】 【分析】(1)由题意结合椭圆性质可得122|a PF PF =+=2221b a c =-=,即可得解; (2)当直线斜率不存在时,r =当直线斜率存在时,设直线l 方程为:y kx =, ()11,G x y ,()22,H x y ,联立方程后利用弦长公式可得||GH =||AB =||||AB GH =,可得24212132r k k ⎛⎫=+ ⎪++⎝⎭,即可得解. 【详解】(1)设椭圆的焦距为2c ,由题意1c =,122|a PF PF =+=,所以22a =,2221b a c =-=,故椭圆C 的方程为2212y x +=;(2)当直线斜率不存在时,圆M 过原点,符合题意,r =当直线斜率存在时,设直线l 方程:y kx =,()11,G x y ,()22,H x y ,由直线l 与椭圆C 交于G 、H 两点,则2212y kx y x =⎧⎪⎨+=⎪⎩,所以()22220k x +-=,>0∆, 则1212220,2x x x x k+==-+,所以||H G ==点M到直线l的距离d =,则||AB =, 因为AG BH =,点H 在线段AB 上,所以点G 在线段AB 的延长线上, 只需||||AG BH =即||||AB GH =,所以()2222812421k r k k +⎛⎫=- ⎪++⎝⎭, 则()()2422224242212332*********k k k r k k k k k k +++⎛⎫=+==+ ⎪++++++⎝⎭因为24223132224k k k ⎛⎫++=+-≥ ⎪⎝⎭,所以42110322k k <≤++,所以(]22,3r ∈,r ∈;综上,r 的取值范围为.【点睛】本题考查了椭圆方程的确定,考查了直线、圆、椭圆的综合应用,属于中档题. 21.已知函数()1ln f x ax x =++. (1)221()()(1)2g x af x x a a x =+-++,求函数()g x 的单调区间: (2)对于任意0x >,不等式()xf x xe ≤恒成立,求实数a 的取值范围. 【答案】(1)见解析(2)1a ≤ 【解析】 【分析】(1)求导后,按照1a >、1a =、01a <<与0a ≤分类,分别解出不等式()0g x '>,即可得解;(2)转化条件得对于任意0x >,不等式ln 1x xe x a x --≤恒成立,设ln 1()x xe x F x x --=,则22ln ()x x e x F x x +'=,设2()ln xh x x e x =+,求导后可得()h x 在(0,)+∞上单调递增,进而可得01,1x e ⎛⎫∃∈ ⎪⎝⎭,使得()00h x =,即0()0F x '=,则()0()F x F x ≥,设()()0xx xe x ϕ>=,求导后可得()x ϕ在(0,)+∞上单调递增,即可证000011ln x x e x x ⎛⎫=⇔= ⎪⎝⎭,代入求出()0F x 后,即可得解.【详解】(1)由题意21()ln (1),(0)2g x a x x a x a x =+-++>, 则2(1)(1)()()(1)a x a x a x x a g x x a x x x'-++--=+-+==, (i )当1a >时,()0g x '>的解集为((,1))0,a +∞,则()g x 的单调增区间为(0,1)和(,)a +∞,单调减区间为(1,)a ;(ii )当1a =时,()0g x '≥,则()g x 的单调增区间为(0,)+∞,无单调减区间; (iii )当01a <<时,()0g x '>的解集为(0,)(1,)a +∞,则()g x 的单调增区间为(0,)a 和(1,)+∞,单调减区间为(,1)a ;(iiii )当0a ≤时,()0g x '>的解集为(1,)+∞,则()g x 的单调增区间为(1,)+∞,单调减区间为(0,1).(2)由已知,问题等价于对于任意0x >,不等式ln 1x xe x a x--≤恒成立,设ln 1()x xe x F x x --=,则22ln ()x x e xF x x+'=, 设2()ln xh x x e x =+,则()21()2xh x x x e x'=++, 在(0,)+∞上,()0h x '>,()h x 单调递增,又12110e h e e -⎛⎫=-< ⎪⎝⎭,(1)0h e =>,所以1(1)0h h e ⎛⎫< ⎪⎝⎭,所以01,1x e ⎛⎫∃∈ ⎪⎝⎭,使得()00h x =,即0()0F x '=,在()00,x 上,()0F x '<,()F x 单调递减; 在()0x +∞上,()0F x '>,()F x 单调递增; 所以()0()F x F x ≥,又有00001ln 20000000111ln ln ln x x x x x e x x e x e ex x x ⎛⎫⎪⎝⎭⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭⇔⇔,设()()0xx xe x ϕ>=,则有()001ln x x ϕϕ⎛⎫= ⎪⎝⎭和()(1)0x x x e ϕ'=+>, 所以在(0,) +∞上,()x ϕ单调递增,所以000011ln x x e x x ⎛⎫=⇔= ⎪⎝⎭, 所以()0000000ln 111()1x x e x x F x F x x x --+-≥===, 故实数a 的取值范围为1a ≤.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于难题.选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为6cos 0ρθ-=. (1)写出直线l 和曲线C 的直角坐标方程;(2)已知点(1,0)A ,若直线l 与曲线C 交于,P Q 两点,,P Q 中点为M ,求||||||AP AQ AM 的值. 【答案】(1)10x y --=.22(3)9x y -+=.(2)2【解析】【分析】 (1)直接利用极坐标和参数方程公式计算得到答案.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩,代入方程得到125t t =-,12t t +=. 【详解】(1)直线:cos 4l πρθ⎛⎫+= ⎪⎝⎭,故cos sin 10ρθρθ--=, 即直线l 的直角坐标方程为10x y --=.因为曲线:6cos 0C ρθ-=,则曲线C 的直角坐标方程为2260x y x +-=,即22(3)9x y -+=.(2)设直线l的参数方程为1,x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C的直角坐标系方程得250t --=.设P ,Q 对应的参数分别为1t ,2t ,则125t t =-,12t t +=所以M对应的参数1202t t t +==120|t ||t |||||=||||AP AQ AM t ==【点睛】本题考查了参数方程和极坐标方程,意在考查学生的计算能力和转化能力.23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围.【答案】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦. 【解析】【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果; (2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+,当2x -≤时,224x x --<+ ,2x >-,所以无解;当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-.所以a的取值范围为2 2,3⎡⎤--⎢⎥⎣⎦.【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.。

2021-2022学年全国版天一大联考高考数学一模试卷含解析

2021-2022学年全国版天一大联考高考数学一模试卷含解析

2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米B .63厘米C .69厘米D .76厘米2.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<3.设m ,n 为直线,α、β为平面,则m α⊥的一个充分条件可以是( ) A .αβ⊥,n αβ=,m n ⊥ B .//αβ,m β⊥ C .αβ⊥,//m β D .n ⊂α,m n ⊥4.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( )A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)5.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .6.抛物线23x ay =的准线方程是1y =,则实数a =( )A .34- B .34C .43-D .437.若,则( )A .B .C .D .8.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .10.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>11.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下-个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为( )A .5101900-米B .510990-米C .4109900-米D .410190-米12.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .10102021二、填空题:本题共4小题,每小题5分,共20分。

2021届全国天一大联考新高考模拟考试数学(理科)试题

2021届全国天一大联考新高考模拟考试数学(理科)试题

2021届全国天一大联考新高考模拟考试理科数学★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|1},{|0}A x x B x x ≤==<,则()RA B ⋃=( )A. {|1}x x ≥B. {|1}x x >C. {|1x x <-或01}x ≤< D . {|1x x ≤-或01}x <≤【答案】B 【解析】 【分析】先利用一元二次不等式的解法化简集合A ,再求A 与B 的并集,然后再求补集即可. 【详解】因为2{|1}={|11}A x x x x =-≤≤,{|0}B x x =<,所以={|1}A B x x ≤,所以(){|1}RA B x x =>.故选:B【点睛】本题主要考查集合的基本运算以及一元二次不等式的解法,还考查了运算求解的能力,属于基础题.2.在等比数列{}n a 中,363,6a a ==,则9a =( ) A.19B.112C. 9D. 12【答案】D 【解析】 【分析】根据等比数列下标和性质计算可得;【详解】解:因为等比数列的性质,369,,a a a 成等比数列,即9623a a a =⋅,所以392636312a a a =÷=÷=.故选:D【点睛】本题考查等比数列的性质的应用,属于基础题. 3.设复数() ,z x yi x R y =+∈,下列说法正确的是( ) A. z 的虚部是yi ; B. 22||z z =;C. 若0x =,则复数z 为纯虚数;D. 若z 满足|1|z i -=,则z 在复平面内对应点(),x y 的轨迹是圆. 【答案】D 【解析】 【分析】根据复数的相关概念一一判断即可;【详解】解:z 的实部为x ,虚部为y 所以故A 错;2222i z x y xy =++,222||z x y =+,所以B 错;当00x y ==,时,z 为实数,所以C 错;由|1|z i -=得||1x yi i +-=,|(1)|1x y i ∴+-=,22(1)1x y ∴+-=,所以D 对. 故选:D【点睛】本题考查复数的相关概念的理解,属于基础题.4.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有( ) A. 8种 B. 9种C. 12种D. 14种【答案】D【解析】 【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果. 【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故选:D.【点睛】本题考查分类计数原理,考查间接法求选法数,属于基础题目. 5.若sin 831πθ⎛⎫+= ⎪⎝⎭,则sin 24πθ⎛⎫-= ⎪⎝⎭( ) A. 29-B.29C. 79-D.79【答案】C 【解析】 【分析】利用诱导公式和二倍角公式可化简求得结果.【详解】227sin 2sin 2cos 212sin 14424899πππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-+=-++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:C .【点睛】本题考查利用诱导公式和二倍角公式求值的问题,考查基础公式的应用.6.田径比赛跳高项目中,在横杆高度设定后,运动员有三次试跳机会,只要有一次试跳成功即完成本轮比赛.在某学校运动会跳高决赛中,某跳高运动员成功越过现有高度即可成为本次比赛的冠军,结合平时训练数据,每次试跳他能成功越过这个高度的概率为0.8(每次试跳之间互不影响),则本次比赛他获得冠军的概率是( ) A. 0.832 B. 0.920C. 0.960D. 0.992【答案】D 【解析】 【分析】根据相互独立事件的概率公式求出三次试跳都没成功的概率,由对立事件的概率公式可得其获得冠军的概率;【详解】解:三次试跳都没成功的概率为30.2=0.008,所以他获得冠军的概率是10.0080.992-=. 故选:D【点睛】本题考查相互独立事件的概率公式的应用,属于基础题.7.已知5log 2a =,0.5log 0.2b =,()ln ln 2c =,则a 、b 、c 的大小关系是( ) A. a b c << B. a c b <<C. b a c <<D. c a b <<【答案】D 【解析】 【分析】利用对数函数的单调性比较a 、b 、c 与0和1的大小关系,进而可得出a 、b 、c 三个数的大小关系. 【详解】555log 1log 2log 5<<,则01a <<,0.50.5log 0.2log 0.51b =>=,ln1ln 2ln e <<,即0ln 21<<,()ln ln 2ln10c ∴=<=.因此,c a b <<. 故选:D.【点睛】本题考查对数式的大小比较,一般利用对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.8.已知直线a 和平面α、β有如下关系:①αβ⊥;②//αβ;③a β⊥;④//a α.则下列命题为真的是( )A. ①③⇒④B. ①④⇒③C. ③④⇒①D. ②③⇒④【答案】C 【解析】 【分析】利用面面垂直的性质可判断A 选项的正误;由空间中线面位置关系可判断B 选项的正误;利用线面垂直的判定定理和线面平行的性质定理可判断C 选项的正误;利用面面平行的性质可判断D 选项的正误. 【详解】对于A 选项,由①③可知,//a α或a α⊂,A 错; 对于B 选项,由①④可知,a 与β的位置关系不确定,B 错; 对于C 选项,过直线a 作平面γ,使得b γα⋂=,//a α,则//a b ,a β⊥,b β∴⊥,b α⊂,αβ∴⊥,C 对;对于D 选项,由②③可知,a α⊥,D 错. 故选:C.【点睛】本题考查空间中有关线面位置关系命题真假的判断,考查推理能力,属于中等题.9.如图,为测量某公园内湖岸边,A B 两处的距离,一无人机在空中P 点处测得,A B 的俯角分别为,αβ,此时无人机的高度为h ,则AB 的距离为( )A. ()222cos 11sin si s n s n in i hβααβαβ-+- B. ()222cos 11sin si s n s n in i hβααβαβ-++C. ()222cos 11cos co c s c s os o h βααβαβ-+- D. ()222cos 11cos co c s c s os o hβααβαβ-++【答案】A 【解析】 【分析】设点P 在AB 上的投影为O ,在Rt △POB 中,可得sin hPB β=,再结合正弦定理和三角恒等变换的公式,化简求得AB ,得到答案.【详解】如图所示,设点P 在AB 上的投影为O ,在Rt △POB 中,可得sin hPB β=, 由正弦定理得sin()sin AB PBαβα=-,所以sin()sin()=sin sin sin PB h AB αβαβαβα⋅-⋅-=222222sin ()(sin cos cos sin )sin sin sin sin h h αβαβαββαβα--= 222222sin cos cos sin 2sin cos cos sin =sin sin h αβαβαβαββα+- 2222cos cos 2cos cos =sin sin sin sin h αββααβαβ+-22221sin 1sin 2cos cos =sin sin sin sin h αββααβαβ--+-22112cos cos 2sin sin sin sin h βααβαβ=+--22112sin sin 2cos cos sin sin sin sin h αβαβαβαβ+=+- 22112cos()sin sin sin sin h αβαβαβ-=+-故选:A.【点睛】本题主要考查了解三角形的实际应用,其中解答中结合图象把实际问题转化为数学问题,合理利用正弦定理求解是解答的关键,注重考查了推理与运算能力.10.过抛物线()2:20C x py p =>的焦点F 的直线交该抛物线于A B 、两点,若3AF BF =,O 为坐标原点,则AFOF=( ) A.43B.34C. 4D.54【答案】A 【解析】 【分析】画出图像,分别作,A B 关于准线的垂线,再根据平面几何的性质与抛物线的定义求解即可.【详解】如图,作分别作,A B 关于准线的垂线,垂足分别为,D E ,直线AB 交准线于C .过A 作BE 的垂线交BE 于G ,准线与y 轴交于H .则根据抛物线的定义有,AF AD BF BE ==.设AF AD t ==,3BF BE t ==,故2BG t =,4AB t =,故1cos 2BG ABG AB ∠==. 故26BC BE t ==,故FH 是CBE △边BE 的中位线,故113244OF FH BE t ===.故4334AFt t OF==.故选:A【点睛】本题主要考查了利用平面几何中的比例关系与抛物线的定义求解线段比例的问题,需要根据题意作出对应的辅助线,利用边角关系求解,属于中档题.11.函数()()sin f x x ωϕ=+的部分图象如图中实线所示,图中的圆C 与()f x 的图象交于M 、N 两点,且M 在y 轴上,则下列说法中正确的是( )①函数()f x 的图象关于点4,03⎛⎫ ⎪⎝⎭成中心对称;②函数()f x 11,26--⎛⎫⎪⎝⎭上单调递增; ③圆C 的面积为3136π. A. ①② B. ①③C. ②③D. ①②③【答案】B 【解析】 分析】先求出函数()y f x =的解析式,验证403f ⎛⎫= ⎪⎝⎭可判断①的正误;利用正弦函数的单调性可判断②的正误;求出圆C 的半径,利用圆的面积可判断③的正误.【详解】由圆对称性,正弦函数的对称性得1,03⎛⎫ ⎪⎝⎭为函数()y f x =的一个对称中心,所以周期112136T ⎛⎫=⨯+= ⎪⎝⎭,22T πωπ∴==,又函数()y f x =的图象过点1,06⎛⎫-⎪⎝⎭,则1sin 063f πϕ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,且函数()y f x =在16x =-附近单调递增,所以,()23k k Z πϕπ-=∈,可取3πϕ=.所以,()i 2s n 3x f x ππ⎛⎫=+⎪⎝⎭. 084s =33in 3f ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭成立,所以①对; 当1126x -<<-时,22033x πππ-<+<,所以,函数()y f x =在区间11,26--⎛⎫ ⎪⎝⎭上不单调,所以②错;当0x =时,得点M 的坐标为⎛ ⎝⎭,所以圆的半径为MC ==,则圆的面积为3136π,所以③对. 故选:B.【点睛】本题考查利用正弦函数的基本性质求解析式,同时也考查了正弦型函数的对称性和单调性的判断,考查推理能力与计算能力,属于中等题. 12.函数()()2R mxmx f x ee x mx m -=++∈-的图象在点()()()()1111,,,A xf x B x f x --处两条切线的交点0(P x ,0)y 一定满足( ) A. 00x = B. 0x m = C. 00y = D. 0y m =【答案】A 【解析】 【分析】根据函数()()2R mxmx f x ee x mx m -=++∈-,求导,然后利用导数的几何意义,分别写出在点()()()()1111,,,A x f x B x f x --处的切线方程,再联立求解即可.【详解】因为函数()()2R mxmx f x ee x mx m -=++∈-,所以()2mx mxf x me mex m -'=-+-, 所以()11112-'=-+-mx mx f x me me x m ()11112-'-=---mx mx f x me me x m所以()()112111R -=++∈-mx mx f x ee x mx m ,()()112111+R --=++∈mx mxf x e e x mx m又因为在点()()()()1111,,,A x f x B x f x --处的切线方程分别为:()()()()()()111111,y f x f x x x y f x f x x x ''-=---=-+,联立消去y 得:()()1111211112+---+--++-mx mx mx mx me me x m x x e e x mx ,()()111121111+2--=--++-++mx mx mx mx me me x m x x e e x mx .解得0x =. 故选:A【点睛】本题主要考查导数的几何意义以及直线的交点,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线22221(00)y x a b a b-=>>,的离心率为2,则该双曲线的渐近线方程为______. 【答案】y x =± 【解析】 【分析】根据离心率公式和双曲线的,,a b c 的关系进行求解【详解】由题知:2222⎧==⎪⇒=⎨⎪=+⎩c e a b ac a b,双曲线的渐近线方程为y x =± 故答案为y x =±【点睛】本题考查双曲线渐近线的求法,解题时要熟练掌握双曲线的简单性质 14.执行如图所示的程序框图,若输入[]1,3t ∈-,则输出s 的取值范围是____________.【答案】[0,1] 【解析】 【分析】分别在[)1,1t ∈-和[]1,3t ∈两种情况下,根据指数函数和对数函数的单调性求得值域,取并集得到所求的取值范围.【详解】当[)1,1t ∈-时,1t s e -=,1t s e -=在[)1,1-上单调递增,)2,1s e -⎡∴∈⎣;当[]1,3t ∈时,3log s t =,3log s t =在[]1,3上单调递增,[]0,1s ∴∈;综上所述:输出的[]0,1s ∈. 故答案为:[]0,1.【点睛】本题以程序框图为载体考查了指数函数和对数函数值域的求解问题,关键是能够通过分类讨论得到函数的单调性,进而确定所求值域.15.已知向量()0,1,||7,1,AB AC AB BC ==⋅=则ABC ∆面积为____________.【答案】2【解析】 【分析】根据()0,1=AB ,1AB BC ⋅=,可得||cos 1-=BC B ,再由||7=AC ,利用余弦定理可解得||BC ,cos B ,进而得到sin B ,然后代入1sin 2=ABCS BA BC B 求解. 【详解】因为()0,1=AB , 所以||1=AB ,又因为||||cos()1π⋅=⋅-=AB BC AB BC B , 所以||cos 1-=BC B ,由余弦定理得222||||||2||||cos =+-⋅⋅AC AB BC AB BC B , 所以||2BC =, 则1cos 2B =-, 因为 0180<<︒B ,所以120B =︒,sin B =,所以面积为1133sin 122222==⨯⨯⨯=ABCSBA BC B . 故答案为:32【点睛】本题主要考查平面向量与解三角形,还考查了运算求解的能力,属于中档题.16.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱1,BC CC 的中点,则二面角C AM N --的余弦值为_________;若动点P 在正方形11BCC B (包括边界)内运动,且1PA //平面AMN ,则线段1PA 的长度范围是_________.【答案】 (1). 23 (2). 32[,5] 【解析】 【分析】延长AM 交DC 于点Q ,过C 作AM 垂线CG ,垂足为G ,连接NG ,则∠NGC 为二面角C AM N --的平面角,计算可得结果;取11B C 的中点E ,1BB 的中点F ,连结1A E ,1A F ,EF ,取EF 中点O ,连结1A O ,推导出平面//AMN 平面1A EF ,从而点P 的轨迹是线段EF ,由此能求出1PA 的长度范围. 【详解】延长AM 交DC 于点Q ,过C 作AM 垂线CG ,垂足为G ,连接NG ,则∠NGC 为二面角C AM N --的平面角, 计算得25CG =,22535()155NG =+=,所以25352cos 553NGC ∠=÷= 取11B C 的中点E ,1BB 的中点F ,连接1A E ,1A F ,EF ,取EF 中点O ,连接1A O ,点M ,N 分别是棱长为2的正方体1111ABCD A B C D -中棱BC ,1CC 的中点, 1//AM A E ∴,//MN EF , AMM N M =,1A EEF E =,∴平面//AMN 平面1A EF ,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,∴点P 的轨迹是线段EF ,2211215A E A F ==+22112=+=EF ,1AO EF ∴⊥, ∴当P 与O 重合时,1PA 的长度取最小值221232(5)()2A O =-=,当P 与E (或)F 重合时,1PA 的长度取最大值为115A E A F ==. 1PA ∴的长度范围为325]. 故答案为:23;325] 【点睛】本题考查二面角余弦值的求法和线段长度的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知数列{}n a 是等比数列,且公比q 不等于1,数列{}n b 满足2n bn a =.(1)求证:数列{}n b 是等差数列;(2)若12a =,32432a a a =+,求数列211log n n b a +⎧⎫⎨⎬⎩⎭的前n 项和n S . 【答案】(1)见解析;(2)1n nS n =+ 【解析】 【分析】(1)根据对数运算法则和等比数列定义可证得12log n n b b q +=-,由此证得结论; (2)利用等比数列通项公式可构造方程求得q ,进而整理得到211log n n b a +,采用裂项相消法可求得结果.【详解】(1)已知数列{}n b 满足2n b n a =,则2log n n b a =,1121222log log log log n n n n n na b b a a q a +++∴-=-==, ∴数列{}n b 为等差数列.(2)由12a =,32432a a a =+可得:23642q q q =+,解得:2q或1q =(舍),2n n a ∴=,则2log n n b a n ==,()211111log 11n n b a n n n n +==-++∴,11111111223111n n S n n n n ⎛⎫⎛⎫⎛⎫∴=-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. 【点睛】本题考查等差数列的证明、裂项相消法求解数列的前n 项和问题,涉及到等比数列通项公式的应用;求和问题的处理关键是能够根据通项公式的形式进行准确裂项,进而前后相消求得结果.18.如图,四棱锥P ABCD -中,底面ABCD 为梯形,//,90B AB C AD D ︒∠=,点E 为PB 的中点,且224CD AD AB ===,点F 在CD 上,且13DF FC =.(1)求证:EF //平面PAD ;(2)若平面PAD ⊥平面ABCD ,PA PD =且PA PD ⊥,求直线PA 与平面PBF 所成角的正弦值. 【答案】(1)见解析;(2)277【解析】 【分析】(1)如图所示,取PA 的中点M ,连结DM 、EM ,所以根据线面平行的判定定理即可证明;(2)取AD 中点N ,BC 中点H ,连结PN 、NH ,以N 为原点,NA 方向为x 轴,NH 方向为y 轴,NP 方向为z 轴,建立空间坐标系,找到平面PBF 的一个法向量n ,求出直线PA 向量n 所成夹角的余弦值,即可求直线PA 与平面PBF 所成角的正弦值.【详解】(1)如图所示,取PA 的中点M ,连结DM 、EM ,因为点E 为PB 的中点,且224CD AD AB ===,所以//EM AB 且112EM AB ==, 因为13DF FC =,所以411==DF DC ,所以1==EM DF , 又因为//AB DC ,所以//EM DF ,所以四边形EMDF 为平行四边形,所以//EF DM ,又DM ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD ;(2)取AD 中点N ,BC 中点H ,连结PN 、NH , 因为PA PD =,所以PNAD ,又平面PAD ⊥平面ABCD ,所以PN平面ABCD ,又//,90B AB C AD D ︒∠=,所以AD NH ⊥,以N 为原点,NA 方向为x 轴,NH 方向为y 轴,NP 方向为z 轴,建立空间坐标系, 所以()0,0,1P ,()1,0,0A ,()1,2,0B ,()1,1,0F -,在平面PBF 中()1,2,1=--BP ,()2,1,0=--BF ,()=1,0,1PA -,设在平面PBF 的法向量为(),,n x y z =,所以00BP n BF n ⎧⋅=⎨⋅=⎩,2020x y z x y --+=⎧⎨--=⎩,令1x =,则法向量()1,2,3n =--,又()1,0,1PA =-, 设直线PA 与平面PBF 所成角为α, 所以||27sin |cos ,|||||214α⋅=<>===⋅⋅PA n PA n PA n ,即直线PA 与平面PBF 所成角的正弦值为27.【点睛】本题主要考查线面平行的判定,和线面所成角的求法,解题的关键是会用法向量的方法求线面角的正弦值.19.已知椭圆22:12x C y +=与x 轴正半轴交于点A ,与y 轴交于B 、D 两点.(1)求过A 、B 、D 三点的圆E 的方程;(2)若O 为坐标原点,直线l 与椭圆C 和(1)中的圆E 分别相切于点P 和点Q (P 、Q 不重合),求直线OP 与直线EQ 的斜率之积.【答案】(1)22948x y ⎛⎫-+= ⎪ ⎪⎝⎭;(2)24. 【解析】 【分析】(1)求出A 、B 、D 三点的坐标,求得圆心E 的坐标,进而求出圆E 的半径,由此可求得圆E 的方程; (2)设直线l 的方程为y kx m =+(k 存在且0k ≠),将直线l 的方程与椭圆C 的方程联立,由0∆=可得2212m k =+,由直线l 与圆E相切可得出22889k m =-+,进而可得出2221241k m =-=,求出直线OP 与直线EQ 的斜率,进而可求得结果. 【详解】(1)由题意可得)A、()0,1B -、()0,1D ,则圆心E 在x 轴上,设点(),0E m ,由BE AE =,可得)221m m +=,解得m =,圆E的半径为AE =. 因此,圆E的方程为2298x y ⎛+= ⎝⎭; (2)由题意:可设l 的方程为y kx m =+(k 存在且0k ≠), 与椭圆C 联立消去y 可得()222124220kxkmx m +++-=,由直线l 与椭圆C 相切,可设切点为()00,P x y ,由()()222216421120k m m k∆=-⨯-+=,可得2212m k =+,解得02k x m =-,01y m=, 由圆E 与直线l4=,可得22889k m =-+.因此由222212889m k k m ⎧=+⎪⎨=-+⎪⎩,可得2221241k m =-=, 直线OP 的斜率为12OP k k =-,直线EQ 的斜率1EQ k k=-, 综上:22421OP EQ k k k =⋅=. 【点睛】本题考查三角形外接圆方程的求解,同时也考查了椭圆中直线斜率之积的计算,考查计算能力,属于中等题.20.武汉市掀起了轰轰烈烈的“十日大会战”,要在10天之内,对武汉市民做一次全员检测,彻底摸清武汉市的详细情况.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有()*1000n N ∈份血液样本,有以下两种检验方式:方案①:将每个人的血分别化验,这时需要验1000次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k 个人的血就只需检验一次(这时认为每个人的血化验1k次);否则,若呈阳性,则需对这k 个人的血样再分别进行一次化验这样,该组k 个人的血总共需要化验1k +次. 假设此次检验中每个人的血样化验呈阳性的概率为p ,且这些人之间的试验反应相互独立. (1)设方案②中,某组k 个人中每个人的血化验次数为X ,求X 的分布列;(2)设0.1p =. 试比较方案②中,k 分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以减少多少次?(最后结果四舍五入保留整数)【答案】(1)分布列见解析;(2)2k =,总次数为690次;3k =,总次数为604次;4k =,次数总为594次;减少406次 【解析】 【分析】(1)设每个人的血呈阴性反应的概率为q ,可得1q p =-,再由相互独立事件的概率求法可得k 个人呈阴性反应的概率为kq ,呈阳性反应的概率为1k q -,随机变量1,1X k k=+即可得出分布列. (2)由(1)的分布列可求出数学期望,然后令2,3,4k =求出期望即可求解. 【详解】(1)设每个人的血呈阴性反应的概率为q ,则1q p =-.所以k 个人的血混合后呈阴性反应的概率为kq ,呈阳性反应的概率为1kq -, 依题意可知1,1X k k=+, 所以X 的分布列为:1111k kX k k Pq q +- (2)方案②中,结合(1)知每个人的平均化验次数为:()()111111k k k E X q q k k k q ⎛⎫=++⋅-=-+ ⎪⎝⎭⋅ 所以当2k =时, ()210.910.692E X =-+=, 此时1000人需要化验的总次数为690次,3k =()31,0.910.60433E X =-+≈,此时1000人需要化验的总次数为604次,4k =时, ()410.910.59394E X =-+=,此时1000人需要化验的次数总为594次,即2k =时化验次数最多,3k =时次数居中,4k =时化验次数最少. 而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①, 当4k =时化验次数最多可以平均减少1000-594=406次.【点睛】本题考查了两点分布的分布列、数学期望,考查了考生分析问题、解决问题的能力,属于中档题. 21.已知函数()2ln 2,xe f x a x e R a =-∈ (1)若函数()f x 在2ex =处有最大值,求a 的值; (2)当a e ≤时,判断()f x 的零点个数,并说明理由.【答案】(1)a e =;(2)当0a e ≤<时,函数()f x 无零点;当0a <或a e =时,函数()f x 只有一个零点. 【解析】 【分析】(1)根据函数最值点可确定02e f ⎛⎫'=⎪⎝⎭,从而求得a ;代入a 的值验证后满足题意,可得到结果;(2)令()()ln 0tg t a a t e t =+->,将问题转化为()g t 零点个数的求解问题;分别在0a =、0a <和0a e <≤三种情况下,根据导函数得到原函数的单调性,结合零点存在定理和函数的最值可确定零点的个数.【详解】(1)由题意得:()f x 定义域为()0,∞+,()22xe af x e x e'=-,()f x 在2e x =处取得最大值,2202e af e⎛⎫'∴=-= ⎪⎝⎭,解得:a e =. 当a e =时,()2ln 2xef x e x e =-,()22xe ef x e x e'=-,()22240xe ef x e x e''∴=--<,()f x '∴在()0,∞+上单调递减,又02e f ⎛⎫'=⎪⎝⎭,则0,2e x ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当,2e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<;()f x ∴在0,2e ⎛⎫ ⎪⎝⎭上单调递增,在,2e ⎛⎫+∞ ⎪⎝⎭上单调递减,()max 2e f x f ⎛⎫∴= ⎪⎝⎭,满足题意;综上所述:a e =. (2)令2x t e=,()()ln 0tg t a a t e t =+->,则()g t 与()f x 的零点个数相等, ①当0a =时(),0,tg t e =-<即()20x ef x e =-<,∴函数()f x 的零点个数为0;②当0a <时, ()0ta g t e t'=-<,()g t ∴在()0,∞+上为减函数, 即函数()g t 至多有一个零点,即()f x 至多有一个零点.当10e a t e-<<时,1ln ln 1ea e a a t a a e a a e a -⎛⎫⎛⎫+>+=+-= ⎪ ⎪⎝⎭⎝⎭,ln t a a t e +∴>,即()0g t >,又()01g a e =-<,∴函数()g t 有且只有一个零点,即函数()f x 有且只有一个零点;③当0a e <≤时,令()0g t '=,即t a te =,令()()0th t te t =>,则()()10ttth t e te t e '=+=+>()t h t te ∴=在()0,∞+上为增函数,又()1h e =,故存在(]00,1t ∈,使得()00g t '=,即00t ae t =. 由以上可知:当00t t <<时,()0g t '>,()g t 为增函数;当0t t >时,()0g t '<,()g t 为减函数;()()0000max 0ln ln t ag t g t a a t e a a t t ∴==+-=+-,(]00,1t ∈, 令()ln aF t a a t t=+-,(]0,1t ∈, 则()20a aF t t t'=+>,()F t ∴在(]0,1上为增函数, 则()()10F t F ∴≤=,即()()max0g t ≤,当且仅当1t =,a e =时等号成立,由以上可知:当a e =时,()g t 有且只有一个零点,即()f x 有且只有一个零点;当0a e <<时,()g t 无零点,即()f x 无零点;综上所述:当0a e ≤<时,函数()f x 无零点;当0a <或a e =时,函数()f x 只有一个零点.【点睛】本题考查导数在研究函数中的应用,涉及到根据函数的最值求解参数值、利用导数研究函数零点个数的问题;函数零点个数的求解关键是能够通过换元法将问题转化为新函数零点个数的求解,进而通过分类讨论的方式,结合函数单调性、零点存在定理和函数最值来确定零点个数,属于较难题.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上且满足||||8,OA OB ⋅=点B 的轨迹为2C .(1)求曲线12,C C 的极坐标方程; (2)设点M 的极坐标为32,2π⎛⎫⎪⎝⎭,求ABM ∆面积的最小值. 【答案】(1)1C :2cos ρθ=,2C :cos 4ρθ=; (2)2. 【解析】 【分析】(1)消去参数,求得曲线1C 的普通方程,再根据极坐标方程与直角坐标方程的互化公式,即可求得曲线1C 的极坐标方程,再结合题设条件,即可求得曲线2C 的极坐标方程;(2)由2OM =,求得OBM OAM ABM S S S ∆∆∆=-,求得ABM ∆面积的表达式,即可求解. 【详解】(1)由曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩ (α为参数),消去参数,可得普通方程为()2211x y -+=,即2220x y x +-=,又由cos ,sin x y ρθρθ==,代入可得曲线1C 的极坐标方程为2cos ρθ=, 设点B 的极坐标为(,)ρθ,点A 点的极坐标为00(,)ρθ, 则0000,,2cos ,OB OA ρρρθθθ====, 因为||||8OA OB ⋅=,所以08ρρ⋅=,即82cos θρ=,即cos 4ρθ=,所以曲线2C 的极坐标方程为cos 4ρθ=.(2)由题意,可得2OM =, 则2211||||242cos 42cos 22ABM B OBM O M A A S S S OM x x θθ∆∆∆=⋅-=⋅⋅=-=--, 即242cos ABM S θ∆=-, 当2cos 1θ=,可得ABM S ∆的最小值为2.【点睛】本题主要考查了参数方程与普通方程,以及直角坐标方程与极坐标方程的互化,以及极坐标方程的应用,着重考查推理与运算能力,属于中档试题.23.已知函数()|23||23|.f x x x =-++(1)解不等式()8f x ≤;(2)设x ∈R 时,()f x 的最小值为M .若实数,,a b c 满足2a b c M ++=,求222a b c ++的最小值.【答案】(1){|22}x x -≤;(2)6【解析】【分析】(1)利用零点分段讨论求解不等式;(2)利用绝对值三角不等式求得6M =,利用柯西不等式求解最值.【详解】(1)322x x ⎧≤-⎪⎨⎪≥-⎩或332268x ⎧-<<⎪⎨⎪-≤⎩或322x x ⎧⎪⎨⎪≤⎩∴{|22}x x -≤,(2)∵()()()|2323|66x x x f M --+=∴=()()()2222222112236,a b c a b c ++++++= 当且仅当22a b c ==时“=”成立,所以2226,a b c ++所以最小值为6.【点睛】此题考查解绝对值不等式,利用零点分段讨论求解,利用绝对值三角不等式求解最值,结合柯西不等式求最值,需要注意考虑等号成立的条件.。

2021届全国天一大联考新高考模拟试卷(九)数学(文)试题

2021届全国天一大联考新高考模拟试卷(九)数学(文)试题

2021届全国天一大联考新高考模拟试卷(九)文科数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A. {|0}x x <B. {|01}x xC. {|10}x x -<D. {|1}x x -【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()RAB【详解】{|11},{|0}A x x B x x =-=<,所以 (){|1}RA B x x =-.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.2.若复数z 与其共轭复数z 满足213z z i -=+,则||z =( ) A .B.C. 2D.【答案】A 【解析】 【分析】设z a bi =+,则2313z z a bi i -=-+=+,得到答案.【详解】设z a bi =+,则222313z z a bi a bi a bi i -=+-+=-+=+,故1a =-,1b =,1z i =-+,z =.故选:A .【点睛】本题考查了复数的计算,意在考查学生的计算能力.3.已知双曲线()222210,0x y a b a b-=>>的离心率为53,则其渐近线为( )A. 2x+y=0B. 20x y ±=C. 340x y ±=D. 430x y ±=【答案】D 【解析】 本题由双曲线的标准方程,离心率出发来求解其渐近线,主要考察学生对双曲线概念,基本关系的理解与应用,属于简单题型. 请在此填写本题解析! 解 因为5e 3c a ==, 23c 5a,9c =即=252a ,因为22c a =+2b ,所以,29a +29b =252a 即化简得b a =43,所以答案为D. 4.在区间(]0,4内随机取两个数a b 、,则使得“命题‘x R ∃∈,不等式220x ax b ++<成立’为真命题”的概率为( ) A.14B.12C.13D.34【答案】A 【解析】 【分析】由该命题为真命题得出20a b ->,画出不等式组040420a b a b <≤⎧⎪<≤⎨⎪->⎩表示的平面区域,根据几何概型的计算公式求解即可.【详解】x R ∃∈,不等式220x ax b ++<成立,即()22min0x ax b++<则2202022a a a b a b ⎛⎫⎛⎫-+⨯-+<⇒-> ⎪ ⎪⎝⎭⎝⎭作出040420a b a b <≤⎧⎪<≤⎨⎪->⎩的可行域,如下图所示则使得该命题为真命题的概率14212444P ⨯⨯==⨯ 故选:A【点睛】本题主要考查了线性规划的简单应用,面积型几何概型求概率问题,属于中档题. 5.若向量(1,2)a x =+与(1,1)b =-平行,则|2+|=a b ( )2 32 C. 322 【答案】C 【解析】 【分析】根据向量平行得到3x =-,故()|2+|=3,3a b -,计算得到答案.【详解】向量(1,2)a x =+与(1,1)b =-平行,则()12x -+=,故3x =-,()()()|2+|=4,41,13,3a b -+-=-=故选:C .【点睛】本题考查了根据向量平行求参数,向量的模,意在考查学生的计算能力.6.F 是抛物线22y x =的焦点,A B 、是抛物线上的两点,8AF BF +=,则线段AB 的中点到y 轴的距离为( ) A. 4 B.92C. 3D.72【答案】D 【解析】 【分析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B 的中点横坐标的和,求出线段AB 的中点到y 轴的距离 【详解】F 是抛物线22y x =的焦点,1,02F ⎛⎫∴ ⎪⎝⎭,准线方程12x =-,设()()1122,,A x y B x y ,1211||||822AF BF x x ∴+=+++=, 127x x ∴+=,∴线段AB 的中点横坐标为72, ∴线段AB 的中点到y 轴的距离为72所以D 选项是正确的【点睛】抛物线的弦长问题一般根据第一定义可简化运算.7.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,则下列命题中,错误的是( ) A. 若,m n m α⊥⊥,则//n α B. 若//,//,m n m n αα⊄,则//n α C. 若,,m n m n αβ⊥⊥⊥,则αβ⊥ D. 若//,//m ααβ,则//m β或m β⊂【答案】A【解析】 【分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于A :若,m n m α⊥⊥,则//n α或n ⊂α,故A 错误;BCD 正确. 故选:A .【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力. 8.已知函数()y f x =的部分图像如图,则()f x 的解析式可能是( )A. ()tan f x x x =+B. ()2sin f x x x =+C. ()sin f x x x =-D. 1()cos 2f x x x =-【答案】C 【解析】 【分析】根据定义域排除A ,根据奇偶性排除D ,根据单调性排除B ,即可得出答案. 【详解】由图象可知,函数()f x 在R 上单调递增,且为奇函数 对A 项,由于定义域不是R ,则A 错误; 对B 项,当(0,)x π∈时,()12cos f x θ'=+2()003f x x π'>⇒<<;2()03f x x ππ'<⇒<< 则函数()f x 在(0,)π不是单调递增,则B 错误;对C 项,()1cos 0f x x '=-≥,则函数()f x 在R 上单调递增又()2sin()2sin ()f x x x x x f x =-+-=--=-,则函数()f x 为奇函数,则C 正确; 对D 项,11()cos()cos ()22f x x x x x f x -=---=--≠-,则函数()f x 不是奇函数,则D 错误; 故选:C【点睛】本题主要考查了根据图象判断解析式,属于中档题.9.已知函数41()2x xf x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( ) A. c b a << B. b a c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】解:因为41()222x x xxf x --==-,定义域为R ,()()22x x f x f x --=-=- 故函数是奇函数,又2xy =在定义域上单调递增,2xy -=在定义域上单调递减,所以()22x xf x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20< 所以()()()0.30.30.320.2log 2f f f >>即a b c >> 故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.10.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时, 2101 2.3 2.7x x x ≈++) A. 1.24 B. 1.25C. 1.26D. 1.27【答案】C 【解析】【分析】根据题意,代值计算,即可得r ,再结合参考公式,即可估算出结果. 【详解】根据题意可得:()211 1.25 2.5lgE lgE -=-可得12110E lgE =,解得1110210E r E ==, 根据参考公式可得111 2.3 2.7 1.25710100r ≈+⨯+⨯=, 故与r 最接近的是1.26. 故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题. 11.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()0||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭, 的部分图像如图所示,n S 为数列{}n a 的前n 项和,则2020S 的值为( )A. 1-B. 0C.12D. 3 【答案】D 【解析】 【分析】根据图像得到()sin(2)3f x x π=+,sin 33n n a ππ⎛⎫=+⎪⎝⎭,6n n a a +=,计算每个周期和为0,故20201234S a a a a =+++,计算得到答案.【详解】741234T πππ=-=,故T π=,故2ω=,()sin(2)f x x ϕ=+,2sin()033f ππϕ⎛⎫=+= ⎪⎝⎭, 故2,3k k Z ϕππ+=∈,故2,3k k Z πϕπ=-∈,当1k =时满足条件,故3πϕ=,()sin(2)3f x x π=+,sin 633n n n a f πππ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭,()66sin 33n n a n a ππ++⎛⎫= ⎪⎝⎭=+,1a =,20a =,32a =-,42a =-,50a =,62a =,每个周期和为0,故20201234S a a a a =+++=. 故选:D .【点睛】本题考查了数列和三角函数的综合应用,意在考查学生计算能力和综合应用能力.12.已知函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,若函数()()F x f x mx =-有4个零点,则实数m 的取值范围是( )A. 5126⎛⎫⎪⎝⎭B. 52⎛-⎝C. 1,320⎛-⎝ D. 11,206⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】根据函数零点定义可知()f x mx =有四个不同交点,画出函数图像可先求得斜率的大致范围.根据函数在24x ≤<和46x ≤<的解析式,可求得y mx =与两段函数相切时的斜率,即可求得m 的取值范围. 【详解】函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,函数()()F x f x mx =-有4个零点,即()f x mx =有四个不同交点. 画出函数()f x 图像如下图所示:由图可知,当24x ≤<时,设对应二次函数顶点为A ,则13,2A ⎛⎫⎪⎝⎭,11236OAk ==, 当46x ≤<时,设对应二次函数的顶点为B ,则15,4B ⎛⎫⎪⎝⎭,114520OB k ==.所以11206m <<. 当直线y mx =与24x ≤<时的函数图像相切时与函数()f x 图像有三个交点,此时()211322y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()22680x m x +-+=.()226480m ∆=--⨯=,解得322,m =- 322m =+; 当直线y mx =与46x ≤<时的函数图像相切时与函数()f x 图像有五个交点,此时()211544y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()2410240x m x +-+=.()24104240m ∆=--⨯=,解得56,2m =562m =;故当()f x mx =有四个不同交点时56,3222m ⎛∈- ⎝. 故选:B.【点睛】本题考查了分段函数解析式的求法,函数零点与函数交点的关系,直线与二次函数相切时的切线斜率求法,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.我校高一、高二、高三共有学生1800名,为了了解同学们对“智慧课堂”的意见,计划采用分层抽样的方法,从这1800名学生中抽取一个容量为36的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的学生人数为_____. 【答案】700 【解析】 【分析】设从高三年级抽取的学生人数为2x 人,由题意利用分层抽样的定义和方法,求出x 的值,可得高三年级的学生人数.【详解】设从高三年级抽取的学生人数为2x 人,则从高二、高一年级抽取的人数分别为2x ﹣2,2x ﹣4. 由题意可得()()2222436x x x +-+-=,∴7x =. 设我校高三年级的学生人数为N ,再根据36271800N⨯=,求得N =700 故答案为:700.【点睛】本题主要考查分层抽样,属于基础题.14.已知实数,x y 满足24020x y y x y --≤⎧⎪≤⎨⎪+≥⎩,则3z x y =-的最大值为_______.【答案】22 【解析】 【分析】3y x z =-,作出可行域,利用直线的截距与b 的关系即可解决.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22.【点睛】本题考查线性规划中线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15.等差数列{}n a 的前n 项和为n S ,34310a S ==,,则11nk kS ==∑_____. 【答案】21nn + 【解析】 【分析】 计算得到()12n n n S +=,再利用裂项相消法计算得到答案. 【详解】3123a a d =+=,414610S a d =+=,故11a d ==,故()12n n n S +=, ()1111211122211111nn nk k k k n S k k k k n n ===⎛⎫⎛⎫==-=-= ⎪ ⎪++++⎝⎭⎝⎭∑∑∑. 故答案为:21nn +. 【点睛】本题考查了等差数列的前n 项和,裂项相消法求和,意在考查学生对于数列公式方法的综合应用. 16.在三棱锥P ABC -中,2,1,90PA PC BA BC ABC ︒====∠=,点P 到底面ABC 的距离是3;则三棱锥P ABC -的外接球的表面积是_________. 【答案】5π 【解析】 【分析】根据线面垂直的判定定理以及勾股定理得出3PB =,PB ⊥平面ABC ,将三棱锥P ABC -放入长方体中,得出长方体的外接球的半径,即为三棱锥P ABC -的外接球的半径,再由球的表面积公式得出答案. 【详解】取AC 中点为D ,连接,PD BD ,过点P 作BD 的垂线,垂足为E2,1PA PC BA BC ====,AC BD AC PD ⊥⊥,PD BD ⊂平面PBD ,PD BD D ⋂=AC ∴⊥平面PBDPE ⊂平面PBD ,PE AC ∴⊥PE BD ∴⊥,,BD AC ⊂平面ABC ,BD AC D ⋂= PE ∴⊥平面ABC ,即3PE =在Rt PED ∆中,2227222PD ⎛⎫=-= ⎪ ⎪⎝⎭ ()22222732ED PD PE ⎛⎫-=⎪ ⎪⎝∴=⎭=- 2BD =,E ∴与B 重合,即3PB =,PB ⊥平面ABC 将三棱锥P ABC -放入如下图所示的长方体中则该三棱锥的外接球的半径22211(3)52R ++==所以三棱锥P ABC -的外接球的表面积2545S ππ=⨯=⎝⎭故答案为:5π【点睛】本题主要考查了多面体的外接球的问题,涉及了线面垂直的证明,属于中档题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分)17.某年级教师年龄数据如下表:(1)求这20名教师年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名教师年龄的茎叶图;(3)现在要在年龄为29岁和31岁的教师中选2位教师参加学校有关会议,求所选的2位教师年龄不全相同的概率.【答案】(1)30,18;(2)见解析;(3)47 【解析】 试题分析:(1)由所给的年龄数据可得这20名教师年龄的众数为30,极差为18. (2)结合所给的数据绘制茎叶图即可;(3)由题意可知,其中任选2名教师共有21种选法,所选的2位教师年龄不全相同的选法共有12种,结合古典概型计算公式可得所求概率值为47. 试题解析:(1)年龄为30岁的教师人数为5,频率最高,故这20名教师年龄的众数为30,极差为最大值与最小值的差,即40-22=18. (2)(3)设事件“所选的2位教师年龄不全相同”为事件A .年龄为29,31岁的教师共有7名,从其中任选2名教师共有=21种选法,3名年龄为29岁的教师中任选2名有3种选法,4名年龄为31岁的教师中任选2名有6种选法,所以所选的2位教师年龄不全相同的选法共有21-9=12种,所以P (A )==. 18.在锐角△ABC 中,3a =________, (1)求角A ;(2)求△ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos(),()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】(1)若选①,3π(2)(623,63+ 【解析】 【分析】(1)若选①,12m n ⋅=-,得到1cos 2A =,解得答案. (2)根据正弦定理得到4sin sin sin a b c ABC ===,故43236ABC l B π⎛⎫=++ ⎪⎝⎭△到答案.【详解】(1)若选①,∵(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-221cos sin 222A A ∴-+=-,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)4sin sin sin a b cA B C===, 故24sin 4sin 234sin 4sin 233ABC l B C B B π⎛⎫=++=-++⎪⎝⎭△ 43236ABClB π⎛⎫∴=++ ⎪⎝⎭,锐角△ABC ,故62B ππ⎛⎫∠∈ ⎪⎝⎭,.2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,(623,63ABC l ⎤∴∈+⎦△. (1)若选②,()cos 2cos A b c a C =-,则2cos cos cos b A a C c A =+,2sin cos sin B A B =,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭,(2)问同上;(1)若选③131()cos (cos sin )224f x x x x =+-=21cos 2x +3cos sin 2x x -14=12×1+cos 22x +3×sin 22x -141131=(cos 2sin 2)=sin(2)22226x x x π++, ()11sin 2462f A A π⎛⎫=∴+= ⎪⎝⎭,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力. 19.如图所示的多面体中,四边形ABCD 是正方形,平面AED ⊥平面ABCD ,//EF DC ,112ED EF CD ===,30EAD =∠°.(1)求证:AE FC ⊥;(2)求点D 到平面BCF 的距离. 【答案】(1)证明见解析;(2221【解析】 【分析】(1)利用面面垂直的性质定理,线面垂直的判定定理以及性质,即可证明; (2)利用等体积法求解即可. 【详解】(1)四边形ABCD 是正方形,CD AD ∴⊥又平面ADE ⊥平面ABCD ,平面ADE平面ABCD AD =,CD ⊂平面ABCDCD 平面ADE又AE ⊂平面ADECD AE ∴⊥在ADE 中,2,1,30AD DE EAD ==∠=︒ 由余弦定理得,3AE =,∴222AE DE AD +=,∴AE ED ⊥.又CDED D =,,CD ED ⊂平面EFCD∴AE ⊥平面EFCD . 又FC ⊂平面EFCD ∴AE FC ⊥.(2)连结DF ,由(1)可知,AE ⊥平面CDEF 四边形ABCD 是正方形,∴//AB DC 又DC ⊂面CDEF ,AB ⊄面CDEF ∴//AB 面CDEF∴A 到CDEF 的距离等于B 到CDEF 的距离.即B 到面DFC 的距离为AE .在直角梯形EFCD 中,1,1,2EF DE DC === ∴2FC =∴112CDF S DC DE =⨯⨯=△,1333B CDF CDF V S AE -=⋅=△ 在直角梯形EFBA 中,1,3,2EF AE AB ===可得2BF =在等腰BFC △中,2BC BF ==,2FC =∴1147222BFC S ==△ 设点D 到平面BFC 的距离为d ,D BCF B CDF V V --=,即133D BCF BFC V S d -=⋅=△,3221=7BFCd S ∆∴=∴点D 到平面BCF 的距离为2217.【点睛】本题主要考查了证明线线垂直以及求点到平面的距离,属于中档题.20.已知椭圆22221(0)x y a b a b+=>>的长轴长是短轴长的2倍,且过点(01)B ,. (1)求椭圆的标准方程;(2)直线:(2)l y k x =+交椭圆于,P Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【答案】(1)2214x y +=;(2)31,102⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)题设条件为1,2b a b ==易得椭圆方程;(2)设1122(,),(,)P x y Q x y ,直线方程与椭圆方程联立,消元得一元二次方程,由韦达定理可得12x x +,注意到直线(2)y k x =+恒过定点(2,0)-,此为椭圆的左顶点,因此有12x =-,10y =,这样可得出Q 点坐标,点B 始终在以PQ 为直径的圆内,则0BP BQ ⋅<,由此可得k 的范围.【详解】(1)由题意知,213a b c ⎧=⎪=⎨⎪=⎩, 椭圆的标准方程为:2214x y +=.(2)设1122(,),(,)P x y Q x y 联立22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,消去y ,得:2222(14)16(164)0(*)k x k x k +++-=, 依题意:直线:(2)l y k x =+恒过点(2,0)-,此点为椭圆的左顶点,所以112,0x y =-=① ,由(*)式,21221614k x x k +=-+②,得1212()4y y k x x k +=++ ③ ,由①②③,22222284,1414k kx y k k -==++, 由点B 在以PQ 为直径圆内,得PBQ ∠为钝角或平角,即0BP BQ ⋅<.22(2,1),(,1)BP BQ x y =--=-22210BP BQ x y ⋅=--+<.即2224164101414k kk k -+->++ 整理得220430k k --<,解得31,102k ⎛⎫∈-⎪⎝⎭.【点睛】本题考查椭圆标准方程,考查直线与椭圆相交中的范围问题.由于直线过定点(2,0)-是椭圆左顶点,即其中一个交点已知了,因此可求出另一交点坐标,利用0BP BQ ⋅<求得结论.本题属于中档题.考查学生的运算求解能力.21.已知函数()ln f x x ax =-()a R ∈.(1)若曲线()y f x =与直线1ln 20x y ---=相切,求实数a 的值; (2)若不等式()()1ln xx f x x e+≤-在定义域内恒成立,求实数a 的取值范围. 【答案】(1)1;(2)1,e⎡⎫+∞⎪⎢⎣⎭. 【解析】分析:(1)求导,利用导数的几何意义进行求解;(2)分离参数,将不等式恒成立问题转化为求函数的最值问题,再求导,通过导数的符号变化确定函数的单调性,进而求出极值和最值. 详解:(1)()1'f x a x=-, 设切点的横坐标为0x ,由题意得00001112a x x ln lnx ax⎧-=⎪⎨⎪--=-⎩, 解得012x =,1a =, 所以实数a 的值为1.(2)由题意,()()1ln ln xx x ax x e+-≤-在定义域内恒成立, 得()ln 111x a x e x ≥+++在定义域内恒成立, 令()()()ln 1011x g x x x e x =+>++, 则()()2111ln '1x e x g x x -+-=+,再令()111ln h x x e x =-+-,则()211'0h x x x ⎛⎫=-+< ⎪⎝⎭,即()y h x =在()0,+∞上单调递减,又()0h e =,所以当()0,e x ∈时,()0h x >,从而()'0g x >,()y g x =在()0,e 上单调递增; 当()e,x ∈+∞时,()0h x <,从而()'0g x <,()y g x =在(),e +∞上单调递减; 所以()g x 在x e =处取得最大值()1g e e=, 所以实数a 的取值范围是1,e ⎡⎫+∞⎪⎢⎣⎭.点睛:1.在处理曲线的切线时,要注意区分“在某点的切线”和“过某点的切线”,前者的点一定为切点,但后者的点不一定在曲线上,且也不一定为切点;2.在处理含参数的不等式恒成立问题时,往往分离参数,将不等式恒成立问题转化为求函数的最值问题,再利用“()f x M ≥恒成立min ()f x M ⇔≥”进行处理.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为6cos 0ρθ-=. (1)写出直线l 和曲线C 的直角坐标方程;(2)已知点(1,0)A ,若直线l 与曲线C 交于,P Q 两点,,P Q 中点为M ,求||||||AP AQ AM 的值.【答案】(1)10x y --=.22(3)9x y -+=.(2)2【解析】 【分析】(1)直接利用极坐标和参数方程公式计算得到答案.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩,代入方程得到125t t =-,12t t +=.【详解】(1)直线:cos 4l πρθ⎛⎫+= ⎪⎝⎭,故cos sin 10ρθρθ--=,即直线l 的直角坐标方程为10x y --=.因为曲线:6cos 0C ρθ-=,则曲线C 的直角坐标方程为2260x y x +-=, 即22(3)9x y -+=.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C的直角坐标系方程得250t --=.设P ,Q 对应的参数分别为1t ,2t ,则125t t =-,12t t += 所以M对应的参数1202t t t +==120|t ||t |||||=||||2AP AQ AM t ==. 【点睛】本题考查了参数方程和极坐标方程,意在考查学生的计算能力和转化能力.[选修4-5:不等式选讲]23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围. 【答案】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦.【解析】 【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果; (2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+, 当2x -≤时,224x x --<+ ,2x >-,所以无解; 当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-. 所以a 的取值范围为22,3⎡⎤--⎢⎥⎣⎦. 【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.。

2021届高考9月份联考试题理科数学试卷附答案解析

2021届高考9月份联考试题理科数学试卷附答案解析

2021届普通高中教育教学质量监测考试全国卷理科数学注意事项:1 .本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2 .答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3 .全部答案写在答题卡上,写在本试卷上无效。

4 .本试卷满分150分,测试时间120分钟。

5 .考试范画:必修1〜5,选修2 — 1, 2-2, 2—3。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。

1.若 z=2—L 则区一zl= A3 B.2 C. VTO D.V262,若集合 A={xly=k )g3(x2—3x-18)}, B={-5, -2, 2, 5, 7),则 AAB = A.{—2, 2, 5}B.{-5, 7}C.{-5, -2, 7}D.{-5, 5, 7)3.我国古代的宫殿金碧辉煌,设计巧夺天工,下图(1)为北京某宫殿建筑,图(2)为该宫殿某一 “柱脚”的三视图,其中小正方形的边长为1,则根据三视图可知,该“柱脚”的表面积为94•已知抛物线G : y2=6x 上的点M 到焦点F 的距离为一,若点N 在Cz : (x+2)2+y 2=l ・ 2则点M 到点N 距离的最小值为A.A /26-1B.>/43-1C.V33-1D.25.根据散点图可知,变量x, y 呈现非线性关系。

为了进行线性回归分析,设u=21ny, v=(2x -3)2,利用最小二乘法,得到线性回归方程u=-1v+2,则3B.变量y 的估计值的最小值为eA.变量y 的估计值的最大值为e图⑴ 图⑵A.9TT +9+9 B.18 兀+18 点 +9 C.18 兀+18& +18D.18TT +91 + 18C 变量y 的估计值的最大值为e 2 D.变量y 的估计值的最小值为e 26,函数f(x)=h]2x —x3的图象在点(1, f(L))处的切线方程为 2 25 3 5 c — 1 1 、1 A. y = — x--B. y = — —x + 2C. y = —x--D. y = --x44 44447,已知函数 f(x)=3cos(sx+<p)(3>0),若 f (一二)=3, f( —)=0,则 3 的最小值为3 31 3 A.-B.-C.2D.3248 .(3x-2)2(x-2)6的展开式中,X”的系数为 A.O B.4320C.480D.38409 .已知圆C 过点(1, 3), (0, 2), (7, -5),直线/: 12x-5y —1=0与圆C 交于M, N 两点, 则 IMNI = A.3B.4C.6D.8 10・已知角a 的顶点在原点,始边与x 轴的非负半轴重合,终边过点(1, m),其中m>0:若tan2a12 rll—,则 cos(2a+ni7i) = 6「 口A.— —B.— —131311 .已知三棱锥S-ABC 中,ZiSBC 为等腰直角三角形,ZBSC=ZABC = 90°, ZBAC=2Z BCA, D, E, F 分别为线段AB, BC, AC 的中点,则直线SA, SB, AC, SD 中,与平面SEF 所成角为定值的有A.1条B.2条 C3条 D.4条e x212.已知函数f(x)= — —m(h]x+x+ —)恰有两个极值点,则实数m 的取值范围为 x x11 1 c c 1 eA.(-8, _] B,(一,+8) C.(一,-)U (- , 4-oo)D .(—8, —]U(—,+8)222 332 3第n 卷二、填空题:本大题共4小题,每小题5分。

2021年全国统一高考数学试卷(理科)答案及解析

2021年全国统一高考数学试卷(理科)答案及解析

m AM
2 x y 0 .令 x 2
2 ,的 m (
2,1, 2) .设平面 PMB 的一个法向量为
n (x, y, z) ,

n
CB
2x 0
.令 y 1, 的 n (0,1,1) .所 以
n PB 2x y z 0
cosm, n
m n
3
3 14 ,所以二面角 A PMN B 的正弦值为
A. f ( x 1) 1
B. f ( x 1) 1
C. f ( x 1) 1
D. f ( x 1) 1
答案:
B
解析:
f (x) 1 x 1 2 , f (x) 向右平移一个单位,向上平移一个单位得到 g(x) 2 为奇
1 x
1 x
x
函数.
5.在正方体 ABCD A1B1C1D1 中, P 为 B1D1的中点,则直线 PB 与 AD1 所成的角为
()
A. 60 种
B.120 种
C. 240 种
D. 480 种
答案:
C
解析:
所求分配方案数为 C52 A44 240 .
7.把函数 y f ( x) 图像上所有点的横坐标缩短到原来的 1 倍,纵坐标不变,再把所得曲 2
线向右平移 个单位长度,得到函数 y sin( x ) 的图像,则 f ( x) ( )
y2 b2
1(a
b
0) 的上顶点,若 C
上的任意一点
P 都满足,
PB 2b ,则 C 的离心率的取值范围是( )
2 A.[ ,1)
2
B.[ 1 ,1) 2
Байду номын сангаас
C. (0, 2 ] 2

2021届全国天一大联考新高考模拟试卷(十)数学(理)试题

2021届全国天一大联考新高考模拟试卷(十)数学(理)试题

2021届全国天一大联考新高考模拟试卷(十)数学试题(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}24410U x x x =-+≥,{}20B x x =-≥,则UB =( )A. (),2-∞B. (],2-∞C. 1,22⎛⎫⎪⎝⎭D. 11,,222⎛⎫⎛⎫-∞ ⎪⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】先求出集合U 和B ,进而可求出UB .【详解】由()22441210x x x -+=-≥恒成立,所以U =R . 又因为{}{}202B x x x x =-≥=≥,所以{}2UB x x =<.故选:A.【点睛】本题考查不等式的解法,考查集合的补集,属于基础题. 2.已知32a ib i i-=+(,a b ∈R ),其中i 为虚数单位,则复数z a bi =-在复平面内对应的点在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】根据复数的运算,结合复数相等,求得参数,a b ,写出复数在复平面内对应点的坐标即可判断. 【详解】因为32a ib i i-=+,故可得32a i bi -=-+, 故可得2,3a b =-=-,则复数23a bi i -=-+在复平面内对应的点为()2,3-, 其位于第二象限. 故选:B.【点睛】本题考查复数的运算,涉及复数相等求参数,以及复数在复平面内对应点的考查,属综合基础题. 3.在正项等比数列{}n a 中,若2124a a =,则72a ( ) A. 2- B. 2C. 4D. 16【答案】C 【解析】 【分析】结合等比数列的性质可得,27212a a a =,即可求出7a ,从而可求出()72a-. 【详解】在正项等比数列{}n a 中,由题意得272124a a a ==,72a ∴=,()()72224a -=-=∴.故选:C.【点睛】本题考查等比中项的应用,考查学生的计算求解能力,属于基础题. 4.251(1)x x x ⎛⎫++ ⎪⎝⎭展开式中x 3的系数为( ) A. 5 B. 10C. 15D. 20【答案】C 【解析】 【分析】利用乘法分配律和二项式展开式通项公式,求得3x 的系数. 【详解】依题意,展开式中3x 的项为()12243355151015x C x C x x x x⋅+⋅=+=,所以3x 的系数为15. 故选:C【点睛】本小题主要考查二项式展开式,考查乘法分配律,属于基础题.5.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的,a b 分别为135,180,则输出的a =( )A. 0B. 5C. 15D. 45【答案】D 【解析】 【分析】根据程序框图,列出算法循环的每一步,结合判断条件,可得输出的a 值. 【详解】运行该程序,输入135a =,180b =, 则a b ,且a b <,可得135a =,18013545b =-=; 则a b ,且a b >,可得1354590a =-=,45b =; 则ab ,且a b >,可得904545a =-=,45b =;则a b =,退出循环,输出45a =. 故选:D.【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查学生的计算求解能力,属于基础题.6.已知双曲线C :()222210,0x y a b a b-=>>,直线9x =与双曲线C 的两条渐近线的交点分别为P ,Q ,O为坐标原点.若OPQ △为正三角形,则双曲线C 的离心率为( )A. 2B.3C.43D.【答案】B 【解析】 【分析】由OPQ △为正三角形,可得π6QOx ∠=,从而可知双曲线C 的渐近线为y x =,即可求出b a 的值,再结合离心率c e a ==.【详解】依题意得OPQ △为正三角形,所以π3POQ ∠=,结合对称性可知,π6QOx ∠=,所以双曲线C 的渐近线为y x =,即b a =所以离心率3c e a ====. 故选:B.【点睛】本题考查双曲线的离心率,考查双曲线的渐近线,考查学生的计算求解能力,属于中档题. 7.东京夏季奥运会推迟至2021年7月23日至8月8日举行,此次奥运会将设置4⨯ 100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员参加比赛,按照仰泳→蛙泳→蝶泳→自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有( ) A. 144种 B. 8种 C. 24种 D. 12种【答案】B 【解析】 【分析】由甲只能承担仰泳或者自由泳,可分为两种情况,分别讨论,进而利用分类加法计数原理,可求出答案.【详解】由题意,若甲承担仰泳,则乙运动员有122C =种安排方法,其他两名运动员有222A =种安排方法,共计224⨯=种方法;若甲承担自由泳,则乙运动员有122C =种安排方法,其他两名运动员有222A =种安排方法,共计224⨯=种方法.所以中国队参赛共有448+=种不同的安排方法. 故选:B .【点睛】本题考查排列组合,考查分类加法计数原理的应用,考查学生的推理能力,属于基础题. 8.已知直三棱柱111ABC A B C -玉石,10cm AB =,6cm AC =,8cm BC =,14cm AA =,若将此玉石加工成一个球,则此球的最大表面积为( )2cm .A.8π3B.32π3C. 16πD.64π3【答案】C 【解析】 【分析】由222AB AC BC =+,可知ABC 为直角三角形,可求得Rt ABC △的内切圆的半径r ,可知12AA r =,从而将此玉石加工成一个球,此球是该三棱锥的内切球时,球的表面积最大,且内切球半径R r =,求出该球的表面积即可.【详解】在ABC 中,10cm AB =,6cm AC =,8cm BC =,则222AB AC BC =+,所以ABC 为直角三角形,在Rt ABC △中,设内切圆的半径为r ,则()1168681022r ⨯⨯=++,即2cm r =, 因为12AA r =,所以将此玉石加工成一个球,要求此球的最大表面积,此球应是直三棱的内切球,球的半径R 等于底面直角三角形内切圆的半径,即2cm R =, 所以该球的最大表面积为24π16πS R ==. 故选:C.【点睛】本题考查几何体的结构特征、内切球的表面积,考查学生的空间想象能力与计算求解能力,属于中档题.9.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移π3个单位,得到函数()g x 的图象,则函数()g x 的单调递增区间为( )A. 335π11π2π,2πk k ⎡⎤++⎢⎥⎣⎦()k ∈Z B. 335π11π4π,4πk k ⎡⎤++⎢⎥⎣⎦()k ∈Z C. 33π5π2π,2πk k ⎡⎤-++⎢⎥⎣⎦()k ∈ZD. 33π5π4π,4πk k ⎡⎤-++⎢⎥⎣⎦()k ∈Z【答案】D 【解析】 【分析】由图象可知函数()f x 的周期7ππ233T ⎛⎫=⨯-⎪⎝⎭,结合2πT ω=,可求出ω,再结合函数()f x 的图象经过点30,2⎛⎫-⎪⎝⎭,π,03⎛⎫⎪⎝⎭,可求出,A ϕ,即可得到函数()f x 的表达式,进而利用平移变换,可得到()g x 的表达式,然后求出单调递增区间即可.【详解】由图象可知,函数()f x 的周期7ππ2π24π33T ω⎛⎫=⨯-== ⎪⎝⎭,12ω∴=. 又函数()f x 的图象经过点30,2⎛⎫-⎪⎝⎭,π,03⎛⎫ ⎪⎝⎭, ππsin 036f A ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,π2π6n ϕ+=∴()n ∈Z ,π2π6n ϕ=-∴,π2ϕ<,π6ϕ∴=-,又()π30sin sin 62f A A ϕ⎛⎫==-=- ⎪⎝⎭,3A ∴=,()1π3sin 26f x x ⎛⎫∴=- ⎪⎝⎭.∴()π1π3sin 323g x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.令π1ππ2π2π2232k x k -+≤-≤+()k ∈Z ,得π5π4π4π33k x k -+≤≤+, 故()g x 的单调递增区间为33π5π4π,4πk k ⎡⎤-++⎢⎥⎣⎦()k ∈Z . 选择:D.【点睛】本题考查三角函数的解析式、图象的平移变换及单调递增区间,考查学生的计算求解能力,属于中档题.10.定义在R 上的奇函数()f x 在,0上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A. c b a <<B. b a c <<C. c a b <<D. a b c <<【答案】A 【解析】 【分析】易知()f x 在(0,)+∞上是增函数,且()22211log log log 555a f f f ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,进而可判断出0.822log 5log 4.122>>>,结合函数的单调性可得()()()0.822log 5log 4.12f f f >>,即可得出,,a b c 的大小关系.【详解】由()f x 是定义域为R 的奇函数,且在(),0-∞上是增函数, 则()f x 在(0,)+∞上是增函数, 所以()22211log log log 555a f f f ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭, 又()2log 4.1b f =,()0.82c f =,易知222log5log 4.1log 42>>=,而10.822<,所以0.822log 5log 4.12>>.所以()()()0.822log 5log 4.12f f f >>,即c b a <<.故选:A.【点睛】本题考查几个数的大小比较,考查函数的单调性与奇偶性的应用,考查学生的推理能力与计算能力,属于中档题.11.如图,在正方体1111ABCD A B C D -中,点P 为AD 的中点,点Q 为11B C 上的动点,下列说法中:①PQ 可能与平面11CDD C 平行; ②PQ 与BC 所成的角的最大值为π3; ③1CD 与PQ 一定垂直; ④2PQ ≥⑤PQ 与1DD 5. 其中正确个数为( ) A. 2 B. 3C. 4D. 5【答案】C 【解析】 【分析】结合空间中线线、线面、面面间的位置关系及正方体的性质,对题中5个说法逐个分析,可选出答案. 【详解】对于①,当Q 为11B C 的中点时,因为1//C Q PD 且1C Q PD =,所以四边形1C QPD 是平行四边形,所以1//PQ C D ,又因为PQ ⊄平面11CDD C ,1C D ⊂平面11CDD C ,所以//PQ 平面11CDD C ,故①正确; 对于②,当Q 为11B C 的中点时, 1//PQ C D ,又111B C C D ⊥,11//BC B C ,可得PQ BC ⊥,此时PQ 与BC 所成的角为π2,故②错误; 对于③,由11CD C D ⊥,111CD B C ⊥,且1111C DB C C =,可得1CD ⊥平面11ADC B ,又PQ ⊂平面11ADC B ,故1CD PQ ⊥,故③正确;对于④,当Q 为11B C 的中点时,线段PQ 的长为两平行线11,AD B C 之间的距离,且12PQ C D AB ==,故2PQ AB ≥,即④正确;对于⑤,如图,点E 为11A D 中点,连结,PE QE ,因为1//PE DD ,所以PQ 与1DD 所成角的正切值即为PQ 与PE 所成角的正切值,为EQPE,点Q 为11B C 上移动,PEQ 始终为直角三角形,当Q 与1B 或1C 重合时,EQ 取得最大值,此时PQ 与PE 所成角的正切值最大,且PQ 与PE 所成的角也最大,设正方体边长为2,则2PE =,221215EC =+=,所以所成最大角的正切值为5,故⑤正确. 所以正确的个数为4. 故选:C.【点睛】本题考查空间中线线、线面、面面间的位置关系及其应用,考查学生的空间想象能力与计算求解能力,属于中档题.12.已知P 是曲线1C :e x y =上任意一点,点Q 是曲线2C :ln xy x=上任意一点,则PQ 的最小值是( ) A. ln 212-B. ln 212+C. 2D.2【答案】D 【解析】 【分析】易知1C 在点()0,1A 处切线方程为1y x =+,且e 1x x ≥+恒成立,2C 在点()1,0B 处的切线方程为1y x =-,且()ln 10xx x x-≥>恒成立,由AB 等于平行线1y x =+与1y x =-间的距离,从知min PQ AB =. 【详解】曲线1C :e x y =,求导得e x y '=,易知1C 在点()0,1A 处切线方程为1y x =+. 下面证明e 1x x ≥+恒成立.构造函数()e 1xf x x =--,求导得()e 1xf x '=-,则(),0x ∈-∞时,0fx,()f x 单调递减;()0,x ∈+∞时,0fx,()f x 单调递增.故函数()()00f x f ≥=,即e 1x x ≥+恒成立. 又2C :ln x y x =,求导得21ln xy x -'=,当1x =时,1y '=,且2C 过点()1,0B ,故2C 在点()1,0处的切线方程为1y x =-. 下面证明ln 1xx x-≥在0,上恒成立.令()2ln F x x x x =--,则()()()221112121x x x x F x x x x x+---'=--==, 当01x <<时,()0F x '<,()F x 单调递减;当1x >时,()0F x '>,()F x 单调递增, 所以()()min 10F x F ==,即()()10F x F ≥=, 则2ln 0--≥x x x ,即ln 1xx x-≥在0,上恒成立.因为AB ==1y x =+与1y x =-=,所以PQ 的最小值为.故选:D.【点睛】本题考查曲线的切线的应用,考查平行线间距离的计算,考查函数单调性的应用,考查学生的计算求解能力与推理论证能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()2,3a =,()3,b m =,且0a b ⋅=,则向量a 在向量()a b -上的投影为__________.【解析】 【分析】由0a b ⋅=,可求出m ,进而由向量a 在()a b -上的投影为()aa b a b⋅--,求解即可.【详解】因为630a b m ⋅=+=,解得2m =-,所以()3,2b =-,()1,5a b -=-, 所以向量a 在()a b -上的投影为()262125a ab a b⋅-==+-. 故答案为:262. 【点睛】本题考查平面向量的数量积,考查平面向量的投影,考查学生的计算求解能力,属于基础题. 14.某省级示范校新校区计划今年九月招生,学校决定面向全国招聘优秀老师,其中数学科今年计划招聘女教师a 名,男教师b 名.若a ,b 满足不等式组2527a b a b a -≥⎧⎪-≤⎨⎪<⎩,若设该校今年计划招聘数学科教师最多z 名,则z =__________.【答案】13 【解析】 【分析】画出约束条件所表示的平面区域,作直线0b a +=,并平移,结合a ,b ∈N ,可求出+a b 的最大值. 【详解】如图所示,画出约束条件所表示的平面区域,即可行域,作直线0b a +=,并平移,结合a ,b ∈N ,可知当6a =,7b =时,+a b 取得最大值. 故()max 6713a b +=+=,即13z =. 故答案为:13.【点睛】本题考查利用线性规划解决实际问题,考查数形结合的思想在解题中的应用,属于基础题. 15.已知A ,B 是抛物线22y x =上的两个动点,O 为坐标原点且满足0OA OB ⋅=,直线AB 与x 轴交于点M ,当2AM BM =时,直线AB 斜率为__________.【答案】 【解析】 【分析】设直线AB 的方程为x my t =+,与抛物线方程联立,得到关于y 的一元二次方程,设()11,A x y ,()22,B x y ,由0OA OB ⋅=,可得12120x x y y +=,结合韦达定理,可求出124y y =-,由2AM BM =,可得122y y =-,进而可求出,m t 的值,由1AB k m=,可求出直线AB 的斜率. 【详解】由题意,设直线AB 的方程为x my t =+,联立22y x x my t⎧=⎨=+⎩,得2220y my t --=,设()11,A x y ,()22,B x y ,则121222y y my y t +=⎧⎨=-⎩,因为0OA OB ⋅=,所以12120x x y y +=,即22121204y y y y +=,即1212041y y y y ⎛⎫+= ⎪⎝⎭,因为120y y ≠,所以124y y =-,所以2t =, 由2AM BM =,可得122y y =-,所以22222422y m y y +=⎧⎨-=--⎩,解得222y =,212m =,所以2m =±,即1AB k m ==故答案:【点睛】本题考查直线与抛物线位置关系的应用,考查韦达定理的应用,及平面向量数量积的应用,考查学生的计算求解能力,属于中档题. 16.已知数列{}n a 满足14a =,144n na a +=-,且()()()()()12232222f n a a a a =--+--+()()()()3412222n n a a a a +--++--,若对()3n n *∀≥∈N ,都有()22f n m m ≥-恒成立,则实数m 的最小值为__________.【答案】1-【解析】 【分析】 易知124422n n n n a a a a +--=-=,可得111122422n n n n a a a a +==+---,从而可得数列22n a ⎧⎫⎨⎬-⎩⎭是等差数列,进而可求出22n a -及2n a -的表达式,从而可求出()f n 的表达式,然后求出()f n 的最小值,令()2min 2f n m m ≥-,即可求出实数m 的范围,从而可求出实数m 最小值.【详解】14a =,144n na a +=-, ∴124422n n n na a a a +--=-=, 若存在()2,n n n *≥∈N,使得12n a+=,则2n a =,即112n n a a a -====,显然与14a =矛盾,12n a +∴≠,2n a ≠. 111122422n n n n a a a a +∴==+---,122122n n a a +∴-=--,1221242a ==--,22n a ⎧⎫∴⎨⎬-⎩⎭是以1为首项,1为公差的等差数列;2112n n n a ∴=+-=-,22n a n-=, ()()1221122411n n a a n n n n +⎛⎫∴--=⋅=- ⎪++⎝⎭, ()()()()()()()()()122334122222222n n f n a a a a a a a a +∴=--+--+--++--1111144122311n n n n ⎛⎫=-+-++-=⎪++⎝⎭.对()*3n n ∀≥∈N,都有()22f n mm ≥-恒成立,所以()2min 2f n m m ≥-,因为()*3n n ∀≥∈N时,()44141n f n n n ==-++,易知()f n 在[)3,+∞上是增函数,所以()()min 33f n f ==,即2230m m -≤-,解得13m -≤≤,所以实数m 的最小值为1-. 故答案:1-.【点睛】本题考查不等式恒成立问题,考查等差数列的证明及通项公式的求法,考查裂项相消求和法的应用,考查学生的计算求解能力与推理论证能力,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.在ABC 中,角,,A B C 所对的边分别为,,a b c ,7a =,8c =..(1)若sin C =A ;(2)若ABC 的面积为,求ABC 周长.【答案】(1)π3A =;(2)周长为20或15+【解析】 【分析】 (1)由正弦定理sin sin a c A C =,可求出sin A ,易知π0,2A ⎛⎫∈ ⎪⎝⎭,从而可求出角A ; (2)由1sin 2ABC S ac B =△,可求出sin B ,进而可求出cos B ,结合余弦定理,可求出b ,即可求出ABC 的周长.【详解】(1)由已知条件可知,7a =,8c =,sin C =根据正弦定理可得sin sin a cA C=,si 7sin n 8a A c C =∴==, a c <,A C ∴<,π0,2A ⎛⎫∴∈ ⎪⎝⎭,π3A ∴=.(2)因为ABC 的面积为7a =,8c =.1sin 28sin 1032ABC S ac B B ∴===△,53sin 14B ∴=. 2111si s 14co n B B ±=±∴=-. ①若11cos 14B =,由余弦定理得,22222112cos 782782514b ac ac B ⨯=+-⨯⨯-=+=, 5b ∴=,ABC ∴的周长为78520a b c ++=++=;②若1os 14c 1B =-,由余弦定理得,22222112cos 7827820114b a c ac B ⎛⎫=+-=+-⨯-= ⎪⎝⎭⨯⨯, 201b ∴=,ABC ∴的周长为2011527081a b c ++=+++=.综上,ABC 周长为20或15201+.【点睛】本题考查正弦、余弦定理在解三角形中的应用,考查三角形面积公式的应用,考查学生的计算求解能力,属于基础题.18.随着时代的发展和社会的进步,“农村淘宝”发展十分迅速,促进“农产品进城”和“消费品下乡”.“农产品进城”很好地解决了农产品与市场的对接问题,使农民收入逐步提高,生活水平得到改善,农村从事网店经营的人收入逐步提高.西凤脐橙是四川省南充市的特产,因果实呈椭圆形、色泽橙红、果面光滑、无核、果肉脆嫩化渣、汁多味浓,深受人们的喜爱.为此小王开网店销售西凤脐橙,每月月初购进西凤脐橙,每售出1吨西凤脐橙获利润800元,未售出的西凤脐橙,每1吨亏损500元.经市场调研,根据以往的销售统计,得到一个月内西凤脐橙市场的需求量的频率分布直方图如图所示.小王为下一个月购进了100吨西凤脐橙,以x (单位:吨)表示下一个月内市场的需求量,y (单位:元)表示下一个月内经销西凤脐橙的销售利润.(1)将y 表示为x 的函数;(2)根据频率分布直方图估计小王的网店下一个月销售利润y 不少于67000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率,(例如:若需求量[)80,90x ∈,则取85x =,且85x =的概率等于需求量落入[)80,90的频率),求小王的网店下一个月销售利润y 的分布列和数学期望.【答案】(1)130050000,7010080000,100120x x y x -≤<⎧=⎨≤<⎩;(2)0.7;(3)见解析,期望为70900元【解析】 【分析】(1)分别写出[)70,100x ∈和[]100,120x ∈时,利润y 的表达式,进而利用分段函数可得到所求函数; (2)结合(1),令67000y ≥,分[)70,100x ∈和[]100,120x ∈两种情况,分布求出对应x 的范围,结合频率分布直方图,可求出所求概率;(3)由频率分布直方图知,需求量x 可取75,85,95,105,115,结合(1)可得利润y 的所有取值,进而求出对应概率,可求得下一个月销售利润y 的分布列和数学期望.【详解】(1)依题意得,x 表示一个月内的市场需求量,y 表示一个月内经销西凤脐橙的利润,当[)70,100x ∈时,()800500100130050000y x x x =--=-. 当[]100,120x ∈时,80010080000y =⨯=.所以130050000,7010080000,100120x x y x -≤<⎧=⎨≤<⎩. (2)由题意令67000y ≥,当[)70,100x ∈时,由13005000067000x -≥,得90x ≥,所以90100x ≤<. 当[]100,120x ∈时,8000067000y =>.综上可知,若利润不少于67000元,则[]90,120x ∈.由频率分布直方图可知,需求量[]90,120x ∈的频率为()0.0300.0250.015100.7++⨯=, 所以小王的网店下一个月内的利润y 不少于67000元的概率的估计值为0.7. (3)由频率分布直方图知,需求量x 可取75,85,95,105,115. 当75x =时,1300755000047500y =⨯-=; 当85x =时,1300855000060500y =⨯-=; 当95x =时,1300955000073500y =⨯-=; 当105x =时,80000y =; 当115x =时,80000y =.所以()475000.010100.1P y ==⨯=,()605000.020100.2P y ==⨯=,()735000.030100.3P y ==⨯=,()()800000.0250.015100.4P y ==+⨯=.故小王的网店下一个月内销售利润y 的分布列为:y (元) 4750060500 73500 80000 p0.10.20.30.4()475000.1605000.2735000.3800000.470900E y =⨯+⨯+⨯+⨯=(元).所以小王的网店下一个月内销售利润y 的期望为70900元.【点睛】本题考查频率分布直方图,考查分段函数的应用,考查分布列及数学期望的求法,考查概率的计算,考查学生的计算求解能力,属于中档题.19.如图,在直角梯形ABCD 中,//AB DC ,90ABC ∠=︒,22AB DC BC ==,E 为AB 的中点,沿DE 将ADE ∆折起,使得点A 到点P 位置,且PE EB ⊥,M 为PB 的中点,N 是BC 上的动点(与点B ,C 不重合).(Ⅰ)证明:平面EMN ⊥平面PBC 垂直;(Ⅱ)是否存在点N ,使得二面角B EN M --的余弦值66N 点位置;若不存在,说明理由.【答案】(Ⅰ)见解析 (Ⅱ)存在,此时N 为BC 的中点. 【解析】 【分析】(Ⅰ)证明PE ⊥平面EBCD ,得到平面PEB ⊥平面EBCD ,故平面PBC ⊥平面PEB ,EM ⊥平面PBC ,得到答案.(Ⅱ)假设存在点N 满足题意,过M 作MO EB ⊥于O ,MQ ⊥平面EBCD ,过Q 作QR EN ⊥于R ,连接MR ,则EN MR ⊥,过Q 作QR EN ⊥于R ,连接MR ,MRQ ∠是二面角B EN M --的平面角,设2PE EB BC ===,BN x =,计算得到答案. 【详解】(Ⅰ)∵PE EB ⊥,PE ED ⊥,EBED E =,∴PE ⊥平面EBCD .又PE ⊂平面PEB ,∴平面PEB ⊥平面EBCD ,而BC ⊂平面EBCD ,BC EB ⊥,∴平面PBC ⊥平面PEB , 由PE EB =,PM AB =知EM PB ⊥,可知EM ⊥平面PBC , 又EM ⊂平面EMN ,∴平面EMN ⊥平面PBC .(Ⅱ)假设存在点N 满足题意,过M 作MO EB ⊥于O ,由PE EB ⊥知//PE MQ , 易证PE ⊥平面EBCD ,所以MQ ⊥平面EBCD ,过Q 作QR EN ⊥于R ,连接MR ,则EN MR ⊥(三垂线定理), 即MRQ ∠是二面角B EN M --的平面角, 不妨设2PE EB BC ===,则1MQ =,在Rt EBN ∆中,设BN x =(02x <<),由Rt ~Rt EBN ERQ ∆∆得,BN ENRQ EQ= 即222x x RQ +=,得222RQ x =+,∴24tan MQ x MRQ RQ +∠==, 依题意知6cos 6MRQ ∠=,即24tan 5x MRQ x+∠==,解得1(0,2)x =∈, 此时N 为BC 的中点.综上知,存在点N ,使得二面角B EN M --的余弦值6,此时N 为BC 的中点.【点睛】本题考查了面面垂直,根据二面角确定点的位置,意在考查学生的空间想象能力和计算能力,也可以建立空间直角坐标系解得答案.20.已知椭圆()2222:10x y M a b a b+=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点2P ⎫⎪⎪⎭.(1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625 【解析】 【分析】(1)设椭圆的上下顶点为()10,B b ,()20,B b -,左焦点为()1,0F c -,则121B B F △是正三角形,可得2b a =,进而将2⎭代入椭圆方程,可求出,a b 的值,即可得到椭圆的方程;(2)设直线l 的方程为x ky m =+,与椭圆方程联立,并消去x 得到关于y 的一元二次方程,设()11,A x y ,()22,B x y ,由以线段AB 为直径的圆过椭圆的右顶点()2,0C ,可得0CA CB ⋅=,将其展开并结合韦达定理,可求得65m =,即直线l 恒过点6,05D ⎛⎫⎪⎝⎭,进而1212ABCS DC y y =-,结合韦达定理,求出最大值即可.【详解】(1)根据题意,设椭圆的上下顶点为()10,B b ,()20,B b -,左焦点为()1,0F c -,则121B B F △是正三角形,所以2b a ==,则椭圆方程为222214x yb b+=.将2⎫⎪⎪⎭代入椭圆方程,可得2221142b b +=,解得2a =,1b =. 故椭圆的方程为2214x y +=.(2)由题意,设直线l 的方程为x ky m =+,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩,消去x 得()2224240k y kmy m +++-=.设()11,A x y ,()22,B x y ,则有12224km y y k -+=+,212244m y y k -=+,因为以线段AB 为直径的圆过椭圆的右顶点()2,0C ,所以0CA CB ⋅=, 由()112,CA x y =-,()222,CB x y =-,则()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式并整理得()()()()2212121220k y y k m y y m ++-++-=,则()()()()22222214222044k m k m m m k k +---++-=++,化简得()()5620m m --=, 解得65m =或2m =, 因为直线x ky m =+不过点()2,0C ,所以2m ≠,故65m =. 所以直线l 恒过点6,05D ⎛⎫ ⎪⎝⎭. 故121162225ABCSDC y y ⎛=-=⨯- ⎝==, 设211044t t k ⎛⎫=<≤⎪+⎝⎭,则ABCS =在10,4t ⎛⎤∈ ⎥⎝⎦上单调递增, 当14t =时,1625ABCS ==, 所以ABC 面积的最大值为1625. 【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查三角形的面积的计算,考查学生分析问题、解决问题的能力,属于难题. 21.已知函数()()21ln 22f x m x x x m =+-∈R . (1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点()1212,x x x x <且()120f x ax -≥恒成立,求实数a 的取值范围.【答案】(1)见解析;(2)3,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)()f x 的定义域为0,,对()f x 求导,分0m ≤、01m <<和1m ≥三种情况,分别讨论,可求得函数的单调递增区间;(2)由(1)知()f x 有两个极值点()1212,x x x x <时,等价于方程2x 2x m 0-+=有两个不等正根,可求得212x x =-,()112m x x =-,及101x <<,212x <<,由()120f x ax -≥恒成立,可得111112ln 122a x x x x ≤+---恒成立,构造函数()()121,0,1l 2n 2g x x x x x x=+--∈-,求导并判断单调性可知()()1g x g >,令()1a g ≤即可.【详解】(1)()f x 的定义域为0,,求导得()222m x x m f x x x x -+'=+-=, 令0f x ,得2x 2x m 0-+=,()4441m m ∆=-=-,若1m ≥时,0∆≤,0f x 在0,上恒成立,()f x 单调递增; 若1m <时,>0∆,方程2x 2x m 0-+=的两根为11x =21x =当0m ≤时,10x <,20x >,则()2,x x ∈+∞时,0f x ,故()f x 在()2,x +∞单调递增;当01m <<时,120x x <<,则()10,x x ∈或()2,x x ∈+∞时,0f x ,故()f x 在()10,x 和()2,x +∞上单调递增.综上,当0m ≤时,()f x的单调递增区间为()1++∞;当01m <<时,()f x的单调递增区间为(0,1,()1+∞;当1m ≥时,()f x 的单调递增区间为0,.(2)由(1)知()f x 有两个极值点()1212,x x x x <时,等价于方程2x 2x m 0-+=的有两个不等正根 ()121241020m x x x x m ⎧∆=->⎪∴+=⎨⎪=>⎩,()112m x x ∴=-,101x <<,212x <<,此时不等式()120f x ax -≥恒成立,等价于()()211111112l 2202n x x x x x x a -+---≥对()10,1x ∈恒成立, 可化为()2111111111112ln 2122ln 1222x x x x x a x x x x x -+-≤=+----恒成立, 令()()121,0,1l 2n 2g x x x x x x=+--∈-, 则()()()()22241212()1ln ln ln 222222x x g x x x x x x x -'=+--=+-=+---, ()0,1x ∈,ln 0x ∴<,()40x x -<,()0g x '∴<在0,1恒成立,()g x ∴在0,1上单调递减,()()12310112212g x g >=+-⨯-=--∴, 32a ∴≤-. 故实数a 的取值范围是3,2⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查函数的单调性,考查利用导数解决不等式恒成立问题,考查学生的计算求解能力与推理能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.【选修4—4:坐标系与参数方程】22.已知在平面直角坐标系xoy中,曲线112:12x t C y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为4cos ρθ=.(1)写出曲线1C 的极坐标方程和2C 的直角坐标方程;(2)已知()1,1M ,曲线1C ,2C 相交于A ,B 两点,试求点M 到弦AB 的中点N 的距离.【答案】(1)sin 4πρθ⎛⎫+= ⎪⎝⎭()2224x y -+=;(2【解析】【分析】(1)消去参数得到20x y +-=,再利用极坐标公式化简得到答案.(2)根据直线过圆心得到()2,0,计算得到答案.【详解】(1)曲线1:C 1212x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t ,得20x y +-=, 其极坐标方程为()cos sin 2ρθθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭. 4cos ρθ=,24cos ρρθ=,即2240x y x +-=,所以曲线2C 的直角坐标方程为()2224x y -+=.(2)由题意及(1)知直线1C 过圆2C 的圆心()2,0,则点N 的坐标为()2,0,又()1,1M,所以MN ==.【点睛】本题考查了参数方程,极坐标方程的转化,线段长度,意在考查学生的计算能力.【选修4—5:不等式选讲】23.[选修4-5:不等式选讲]设函数()|1|f x x =+.(1)求不等式()5(3)f x f x ≤--的解集;(2)已知关于x 的不等式2()||4f x x a x ++≤+在[1,1]-上有解,求实数a 的取值范围.【答案】(1) {}23x x -≤≤ (2) 24a -≤≤【解析】【分析】(1)零点分段去绝对值解不等式即可(2)由题x a 2x +≤-在[]1,1-上有解,去绝对值分离变量a 即可.【详解】(1)不等式()()f x 5f x 3≤--,即x 1x 25++-≤ 等价于1,125,x x x <-⎧⎨---+≤⎩ 或12,125,x x x -≤≤⎧⎨+-+≤⎩或2,125,x x x >⎧⎨++-≤⎩解得 2x 3-≤≤,所以原不等式的解集为{}x 2x 3-≤≤;(2)当[]x 1,1∈-时,不等式()2f x x a x 4++≤+,即x a 2x +≤-, 所以x a 2x +≤-在[]1,1-上有解即2a 22x -≤≤-在[]1,1-上有解,所以,2a 4-≤≤.【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.。

2021届全国天一大联考新高三原创预测试卷(九)理科数学

2021届全国天一大联考新高三原创预测试卷(九)理科数学

2021届全国天一大联考新高三原创预测试卷(九)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={x |lg (x -2)<1},集合B ={x |2x -2x -3<0},则A ∪B 等于( )A .(2,12)B .(一l ,3)C .(一l ,12)D .(2,3) 2.已已已已已已已已“”已“”已已 已 A已已已已已 B已已已已已已已已 C已已已已已已已已D已已已已已已已已已已已3.已已已已已已已已 已 A已B已C已D已4.已已已已已已已已已已已已已已已已已已已 已A已B已C已D已5已已已已已已已已已已已已已已已已已已已已已已已已已已已已已已已 已 A已已已已已B已已已已已C已已已已已已已已已已 D已已已已已已已已已已6已已已已已已已已已已已已已已已已已已已已已已已已 已A已B已C已0 D已()1,2=-a ()3,m =b m ∈R 6m =-()+∥a a b p 21,2n n n ∃>>p ⌝21,2n n n ∀>>21,2n n n ∃≤≤21,2n n n ∀>≤21,2n n n ∃>≤1,04⎛⎫- ⎪⎝⎭10,4⎛⎫ ⎪⎝⎭11,42⎛⎫ ⎪⎝⎭13,24⎛⎫ ⎪⎝⎭()x f x a =0a >1a ≠R 22()a g x x -=(0,)+∞(,0)-∞(0,)+∞(,0)-∞()f x R [0,1]x ∈3()f x x =x ∀∈R ()(2)f x f x =-(2017.5)f =1818-17 .已知函数f (x )=若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0]8.太极图是以黑白两个鱼形纹组成的圆形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被y =3sin6πx 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .199.甲、乙、丙、丁四位同学计划去4个景点旅游,每人只去一个景点,设事件A=“四位同学去的景点不相同”,事件B=“甲同学独自去一个景点”,则P(A|B)=( )A.29B.13C.49D.5910.某种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A.100 B.200 C.300 D.40011.已知函数()21,g x a x x e e e ⎛⎫=-≤≤ ⎪⎝⎭为自然对数的底数与()2ln h x x=的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,A.211,2e ⎡⎤+⎢⎥⎣⎦ B.21,2e ⎡⎤-⎣⎦ C.2212,2e e ⎡⎤+-⎢⎥⎣⎦D.)22,e ⎡-+∞⎣ 12.已知方程ln |x |-212mx +32=0有4个不同的实数根,则实数m 的取值范围是( )A .(0,22e )B .(0,22e ] C .(0,2e ] D .(0,2e )第Ⅱ卷二、填空题:本大题共4小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届全国天一大联考新高考模拟试卷(九)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(本大题共12小题,每小题5分,满分60分.)1.集合{|2lg 1}A x x =<,{}2|90B x x =-≤,则A B =( )A. [3,3]-B.C. (0,3]D. [-【答案】C 【解析】 【分析】通过解不等式分别得到集合,A B ,然后再求出A B ⋂即可.【详解】由题意得{}{1|2lg 1|lg |02A x x x x x x ⎧⎫=<=<=<<⎨⎬⎩⎭, {}{}2 |9|33B x x x x =≤=-≤≤,∴{}(]|030,3A B x x ⋂=<≤=.故选C .【点睛】解答本题的关键是正确得到不等式的解集,需要注意的是在解对数不等式时要注意定义域的限制,这是容易出现错误的地方,属于基础题. 2.复数121z i z i =+=,,其中i 为虚数单位,则12z z 的虚部为( ) A. 1- B. 1C. iD. i -【答案】A 【解析】 【分析】根据复数共轭的概念得到__1z ,再由复数的除法运算得到结果即可.【详解】11211,1,z i z i i z i-=-==-- 虚部为-1, 故选A.【点睛】本题考查了复数的运算法则、复数的共轭复数等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算. 3.已知sin α,sin()10αβ-=-,,αβ均为锐角,则β=( ) A.512π B.3π C.4π D.6π 【答案】C 【解析】 【分析】 由题意,可得22ππαβ-<-<,利用三角函数的基本关系式,分别求得cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.【详解】由题意,可得α,β均锐角,∴-2π <α-β<2π. 又.又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=5×310-25×10⎛⎫- ⎪ ⎪⎝⎭=22.∴β=4π. 【点睛】本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.把60名同学看成一个总体,且给60名同学进行编号,分5为00,01,…,59,现从中抽取一容量为6的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始向右读取,直到取足样本,则抽取样本的第6个号码为( )A. 32B. 38C. 39D. 26【答案】D 【解析】 【分析】从随机数表的倒数第5行第11列开始,依次向右读取两位数,大于等于60的数据应舍去,与前面取到的数据重复的也舍去,直到取足6个样本号码为止.【详解】根据随机数表抽取样本的六个号码分别为:18,00,38,58,32,26; 所以抽取样本的第6个号码为26. 故选:D.【点睛】本题主要考查了抽样方法,随机数表的使用,在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的,属于基础题.5.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A. 2B. 3C. 4D. 5【答案】A 【解析】 【分析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥P BCD -的正视图与侧视图都是底边长为2高为1的三角形,其面积都是11212⨯⨯=,正视图与侧视图的面积之和为112+=, 故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.6.在等比数列{}n a 中,“412,a a 是方程2310x x ++=的两根”是“81a =-”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据“412,a a 是方程2310x x ++=的两根”与“81a =-”的互相推出情况,判断出是何种条件. 【详解】因为4124123,1a a a a +=-=,所以4120,0a a <<, 所以等比数列中4840a a q =<,所以84121a a a =-=-;又因为在常数列1n a =-中,81a =-,但是412,a a 不是所给方程的两根.所以在等比数列{}n a 中,“412,a a 是方程2310x x ++=的两根”是“81a =-”的充分不必要条件. 故选:A .【点睛】本题考查数列与充分、必要条件的综合应用,难度一般.在等比数列{}n a 中,若()*2,,,,m n p q c m n p q c N +=+=∈,则有2m n p q c a a a a a ==.7.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为1.160.5ˆ37yx =-,以下结论中不正确的为( )A. 15名志愿者身高的极差小于臂展的极差B. 15名志愿者身高和臂展成正相关关系,C. 可估计身高为190厘米的人臂展大约为189.65厘米D. 身高相差10厘米的两人臂展都相差11.6厘米, 【答案】D 【解析】 【分析】根据散点图和回归方程的表达式,得到两个变量的关系,A 根据散点图可求得两个量的极差,进而得到结果;B ,根据回归方程可判断正相关;C 将190代入回归方程可得到的是估计值,不是准确值,故不正确;D ,根据回归方程x 的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确. 【详解】A ,身高极差大约为25,臂展极差大于等于30,故正确;B ,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;C ,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;D ,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确. 故答案为D.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.8.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A. 2B. 3C. 4D. 5【答案】C 【解析】 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】当1n =时,1542a b ==,,满足进行循环的条件; 当2n =时,45,84a b == 满足进行循环的条件; 当3n =时,135,168a b ==满足进行循环的条件; 当4n =时,405,3216a b ==不满足进行循环的条件, 故输出的n 值为4. 故选:C .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答. 9.已知抛物线22y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于M ,N 两点,若3PF MF =,则||MN =A.163B. 83C. 2D.83【答案】B 【解析】 【分析】先根据题意写出直线的方程,再将直线的方程与抛物线y 2=2x 的方程组成方程组,消去y 得到关于x 的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段AB 的长. 【详解】解:抛物线C :y 2=2x 的焦点为F (12,0),准线为l :x =﹣12,设M (x 1,y 1),N (x 2,y 2),M ,N 到准线的距离分别为d M ,d N , 由抛物线的定义可知|MF |=d M =x 1+12,|NF |=d N =x 2+12,于是|MN |=|MF |+|NF |=x 1+x 2+1. ∵3PF MF =,则2PM QM =,易知:直线MN 的斜率为±3,∵F (12,0), ∴直线PF 的方程为y 3(x ﹣12), 将y 3(x ﹣12),代入方程y 2=2x ,得3(x ﹣12)2=2x ,化简得12x 2﹣20x +3=0, ∴x 1+x 253=,于是|MN |=x 1+x 2+153=+183= 故选:B .点睛】本题考查抛物线的定义和性质,考查向量知识的运用,考查学生的计算能力,属于中档题.10.已知圆1C :2220x y kx y +-+=与圆2C :2240x y ky ++-=的公共弦所在直线恒过定点()P a b ,,且点P 在直线20mx ny --=上,则mn 的取值范围是( )A. 104⎛⎫ ⎪⎝⎭, B. 104⎛⎤ ⎥⎝⎦,C. 14⎛⎫-∞ ⎪⎝⎭,D. 14⎛⎤-∞ ⎥⎝⎦,【答案】D 【解析】【详解】2220x y kx y +-+=与2240x y ky ++-=,相减得公共弦所在直线方程:(2)40kx k y +--=,即()(24)0k x y y +-+=,所以由240y x y +=⎧⎨+=⎩得2,2-==y x ,即(2,2)P -,因此2211122201,=(1)()244m n m n mn m m m m m +-=∴+=-=-=--+≤, 选D.点睛:在利用基本不等式求最值或值域时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,定点A 为双曲线虚轴的一个顶点,过,F A 的直线与双曲线的一条渐近线在y 轴左侧的交点为B ,若(21)FA AB =-,则此双曲线的离心率是( )C.【答案】A 【解析】 【分析】设(),0,)0,(F c A b - ,渐近线方程为b y x a =,求出AF 的方程与b y x a =联立可得,acbc B a c a c ⎛⎫ ⎪⎝-⎭-,利用 ()21FA AB =-,可得,a c 的关系,即可求出双曲线的离心率.【详解】设(),0,)0,(F c A b -,渐近线方程为by x a=,则 直线AF 的方程为 1x y c b -=,与b y x a = 联立可得,ac bc B a c a c ⎛⎫ ⎪⎝-⎭- , ∵()2 1FA AB =-,),,(()1)ac bcc b b a c a c∴--=+--,)1acca c∴-=-,∴cea==故选:A.【点睛】本题考查双曲线的性质,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.12.已知函数()(2)3,(ln2)()32,(ln2)xx x e xf xx x⎧--+≥⎪=⎨-<⎪⎩,当[,)x m∈+∞时,()f x的取值范围为(,2]e-∞+,则实数m的取值范围是()A.1,2e-⎛⎤-∞⎥⎝⎦B. (,1]-∞ C.1,12e-⎡⎤⎢⎥⎣⎦D. [ln2,1]【答案】C【解析】【分析】求导分析函数在ln2x≥时的单调性、极值,可得ln2x≥时,()f x满足题意,再在ln2x<时,求解()2f x e≤+的x的范围,综合可得结果.【详解】当ln2x≥时,()()()'12xf x x e=---,令()'0f x>,则ln21x<<;()'0f x<,则1x>,∴函数()f x在()ln2,1单调递增,在()1,+∞单调递减.∴函数()f x在1x=处取得极大值为()12f e=+,∴ln2x≥时,()f x的取值范围为(],2e-∞+,∴ln2m1≤≤又当ln2x<时,令()322f x x e=-≤+,则12ex-≥,即1x ln22e-≤<,∴1e22m ln-≤<综上所述,m的取值范围为1,12e-⎡⎤⎢⎥⎣⎦.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知()2sin15,2sin 75a =︒︒,||1a b -=,a 与a b -的夹角为3π,则a b ⋅=__________. 【答案】3. 【解析】 【分析】先求a ,再分别根据向量数量积定义以及数量积运算绿求()a ab -,即可得出结果. 【详解】因为2224sin 4sin 154cos 152a ==+=,()cos13a ab a a b π-=-=,又()241a a b a a b a b -=-⋅=-⋅=, 所以3a b ⋅=. 故答案:3.【点睛】本题考查了向量数量积以及向量的模,考查基本分析求解能力,属于基础题.14.()5212x ⎫+⎪⎭的展开式的常数项是_________.【答案】42- 【解析】 【分析】由于52⎫⎪⎭的通项为()552rr r C -⋅⋅-,可得()5212x⎫+-⎪⎭的展开式的常 【详解】()555221222x x ⎫⎫⎫+-=-+-⎪⎪⎪⎭⎭⎭由于52⎫⎪⎭的通项为()55 2rrr C -⋅⋅-,故由题意得4r =或5,故的展开式的常数项是()()5152242C ⋅-+-=-,故选:42-.【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.15.已知()f x 是定义在R 上的奇函数,当0x >时,2()2f x x x =-,则不等式()f x x >的解集用区间表示为__________.【答案】(3,0)(3,)-⋃+∞ 【解析】设0x < ,则0x -> ,由题意可得222222f x f x x x x x f x x x -=-=---=+∴=--()()()(),(),故当0x < 时,22f x x x ().=-- 由不等式f x x ()> ,可得20 2x x x x ⎧⎨-⎩>> ,或202x x x x ⎧⎨--⎩<,> 求得3x > ,或30x -<<, 故答案为(303,)(,).-⋃+∞ 16.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是__________. 【答案】甲 【解析】 【分析】若甲正确,则乙与丙错误.则甲不是第三名,乙不是第三名,丙是第一名,矛盾,假设不成立;若乙正确,甲与丙错误.则甲是第三名,乙是第三名,丙是第一名,矛盾,假设不成立;若丙正确,甲与乙错误.则甲是第三名,乙不是第三名,丙不是第一名,即乙是第一名,丙是第二名,甲是第三名,假设成立.【详解】解:若甲的预测正确,乙与丙预测错误.则甲不是第三名,乙不是第三名,丙是第一名,即甲乙丙都不是第三名,矛盾,假设不成立;若乙的预测正确,甲与丙预测错误.则甲是第三名,乙是第三名,丙是第一名,即甲乙都是第三名,矛盾,假设不成立;若丙的预测正确,甲与乙预测错误.则甲是第三名,乙不是第三名,丙不是第一名,即乙是第一名,丙是第二名,甲是第三名,假设成立. 故答案为:甲【点睛】本题主要考查合情推理和演绎推理,考查学生的逻辑推理能力和辨析能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程及演算步骤)17.在平面四边形ABCD中,已知AB =,3AD =,2ADB ABD ∠=∠,3BCD π∠=.(1)求BD ;(2)求BCD ∆周长的最大值. 【答案】(1)5BD =(2)15 【解析】 【分析】(1)设BD x =,ABD α∠=,则2ADB α∠=,利用正弦定理求出6cos α=,在利用余弦定理26cos 32263α==⨯⨯5x =或3x =,最后检验即可得出结果. (2)设CBD β∠=,利用正弦定理有2sin sinsin 33BDBC CDππββ==⎛⎫- ⎪⎝⎭,从而得出 BC 和CD 的表示方法,然后10sin 106BC CD πβ⎛⎫+=+≤ ⎪⎝⎭,即可得出BCD ∆周长最大值.【详解】解:(1)由条件即求BD 的长,在ABD ∆中,设BD x =,ABD α∠=,则2ADB α∠=,∵sin 2sin AB AD αα=,∴6cos 3α=,∴26cos 32263α==⨯⨯整理得28150x x -+=,解得5x =或3x =. 当3x =时可得22ADB πα∠==,与222AD BD AB +≠矛盾,故舍去∴5BD =(2)在BCD ∆中,设CBD β∠=,则2sin sinsin 33BDBC CDππββ==⎛⎫- ⎪⎝⎭∴10323BC πβ⎛⎫=- ⎪⎝⎭,103CD β= ∴10333sin 10sin 103226BC CD πβββ⎛⎫⎛⎫+=+=+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭∴BCD ∆周长最大值为15.【点睛】本题考查正弦定理和余弦定理解三角形,考查三角形周长的最大值,是中档题.18.如图所示,四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,45ABC ∠=︒,2AD AP ==,22AB DP ==,E 是CD 中点,点F 在线段PB 上.(Ⅰ)证明:AD PC ⊥; (Ⅱ)若PF = ,PB λ []0,1λ∈,求实数λ使直线EF 与平面PDC 所成角和直线EF 与平面ABCD 所成角相等.【答案】(Ⅰ) 见解析;(Ⅱ) 33-【解析】 【分析】(Ⅰ)由线面垂直的判定定理,先证明AD ⊥平面PAC ,进而可得AD PC ⊥;(Ⅱ)先结合(Ⅰ)证明PD ⊥底面ABCD ,以A 为原点,DA 延长线、AC 、AP 分别为x 、y 、z 轴建系,用λ表示出直线EF 的方向向量与平面PDC 的法向量的夹角余弦值,以及直线EF 的方向向量与平面ABCD 的法向量的夹角余弦值,根据两角相等,即可得出结果.【详解】(Ⅰ)解:PAD 中222PA AD PD +=,∴90PAD ∠=︒∴AD PA ⊥; 连AC ,ABC 中2222cos 4AC AB BC AB BC ABC =+-⋅∠= ∴222AC BC AB +=∴AC BC ⊥,∴AD AC ⊥ 又PA AC A ⋂=∴AD ⊥平面PAC ∴AD PC ⊥(Ⅱ)由(1):PA AD ⊥,又侧面PAD ⊥底面ABCD 于AD ,∴PD ⊥底面ABCD ,∴以A 为原点,DA 延长线、AC 、AP 分别为x 、y 、z 轴建系;∴()000A ,,,()220B ,,,()020C ,,,()200D -,,,()110E -,,,()002P ,,∴()022PC =-,,,()202PD =--,,,()222PB ,,=-, 设PFPBλ=,([]01,λ∈),则()222PF λλλ=-,, ()2222F λλλ-+,,,()212122EF ,,λλλ=+--+ 设平面PCD 的一个法向量()m x y z =,,,则00m PC m PD ⎧⋅=⎨⋅=⎩,可得()111m =--,, 又平面ABCD 的一个法向量()001n =,,由题:cos cos EF m EF n =,,,即2223EFEFλλ-=解得:332λ-=【点睛】本题主要考查线面垂直的性质和已知线面角之间的关系求参数的问题,对于线面角的问题,通常用空间向量的方法,求出直线的方向向量以及平面的法向量,即可求解,属于常考题型.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.【答案】(1);(2)详分布列见解析,35. 【解析】 【分析】(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},则可知1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,再利用概率的加法公式即可求解;(2)分析题意可知1(3,)5X B ~,分别求得0331464(0)()()55125P X C ===;11231448(1)()()55125P X C ===;22131412(2)()()55125P X C ===;3303141(3)()()55125P X C ===,即可知的概率分布及其期望.【详解】(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}, 1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}, 由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥, 且1B =12A A ,2B =12A A +12A A ,12CB B =+, ∵142()105P A ==,251()102P A ==, ∴11212211()()()()525P B P A A P A P A ===⨯=,2121212121212()()()()()(1())(1())()P B P A A A A P A A P A A P A P A P A P A =+=+=-+-21211(1)(1)52522=⨯-+-⨯=, 故所求概率为1212117()()()()5210P C P B B P B P B =+=+=+=; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15, ∴1(3,)5X B ~,于是00331464(0)()()55125P X C ===;11231448(1)()()55125P X C ===;22131412(2)()()55125P X C ===;3303141(3)()()55125P X C ===,故的分布列为123P6412548125121251125的数学期望为13()355E X =⨯=. 考点:1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以关注.20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率22e =,过右焦点F 且垂直于x 轴的弦长为2.(1)求椭圆C 的方程;(2)若直线:l y x m =+与椭圆C 交于,M N 两点,求MFN △的面积取最大值时m 的值.【答案】(1)22142x y +=;(2)2m =. 【解析】 【分析】(1)根据椭圆的离心率和椭圆的几何性质,即可求出结果;(2)联立方程得22142x y y x m ⎧+=⎪⎨⎪=+⎩消去y ,得2234240x mx m ++-=,再根据韦达定理和弦长公式可得2126||2|=3m MN x x -=-,由点到直线的距离公式可得点(2,0)F 到直线MN 的距离22d =22|2|6FMN S m m =⋅-△()22()6(2)(||6)u m m m m =-<,利用导数在函数最值中的应用,即可求出结果.【详解】解:(1)设右焦点(c,0)F ,x c =代入椭圆方程得2by a=±由题意知2222222c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2a b =⎧⎪⎨=⎪⎩C 的方程为22142x y +=.(2)联立方程得22142x y y x m ⎧+=⎪⎨⎪=+⎩消去y ,得2234240x mx m ++-=, ()2221612248480m m m ∆=--=-+>,∴||m <. 设()11,M x y ,()22,N x y ,∴1243m x x +=-,212243m x x -=,∴12|||3MN x x =-===. 又点F 到直线MN的距离d =∴1|||||2FMN S MN d m m =⋅=<△.令()22()6((||u m mm m =-<,则()2(2u m m m m '=-++,令()0u m '=,得m=或m =或m =,当2m <-时,()0um '>;当2m -<<()0u m '<;当m <时,()0um '>m <<()0u m '<. 又324u ⎛-=⎝⎭,32u=,∴max()32u m=,∴当m =时,MFN △的面积取得最大值,最大值为833=. 【点睛】本题主要考查了椭圆的几何性质,以及直线与椭圆的位置关系和椭圆中三角形面积最值的求法,属于中档题.21.已知函数()()1xf x a x e =--,x ∈R .(1)求函数()f x 的单调区间及极值; (2)设()()22ln m g x x t x t ⎛⎫=-+- ⎪⎝⎭,当1a =时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使方程()()12f x g x =成立,求实数m 的最小值.【答案】(1)单调递增区间为(,1)x a ∈-∞-,单调递减区间为(1,)x a ∈-+∞.函数()f x 有极大值且为1(1)1a f a e --=-,()f x 没有极小值.(2)1e-【解析】 【分析】(1)通过求导,得到导函数零点为1x a =-,从而可根据导函数正负得到单调区间,并可得到极大值为()1f a -,无极小值;(2)由()f x 最大值为0且()0g x ≥可将问题转化为ln x xm=有解;通过假设()ln h x x x =,求出()h x 的最小值,即为m 的最小值.【详解】(1)由()()1x f x a x e =--得:()()1x f x a x e '=--令()0f x '=,则()10xa x e --=,解得1x a =-当(),1x a ∈-∞-时,()0f x '> 当()1,x a ∈-+∞时,()0f x '<()f x 的单调递增区间为(),1x a ∈-∞-,单调递减区间为()1,x a ∈-+∞当1x a =-时,函数()f x 有极大值()111a f a e--=-,()f x 没有极小值(2)当1a =时,由(1)知,函数()f x 在10x a =-=处有最大值()0010f e =-= 又因为()()22ln 0m g x x t x t ⎛⎫=-+-≥ ⎪⎝⎭∴方程()()12f x g x =有解,必然存在()20,x ∈+∞,使()20g x =x t ∴=,ln mx t =等价于方程ln x xm=有解,即ln m x x =在()0,∞+上有解记()ln h x x x =,()0,x ∈+∞()ln 1h x x '∴=+,令()0h x '=,得1x e=当10,e x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 单调递增所以当1x e =时,()min 1h x e=- 所以实数m 的最小值为1e-【点睛】本题考查利用导数求解函数单调区间和极值、能成立问题的求解.解题关键是能够将原题的能成立问题转化为方程有解的问题,从而进一步转化为函数最值问题的求解,对于学生转化与化归思想的应用要求较高.【选修4-4:极坐标与参数方程】22.在平面直角坐标系xOy 中,曲线1:y t C x t ⎧=-+⎪⎨=⎪⎩t 为参数).在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2226:2cos C ρθ=+.(1)求曲线1C 的普通方程及2C 的直角坐标方程;(2)设121,1t t ==-在曲线1C 上对应的点分别为,,A B P 为曲线2C 上的点,求PAB △面积的最大值和最小值.【答案】(1)0x y +-=,22123x y +=;(2)最大值和最小值分别为 【解析】 【分析】(1)先把参数方程化成普通方程,再利用极坐标的公式把极坐标方程化成普通方程;(2)由(1)得点)P θθ,利用点到直线距离公式可得点P 到直线AB距离d =;再由121,1t t ==-,可得||AB =,由此即可求出PAB △面积的最值.【详解】(1)由曲线1:y t C x t ⎧=-+⎪⎨=⎪⎩1C 的普通方程为0x y +-=.由2226:2cos C ρθ=+得()222cos 6ρθ+=,2222cos 6ρρθ+=,22326x y +=,所以曲线2C 的直角坐标方程为22123x y+=.(2)由(1)得点)P θθ,点P 到直线AB 的距离d ==tan ϕ=,所以max d ==,min d ==.又当121,1t t ==-时,(1,1A -+,(1,1B -+,||AB =所以PAB △面积的最大值和最小值分别为.【点睛】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程和参数方程求解面积最值问题,考查计算能力,属于中档题.【选修4-5:不等式选讲】23.已知函数()|||2|(0)f x x m x m =-++>. (1)若函数()f x 的最小值为3,求实数m 的值;(2)在(1)的条件下,若正数,,a b c 满足2a b c m ++=,求证:114a b b c+≥++. 【答案】(1)1m =;(2)证明见解析. 【解析】 【分析】(1)利用绝对值三角不等式可得()|||2||()(2)||2|f x x m x x m x m =-++≥--+=+,则|2|3m +=,即可求解;(2)由(1)可得21a b c ++=,即()()1a b b c +++=,则1111[()()]a b b c a b b c a b b c ⎛⎫+=++++ ⎪++++⎝⎭,进而利用均值不等式证明即可.【详解】(1)解:∵()|||2||()(2)||2|f x x m x x m x m =-++≥--+=+, ∴|2|3m +=, 又∵0m >,∴1m =.(2)证明:由(1)知1m =,∴21a b c ++=,即()()1a b b c +++=,正数,,a b c,∴1111[()()]2224b c a ba b b ca b b c a b b c a b b c++⎛⎫+=++++=++≥+= ⎪++++++⎝⎭,当且仅当b c a ba b b c++=++时等号成立.【点睛】本题考查利用绝对值三角不等式求最值,考查利用均值不等式证明不等式,考查“1”的代换的应用.。

相关文档
最新文档