遗传算法详解PPT课件
合集下载
【正式版】遗传算法基本原理PPT
k=1,2,…,K; l=1,2,…,L; K=2L
akl0,1
表示精度为x(vu)/2 (L1)。
将个体又从位串空间转换到问题空间的译码函数 :{0,1}L[u,v]
的公式定义为:
x k (a k1 ,a k2 , ,a k)L u 2 v L u 1 (jL 1a k2 jL j)
故现在排序选择概率为
p s(a j) n 1 ( ( n 1 )(j 1 )),j 1 ,2 , ,n
4.1.6 遗传算子
一、选择(selection)算子
4、联赛选择(tournament selection) • 基本思想:从当前群体中随机选择一定数量的个体(放回或者不
放回),将其中适应值最大的个体放入配对池中。反复执行这一 过程,直到配对池中的个体数量达到设定的值。
4.1 遗传算法的基本描述
对于n维连续函数 f( x ) x ,( x 1 ,x 2 , ,x n ) x i ,[ u i,v i] i ( 1 , 2 , ,n ) ,
各 成总维长变度量为的L二进n制li 编的码二位进制串编的码长位度串为。li,那相应么的x的G编A编码码从空左间到为右:依次构
4.1.6 Байду номын сангаас传算子
二、交叉(Crossover)算子
1、一致交叉
一致交叉即染色体位串上的每一位按相同概率进行随机均匀交叉。
一致交叉算子生成的新个体位:
s'1a'1a 1'1 2 a'1L s'2a'2a 1'2 2 a'2L
操作描述如下:
O(pc, x) :
a'1i aa12ii,,
x1/2 x1/2,
akl0,1
表示精度为x(vu)/2 (L1)。
将个体又从位串空间转换到问题空间的译码函数 :{0,1}L[u,v]
的公式定义为:
x k (a k1 ,a k2 , ,a k)L u 2 v L u 1 (jL 1a k2 jL j)
故现在排序选择概率为
p s(a j) n 1 ( ( n 1 )(j 1 )),j 1 ,2 , ,n
4.1.6 遗传算子
一、选择(selection)算子
4、联赛选择(tournament selection) • 基本思想:从当前群体中随机选择一定数量的个体(放回或者不
放回),将其中适应值最大的个体放入配对池中。反复执行这一 过程,直到配对池中的个体数量达到设定的值。
4.1 遗传算法的基本描述
对于n维连续函数 f( x ) x ,( x 1 ,x 2 , ,x n ) x i ,[ u i,v i] i ( 1 , 2 , ,n ) ,
各 成总维长变度量为的L二进n制li 编的码二位进制串编的码长位度串为。li,那相应么的x的G编A编码码从空左间到为右:依次构
4.1.6 Байду номын сангаас传算子
二、交叉(Crossover)算子
1、一致交叉
一致交叉即染色体位串上的每一位按相同概率进行随机均匀交叉。
一致交叉算子生成的新个体位:
s'1a'1a 1'1 2 a'1L s'2a'2a 1'2 2 a'2L
操作描述如下:
O(pc, x) :
a'1i aa12ii,,
x1/2 x1/2,
遗传算法(GeneticAlgorithm)PPT课件
2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座
遗传算法简介课件
机器学习
遗传算法可用于机器学 习中的参数优化。通过 优化模型参数,可以提 高机器学习算法的性能
。
生产调度
在生产调度领域,遗传 算法可以用于解决作业 调度、资源分配等问题 。通过演化调度方案, 可以实现生产资源的高
效利用。
路径规划
遗传算法在路径规划中 也有应用,如机器人路 径规划、物流配送路径 规划等。通过编码路径 信息,并利用遗传操作 进行优化,可以找到最
优的路径方案。
遗传算法的调优策略
选择合适的编码方式
针对具体问题,选择合适的编码方式(如二进制 编码、实数编码等)能够更好地表示问题的解, 提高遗传算法的性能。
选择适当的遗传操作
选择、交叉和变异等遗传操作是影响遗传算法性 能的关键因素。根据问题特性,选择合适的遗传 操作能够提高算法的收敛速度和寻优能力。
设计适应度函数
适应度函数用于评估个体优劣,设计合适的适应 度函数能够引导算法朝着优化目标演化。
控制种群规模和演化代数
种群规模和演化代数是影响遗传算法搜索空间和 搜索效率的重要因素。根据问题规模和计算资源 ,合理设置种群规模和演化代数能够在有限时间 内获得较好的优化结果。
05
总结与展望
遗传算法总结
Байду номын сангаас
编码原理
将问题的解表示为一种编码方式,如二进 制编码、实数编码等。编码后的个体组成 种群。
变异操作
模拟基因突变过程,对个体编码进行随机 改变,增加种群多样性。
适应度函数
用于评估个体优劣的函数,根据问题需求 设计。适应度高的个体有更大概率被选中 进行后续操作。
交叉操作
模拟生物繁殖过程中的基因交叉,通过两 个个体的编码进行交叉操作,生成新的个 体。
《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
经典遗传算法教程 PPT
j 1
s(d) 是共享度函数
2)算法的改进
微种群遗传算法(GA)
双种群遗传算法(DPGA)
GA算法
终止条件:1)达到预定指标;2)达到预定代数。
双种群算法( DPGA)
基本思想:利用人类社会分工合作的机理。 分成:全局种群——粗搜索,寻找估计存在的最优区域;
局部种群 ——精搜索在全局划定的区域内,寻找最优点。
欺骗性函数
图式划分:指引相互之间竞争的定义位为同一集合的一组图式。 如#表示定义位,则H1=*1*0*,H2=*0*1* ,H3=*1*1*, H4=*0*0* 同属于划分*#*#*。
总平均习惯度(OAF):对一个给定图式,OAF即为其成员 的平均习惯度。
欺骗性函数——包含全局最优的图式其OAF不如包含局部 最优的OAF,这种划分称为欺骗划分,它会使GA陷入局部最优。 如最高阶欺骗函数有k个定义位,则此函数称k阶欺骗。
有重叠 0 < G <1 ③选择方法: 转轮法,精英选择法,竞争法、 ④交换率: Pc 一般为60~100%、 ⑤变异率: Pm 一般为0、1~10%
举例:
变异概率取0、001
初始种群和它的习惯度值 染色体的交换操纵
举例:
14
步骤1)编码:确定二进制的位数;组成个体(染色体)
二进制位数取决于运算
经典遗传算法教程
遗传算法基本原理
模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传 空间,把估计的解编码成一个向量——染色体,向量的每个 元素称为基因。
通过不断计算各染色体的习惯值,选择最好的染色体,获 得最优解。
遗传算法的基本运算
⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择习惯度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。
s(d) 是共享度函数
2)算法的改进
微种群遗传算法(GA)
双种群遗传算法(DPGA)
GA算法
终止条件:1)达到预定指标;2)达到预定代数。
双种群算法( DPGA)
基本思想:利用人类社会分工合作的机理。 分成:全局种群——粗搜索,寻找估计存在的最优区域;
局部种群 ——精搜索在全局划定的区域内,寻找最优点。
欺骗性函数
图式划分:指引相互之间竞争的定义位为同一集合的一组图式。 如#表示定义位,则H1=*1*0*,H2=*0*1* ,H3=*1*1*, H4=*0*0* 同属于划分*#*#*。
总平均习惯度(OAF):对一个给定图式,OAF即为其成员 的平均习惯度。
欺骗性函数——包含全局最优的图式其OAF不如包含局部 最优的OAF,这种划分称为欺骗划分,它会使GA陷入局部最优。 如最高阶欺骗函数有k个定义位,则此函数称k阶欺骗。
有重叠 0 < G <1 ③选择方法: 转轮法,精英选择法,竞争法、 ④交换率: Pc 一般为60~100%、 ⑤变异率: Pm 一般为0、1~10%
举例:
变异概率取0、001
初始种群和它的习惯度值 染色体的交换操纵
举例:
14
步骤1)编码:确定二进制的位数;组成个体(染色体)
二进制位数取决于运算
经典遗传算法教程
遗传算法基本原理
模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传 空间,把估计的解编码成一个向量——染色体,向量的每个 元素称为基因。
通过不断计算各染色体的习惯值,选择最好的染色体,获 得最优解。
遗传算法的基本运算
⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择习惯度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。
《遗传算法》PPT课件
遗传算法
学习过程如下:
选择适应度最好的4个
11 01001101 -4 13 01001101 -4 14 00111001 -4 15 00101111 -5
11与13交叉
16 01001101 -4 17 01001101 -4
14与15交叉
18 00111011 -4 19 00101101 -5
遗传算法
遗传算法是一种通过模拟自然进化过程搜索最优解 的方法。 遗传算法是一类随机算法通过作用于染色体上的基 因,寻找好的染色体来求解问题。 遗传算法对求解问题的本身一无所知,它所需要的 仅是对算法所产生的每个染色体进行评价,并基于适 应值来选择染色体,使适应性好的染色体比适应性差 的染色体有更多的繁殖机会。 遗传算法通过有组织地而且是随机地信息交换来重 新结合那些适应性好的串,在每一个新的串的群体中 作为额外增添,偶尔也要在串结构中尝试用新的位和 段来代替原来的部分。
遗传算法
要做的第一件事是将染色体转换成二进制串, 00表示0 01表示1 10表示2 11表示3 交叉位置:6,即父代染色体被复制下来产生两个后代 然后两个后代交换他们的最后两位 变异:由随机选择一位、求反
遗传算法
例如,染色体0223的适应度为4。 若所有7个规则都满足(也就是当染色体是0133),则 适应度为7。 适应度值可以求负操作,以使任务成为最小化搜索。 因此,目标染色体具有-7的适应度。 要做的第一件事是将染色体转换成二进制串, 这可通过由00表示0,01表示1,10表示2,11表示3来完 成。现在每个基因由两位表示,目标染色体有00011111 表示。 为了简化例子,总是在位置6处应用单点交叉。 父染色体被复制下来产生两个后代,然后两个后代交换 他们的最后两位。 变异由随机选择一位且对他求反组成。
《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
遗传算法详解ppt课件
A1=0110 | 1 A2=1100 | 0 交叉操作后产生了两个新的字符串为:
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法pptPPT课件
轮盘赌选择又称比例选择算子,它的基本思想是: 各个个体被选中的概率与其适应度函数值大小成 正比。
P(xi )
f (xi )
N
f (xj)
j 1
第18页/共66页
上述按概率选择的方法可用一种称为赌轮的原理来实现。 即做一个单位圆, 然后按各个染色体的选择概率将圆面划分 为相应的扇形区域(如图1所示)。这样, 每次选择时先转动轮 盘, 当轮盘静止时,上方的指针所正对着的扇区即为选中的扇 区,从而相应的染色体即为所选定的染色体。 例如, 假设种群 S中有4个染色体: s1,s2, s3, s4,其选择概率依次为: 0.11, 0.45, 0.29, 0.15, 则它们在轮盘上所占的份额如图1中的各扇形区域 所示。
i
qi P(xj ) j 1
第20页/共66页
一个染色体xi被选中的次数, 可以用下面的期望值 e(xi)来确定:
e(xi ) P(xi ) N
f (xi )
N
N
f (xj)
N
f (xi ) f (xj)/ N
f (xi ) f
j 1
j 1
其中f 为种群S中全体染色体的平均适应度值。
图1 赌轮选择示例
第19页/共66页
在算法中赌轮选择法可用下面的过程来模拟:
① 在[0, 1]区间内产生一个均匀分布的伪随机数r。 ② 若r≤q1,则染色体x1被选中。 ③ 若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。 其中的qi称为染色体xi(i=1, 2, …, n)的积累概率, 其计算公式 为:
步2 随机产生U中的N个染色体s1, s2, …, sN,组成初始 种群S={s1, s2, …, sN},置代数计数器t=1;
《遗传算法》PPT课件
2021/7/12
33
一、遗传算法入门
生物只有经过许多世代的不断演化(evolution),才能 更好地完成生存与繁衍的任务。 遗传算法也遵循同样的方式,需要随着时间的推移不 断成长、演化,最后才能收敛,得到针对某类特定问 题的一个或多个解。 因此,了解一些有关有生命的机体如何演化的知识, 对理解遗传算法的演化机制是是有帮助的。我们将扼 要阐述自然演化的机制(通常称为“湿”演化算法), 以及与之相关的术语。理解自然演化的基本机制。我 想,你也会和我一样,深深叹服自然母亲的令人着迷!
2021/7/12
23
智能交通
2021/7/12
24
图像识别系统
2021/7/12
25
云松
銮仙玉骨寒, 松虬雪友繁。 大千收眼底, 斯调不同凡。
2021/7/12
26
(无题)
白沙平舟夜涛声, 春日晓露路相逢。 朱楼寒雨离歌泪, 不堪肠断雨乘风。
2021/7/12
27
2021/7/12
28
2021/7/12
1.7.12 智能制造
1.7.13 智能CAI
1.7.14 智能人机接口
1.7.15 模式识别
1.7.16 数据挖掘与数据库中的知识发现
1.7.17 计算机辅助创新
1.7.18 计算机文艺创作
1.7.19 机器博弈
1.7.20 智能机器人
2021/7/12
18
1.8 人工智能的分支领域与研究方向
从模拟的层次和所用的方法来看,人工智能可分为符号智 能和计算智能两大主要分支领域。而这两大领域各自又有 一些子领域和研究方向。如符号智能中又有图搜索、自动 推理、不确定性推理、知识工程、符号学习等。计算智能 中又有神经计算、进化计算、免疫计算、蚁群计算、粒群 计算、自然计算等。另外,智能Agent也是人工智能的一 个新兴的重要领域。智能Agent或者说Agent智能则是以符
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,每旋转一次转轮指向该位串
的概率为0.144。每当需要下一个后
代时,就旋转一下这个按权重划分
的转轮,产生一个复制的候选者。
这样位串的适值越高,在其下代中
产生的后代就越多。
图5-1
2019/10/9
10
当一个位串被选中时,此位串将被完整地复 制,然后将复制位串送入匹配集(缓冲区)中。 旋转4次转轮即产生4个位串。这4个位串是上代种 群的复制,有的位串可能被复制一次或多次,有 的可能被淘汰。在本例中,位串3被淘汰,位串4 被复制一次。如表6-2所示,适值最好的有较多的 拷贝,即给予适合于生存环境的优良个体更多繁 殖后代的机会,从而使优良特性得以遗传,反之, 最差的则被淘汰。
变异是指子代和亲代有某些不相似的现象,即子代永 远不会和亲代完全一样。它是一切生物所具有的共有特性, 是生物个体之间相互区别的基础。引起变异的原因主要是 生活环境的影响及杂交等。生物的变异性为生物的进化和 发展创造了条件。
2019/10/9
2
选择决定生物进化的方向。在进化过程中,有的要保
留,有的要被淘汰。自然选择是指生物在自然界的生存环 境中适者生存,不适者被淘汰的过程。通过不断的自然选 择,有利于生存的变异就会遗传下去,积累起来,使变异 越来越大,逐步产生了新的物种。
2019/10/9
11
2019/10/9
2019/10/9
1
5.1.1 基本遗传学基础
遗传算法是根据生物进化的模型提出的一种优化算法。 自然选择学说是进化论的中心内容,根据进化论,生物的 发展进化主要由三个原因,即遗传、变异和选择。
遗传是指子代总是和亲代相似。遗传性是一切生物所 共有的特性,它使得生物能够把其特性、性状传给后代。 遗传是生物进化的基础。
生物就是在遗传、变异和选择三种因素的综合作用过
程中,不断地向前发展和进化。选择是通过遗传和变异起 作用的,变异为选择提供资料,遗传巩固与积累选择的资 料,而选择则能控制变异与遗传的方向,使变异和遗传向 着适应环境的方向发展。遗传算法正是吸取了自然生物系 统“适者生存、优胜劣汰”的进化原理,从而使它能够提 供一个在复杂空间中随机搜索的方法,为解决许多传统的 优化方法难以解决的优化问题提供了新的途径。
2019/10/9
5
④ 遗传算法的寻优规则是由概率决定的,而非确 定性的。
⑤ 遗传算法在解空间进行高效启发式Hale Waihona Puke 索,而非 盲目地穷举或完全随机搜索。
⑥ 遗传算法对所求解的优化问题没有太多的数学 要求。
⑦ 遗传算法具有并行计算的特点,因而可通过大 规模并行计算来提高计算速度。
2019/10/9
6
5.1.3 遗传算法的基本操作
2019/10/9
7
复制操作的初始种群(旧种群)的生成往往是随机产生 的。例如,通过掷硬币20次产生维数n=4的初始种群如下 (正面=1,背面=0):
01101
11000
01000
10011
显然,该初始种群可以看成是一个长度为五位的无符 号二进制数,将其编成四个位串,并解码为十进制的数:
位串1:
01101
2019/10/9
4
遗传算法的特点
同常规优化算法相比,遗传算法有以下特点: ① 遗传算法是对参数的编码进行操作,而非对参 数本身。 ② 遗传算法是从许多点开始并行操作,并非局限 于一点,从而可有效防止搜索过程收敛于局部最 优解。 ③ 遗传算法通过目标函数计算适值,并不需要其 它推导和附加信息,因而对问题的依赖性较小。
2019/10/9
9
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆
周,而每个个体位串按其适值在总和中所占的比例占据轮子
的一个扇区。按表5-1可绘制如图的转轮。
复制时,只要简单地转动这个按权重
划分的转轮4次,从而产生4个下一代
的种群。例如对于表5-1中的位串1,
其适值为169,为总适值的14.4%。
2019/10/9
3
5.1.2 遗传算法的原理和特点
遗传算法将生物进化原理引入待优化参数形成的编码 串群体中,按着一定的适值函数及一系列遗传操作对各个 体进行筛选,从而使适值高的个体被保留下来,组成新的 群体,新群体包含上一代的大量信息,并且引入了新的优 于上一代的个体。这样周而复始,群体中各个体适值不断 提高,直至满足一定的极限条件。此时,群体中适值最高 的个体即为待优化参数的最优解。正是由于遗传算法独具 特色的工作原理,使它能够在复杂空间进行全局优化搜索, 并且具有较强的鲁棒性;另外,遗传算法对于搜索空间, 基本上不需要什么限制性的假设(如连续、可微及单峰 等)。
5.遗传算法
遗传算法(genetic algorithms,简称GA)是人工智能 的重要分支,是基于达尔文进化论,在微型计算机上模拟 生命进化机制而发展起来的一门新学科。它根据适者生存、 优胜劣汰等自然进化规则来进行搜索计算和问题求解。对 许多用传统数学难以解决或明显失效的非常复杂问题,特 别是最优化问题,GA提供了一个行之有效的新途径。近 年来,由于遗传算法求解复杂优化问题的巨大潜力及其在 工业控制工程领域的成功应用,这种算法受到了广泛的关 注。
13
位串2:
11000
24
位串3:
01000
8
位串4:
10011
19
2019/10/9
8
通过一个5位无符号二进制数,可以得到一个 从0到31的数值x,它可以是系统的某个参数。计算 目标函数或适值f(x)=x2,其结果如表6-1所示。计算
种群中所有个体位串的适值之和,同时,计算种群 全体的适值比例,其结果示于表中。
一般的遗传算法都包含三个基本操作:复制(reproduction)、 交叉(crossover)和变异(mutation)。
1. 复制
复制(又称繁殖),是从一个旧种群(old population) 中选择生命力强的字符串(individual string)产生新种群 的过程。或者说,复制是个体位串根据其目标函数f(即 适值函数)拷贝自己的过程。直观地讲,可以把目标函数 f看作是期望的最大效益的某种量度。根据位串的适值所 进行的拷贝,意味着具有较高适值的位串更有可能在下一 代中产生一个或多个子孙。显然,在复制操作过程中,目 标函数(适值)是该位串被复制或被淘汰的决定因素。