立体几何中的向量方法求空间角
专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)
专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
立体几何中的向量方法1:求空间角、距离
立体几何中的向量方法——求空间角、距离1.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求平面间夹角的大小如图所示,平面π1与π2相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面π1上作直线l 1⊥l ,在平面π2上作直线l 2⊥l ,则l 1∩l 2=R .我们把直线l 1和l 2的夹角叫作平面π1与π2的夹角.已知平面π1和π2的法向量分别为n 1和n 2.当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉;当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉. 2.点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.[难点正本 疑点清源]1.向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2.利用平面的法向量求二面角的大小时,当求出两半平面α、β的向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补.3.求点到平面距离的方法:①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;②等体积法,转化为求三棱锥的高;③等价转移法;④法向量法.1.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_______.答案 41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos 〈n ,a 〉=n·a|n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 2.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于________. 答案 30°解析 由题意得直线l 与平面α的法向量所在直线的夹角为60°,∴直线l 与平面α所成的角为90°-60°=30°.3.从空间一点P 向二面角α—l —β的两个面α,β分别作垂线PE ,PF ,垂足分别为E ,F ,若二面角α—l —β的大小为60°,则∠EPF 的大小为__________. 答案 60°或120°4. 如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的距离为________.答案22a 解析 由图易知A (a,0,0),B (a ,a,0),C (0,a,0),A ′(a,0,a ).∴F ⎝⎛⎭⎫a ,a 2,0,E ⎝⎛⎭⎫a 2,a 2,a 2. ∴EF =⎝⎛⎭⎫a -a 22+⎝⎛⎭⎫a 2-a 22+⎝⎛⎭⎫0-a 22 =a 24+a 24=22a .5.在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________.答案 155解析 以D 为原点,分别以DA 、DC 、DD1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1),∴FD 1→=(-1,0,2), OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155.题型一 求异面直线所成的角例1 如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中心,点F 、G 分别是棱C 1D 1、AA 1的中点,设点E 1、G 1分别是点E 、G 在平面DCC 1D 1内的正投影.(1)证明:直线FG 1⊥平面FEE 1;(2)求异面直线E 1G 1与EA 所成角的正弦值.思维启迪:本题可方便地建立空间直角坐标系,通过点的坐标得到向量坐标,然后求解. (1)证明 以D 为原点,DD 1→、DC →、DA →分别为z 轴、y 轴、x 轴的正向,12|DD 1→|为1个单位长度建立空间直角坐标系.由题设知点E 、F 、G 1、E 1的坐标分别为(1,2,1),(0,1,2),(0,0,1),(0,2,1), ∴FE 1→=(0,1,-1),FG 1→=(0,-1,-1),EE 1→=(-1,0,0), ∴FG 1→·EE 1→=0,FG 1→·FE 1→=0⇒FG 1→⊥EE 1→,FG 1→⊥FE 1→, 又∵EE 1∩FE 1=E 1.∴FG 1⊥平面FEE 1.(2)解 由题意知点A 的坐标为(2,0,0),又由(1)可知EA →=(1,-2,-1),E 1G 1→=(0,-2,0),∴cos 〈EA →,E 1G 1→〉=EA →·E 1G 1→|EA →|·|E 1G 1→|=63,∴sin 〈EA →,E 1G 1→〉=1-cos 2〈EA →,E 1G 1→〉=33.探究提高 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1.求直线EC 1与FD 1所成的角的余弦值.解 以A 为原点,AB →、AD →、AA 1→分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0),C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→=(-4,2,2),设EC 1与FD 1所成的角为β,则:cos β=|EC 1→·FD 1→||EC 1→|·|FD 1→|=1×(-4)+3×2+2×212+32+22×(-4)2+22+22=2114,∴直线EC 1与FD 1所成的角的余弦值为2114.题型二 求直线与平面的夹角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 夹角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长度,建立空间直角坐标系(如图),则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1,故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 夹角的正弦值为24.探究提高 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的投影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面的夹角.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,且AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 夹角的大小.(1)证明 设P A =1,以A 为原点,AB ,AC ,AP 所在直线分别为x ,y ,z 轴的正方向建立空间直角坐标系如图所示,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).所以CM →=(1,-1,12),SN →=(-12,-12,0).因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)解 设平面CMN 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·CM →=x -y +12z =0n ·CN →=(x ,y ,z )·⎝⎛⎭⎫12,-1,0=12x -y =0.∴y =12x ,z =-x ,取x =2,则n =(2,1,-2)为平面CMN 的一个法向量.∴cos 〈n ·SN →〉=n ·SN →|n |·|SN →|=(2,1,-2)·⎝⎛⎭⎫-12,-12,022+1+(-2)2·⎝⎛⎭⎫-122+⎝⎛⎭⎫-122+02=-22.∴〈n ·SN →〉=135°, 故SN 与平面CMN 夹角的大小为45°. 题型三 求平面间的夹角例3 (2012·广东)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面P AC ;(2)若P A =1,AD =2,求平面BPC 与平面PCA 夹角的正切值.思维启迪:利用图中的P A ⊥平面ABCD 、ABCD 为矩形的条件建立空间直角坐标系,转化为向量问题.(1)证明 ∵P A ⊥平面ABCD ,BD 平面ABCD , ∴P A ⊥BD .同理由PC ⊥平面BDE 可证得PC ⊥BD . 又P A ∩PC =P ,∴BD ⊥平面P AC . (2)解 如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系. 由(1)知BD ⊥平面P AC , 又AC 平面P AC , ∴BD ⊥AC .故矩形ABCD 为正方形,∴AB =BC =CD =AD =2. ∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,1). ∴PB →=(2,0,-1),BC →=(0,2,0),BD →=(-2,2,0). 设平面PBC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0, 即⎩⎪⎨⎪⎧2·x +0·y -z =0,0·x +2·y +0·z =0, ∴⎩⎪⎨⎪⎧z =2x ,y =0,取x =1得n =(1,0,2). ∵BD ⊥平面P AC ,∴BD →=(-2,2,0)为平面P AC 的一个法向量.cos 〈n ,BD →〉=n ·BD →|n |·|BD →|=-1010.设平面BPC 与平面PCA 夹角为α, ∴cos α=1010,sin α=1-cos 2α=31010.∴tan α=sin αcos α=3,即平面BPC 与平面PCA 夹角的正切值为3.探究提高 求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为⎣⎡⎦⎤0,π2.(2011·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ;(2)求平面QBP 与平面BPC 的夹角的余弦值.(1)证明 如图,以D 为坐标原点,线段DA 的长为单位长,以DA 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1), PQ →=(1,-1,0).所以PQ →·DQ →=0,PQ →·DC →=0, 即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ .又PQ 平面PQC ,所以平面PQC ⊥平面DCQ .(2)解 依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155. 故平面QBP 与平面BCP 的夹角的余弦值为-155. 题型四 求空间距离例4 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.思维启迪:由平面SAC ⊥平面ABC ,SA =SC ,BA =BC ,可知本题可以取AC 中点O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,用向量法求解.解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC , 平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,又∵BO 平面ABC ,∴SO ⊥BO .如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2). ∴CM →=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离d =|n ·MB →||n |=423.探究提高 点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |,∴|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.(2012·大纲全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2B. 3C. 2D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量.则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BDE 的距离是d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1. 故直线AC 1到平面BED 的距离为1.典例:(12分)如图,已知在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,AE 垂直BD 于点E ,F 为A 1B 1的中点.(1)求异面直线AE 与BF 所成角的余弦值; (2)求平面BDF 与平面AA 1B 夹角的余弦值.审题视角 (1)研究的几何体为长方体,AB =2,AA 1=1. (2)所求的是异面直线所成的角和平面间的夹角. (3)可考虑用空间向量法求解. 规范解答解 (1)以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).[2分]由于AB =2,BD 与平面AA 1B 1B 的夹角为30°,即∠ABD =30°,∴AD =233,[3分]∴A (0,0,0),B (2,0,0),D ⎝⎛⎭⎫0,233,0,F (1,0,1).又AE ⊥BD ,故由平面几何知识得AE =1,从而E ⎝⎛⎭⎫12,32,0,[4分]因为AE →=⎝⎛⎭⎫12,32,0,BF →=(-1,0,1),∴AE →·BF →=⎝⎛⎭⎫12,32,0·(-1,0,1)=-12,|AE →|=1,|BF →|=2,[6分]设AE 与BF 所成角为θ1,则cos θ1=|AE →·BF →||AE →||BF →|=⎪⎪⎪⎪-121×2=24.[8分]故异面直线AE 与BF 所成角的余弦值为24. (2)设平面BDF 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ·BF →=0n ·BD →=0,得⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,∴z =x ,y =3x ,取x =1,得n =(1,3,1).[10分] 求得平面AA 1B 的一个法向量为m =AD →=⎝⎛⎭⎫0,233,0.设平面BDF 与平面AA 1B 的夹角的大小为θ2.则cos θ2=|cos 〈m ,n 〉|=|m·n||m||n |=|0+2+0|233×5=155.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法 向量)坐标.第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和 答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性 作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.若利用向量求角,各类角都可以转化为向量的夹角来运算.(1)求两异面直线a 、b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ= |cos 〈a ,b 〉|.(2)求直线l 与平面α的夹角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|. (3)求平面间夹角θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段. 失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等积法求解可能更方便.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 . 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴两直线所成的角为90°.2.在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为d =|OP →·n||n |=|-2-6+2|9=2,故选B.3 . 如图所示,已知正方体ABCD —A 1B 1C 1D 1,E 、F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90°答案 B解析 以D 为原点,分别以射线DA 、DC 、DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝⎛⎭⎫12,12,1, F ⎝⎛⎭⎫12,0,12, EF →=⎝⎛⎭⎫0,-12,-12,DC →=(0,1,0), ∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.提醒 两异面直线的方向向量的夹角与异面直线所成的角相等或互补.4.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 的夹角的余弦值为( )A.12 B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23. 即所求的角的余弦值为23.二、填空题(每小题5分,共15分)5 . 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.6.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为________.答案 3010解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2), ∴BC 1→=(-1,0,2),AE →=(-1,2,1),∴cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010. 7.设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案 233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2), D (0,0,0),B (2,2,0), ∴D 1A 1→=(2,0,0), DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.三、解答题(共22分)8.(10分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,P A 与平面ABD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线P A 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角, ∴∠P AD =60°.在Rt △P AD 中,由AD =2,得PD =23,∴P (0,0,23).(2)∵P A →=(2,0,-23),BC →=(-2,-3,0),∴cos 〈P A →,BC →〉=2×(-2)+0×(-3)+(-23)×0413=-1313,∴P A 与BC 所成的角的余弦值为1313. 9.(12分)如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求平面PBD 与平面ABD 的夹角的大小. (1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3), ∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3), ∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x . 令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12.∴平面PBD 与平面BDA 夹角的大小为60°.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( )A.19 B.495 C.295 D.23答案 B解析 设正方体的棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y轴,DD 1为z 轴建立空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.2.在正三棱柱ABC —A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 的夹角的正弦值为( )A.22B.155C.64D.63答案 C解析 建立如图所示的空间直角坐标系,设AB =2,则C 1(3,1,0)、A (0,0,2),AC 1→=(3,1,-2),平面BB 1C 1C 的一个法向量为n =(1,0,0),所以AC 1与平面BB 1C 1C 所成角的正弦值为|AC 1→·n ||AC 1→||n |=38=64.故选C.3.如图,设动点P 在棱长为1的正方体ABCD —A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC为钝角时,则λ的取值范围是 ( )A.⎝⎛⎭⎫0,13B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫13,1 答案 D解析 由题设可知,以DA →、DC →、DD 1→为单位正交基底,建立如图所示的空间直角坐标系,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1). 由D 1B →=(1,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ),所以P A →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1) =(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC =cos 〈P A →,PC →〉=P A →·PC →|P A →||PC →|<0,这等价于P A →·PC →<0, 即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值范围为⎝⎛⎭⎫13,1. 二、填空题(每小题5分,共15分)4.(2012·陕西)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成的角的余弦值为________.答案55解析 不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC →1=(0,2,-1),AB →1=(-2,2,1),∴cos 〈BC →1,AB →1〉=BC →1·AB →1|BC →1||AB →1|=4-15×9=15=55>0.∴BC →1与AB →1的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55.5.(2012·大纲全国)三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为________.答案 66解析 连接A 1B 交AB 1于点O ,取A 1C 1的中点D ,连接B 1D 、DO .∵O 、D 分别为A 1B 、A 1C 1的中点,∴OD ∥BC 1,∴∠DOB 1或其补角即为异面直线AB 1与BC 1所成的角.设各棱长为a ,则DB 1=32a .∵∠A 1AB =60°,∴OB 1=AO =32a .又∵BC 1→=BB 1→+BC →=AA 1→+AC →-AB →, ∴BC 1→2=(AA 1→+AC →-AB →)2 =AA 1→2+2AA 1→·AC →+AC →2-2AA 1→·AB →-2AC →·AB →+AB →2 =a 2+2a 2cos 60°+a 2-2a 2cos 60°-2a 2cos 60°+a 2 =2a 2,∴|BC 1→|=2a .∴OD =12BC 1=22a .在△DOB 1中,由余弦定理得cos ∠DOB 1=⎝⎛⎭⎫32a 2+⎝⎛⎭⎫22a 2-⎝⎛⎭⎫32a 22·32a ·22a =66,∴AB 1与BC 1所成角的余弦值为66.6.在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为________.答案 33a解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的 距离.∵P A =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝⎛⎭⎫a 3,a 3,a 3. ∴PH =⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 三、解答题7.(13分)(2012·北京)如图(1),在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. (1)证明 ∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC . ∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC , 又A 1C 平面A 1DC ,∴DE ⊥A 1C . 又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(2)解 如图所示,以C 为坐标原点,建立空间直角坐标系C -xyz则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0, n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,∴n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ. ∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪n ·CM →|n |·|CM →|=48×4=22. ∴CM 与平面A 1BE 所成角的大小为π4.(3)解 线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),∴⎩⎨⎧2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p 3,∴m =⎝⎛⎭⎫2,p ,p 3. 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.。
立体几何中的向量方法(ⅱ)——求空间角与距离课件 专题训练
要点梳理 1.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:在直线上任取一非零向量作为它 的方向向量. (2)平面的法向量可利用方程组求出:设 a,b 是平面 α 内两不共线向量,n 为平面 α 的法向量,则求法向量的 方程组为nn··ab==00 .
123复...习两直二回条线面顾异 与 角面 平 的直 面 平线 所 面所 成 角成角的角的取的范值取围范值是围范是__0围__,__2__是___________00___,,___2____.___.____.
4.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则(B)
3.(二面角) 结论:cos cos n1, n2
(大2)小设为平面,则、与的法n1,向n2量的分关别系是是n什1、么n?2设二面 角
l
n1,n2
的
n1,n2
n2 n1,n2
n2
n1,n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角
2 2 a.
5.如图所示,在三棱柱 ABC—A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°,点 E、F 分别 是棱 AB、BB1 的中点,则直线 EF 和 BC1 所成的角 是________.
解析 以 BC 为 x 轴,BA 为 y 轴,BB1 为 z 轴, 建立空间直角坐标系.
中,已知 AB=4,AD=3,AA1=2.E、F 分 别是线段 AB、BC 上的点,且 EB=BF=1. 求直线 EC1 与 FD1 所成的角的余弦值.
立体几何中的向量方法空间角
立体几何中的向量方法----空间角一、异面直线所成角的求法: ,则所成的角为与 异面直线|||||cos |cos CD AB CD AB ⋅〉〈=θθ...111111111所成的角的余弦值与求异面直线的中点、分别是、中, 正方体 例CF AE C A D A F E D C B A ABCD -二、直线与平面所成角的求法: , ,平面所成的角为与平面 设斜线|||||cos |sin n PA n PA PA ⋅=〉〈=θαθα 所成的角与平面中,求 如图,在正方体 例 ..21111111CD B A B A D C B A ABCD - 所成的角为 与平面直线 ), , (又), , ( 取 得 即 则 ),,(设平面 ) , , (), , , (),, , (),, ,,(),, , (),, , (,则这正方体的棱长为,角坐标系 解:如图建立空间直.3021282||||cos 220101002202002020202020220200002111111111111︒∴-=⋅-=⋅=〉〈∴-=-=⎩⎨⎧-==⎩⎨⎧=+=⎪⎩⎪⎨⎧=⋅=⋅===-CD B A B A n B A A A x z y z x y z y x CD B A A B C D xyz DABCD B 1C 1D 1E FA 1ABCDA 1B 1C 1D 1O二面角的求法:, 或 , 则 的一个法向量是,平面为 设二面角〉〈-=〉〈=--212121cos cos cos cos n n n n n n l θθβαθβα..311111的大小的中点,求二面角是, 已知正方体 例A BD P AD P D C B A ABCD ---的大小为 二面角 , ), , ( 取 得 即 则 ),,(设平面), , (), , , (又), , ( 取 得 即 则 ),,(设平面 ) , , (), , , (), , (),, , (),, , (),, , (),, , (,则这正方体的棱长为,角坐标系 解:如图建立空间直.302326102||||cos 101002202000202021122020200201021001202022020000211111111︒--∴=⋅++=⋅=〉〈∴-=⎩⎨⎧-==⎩⎨⎧=+=⎪⎩⎪⎨⎧=⋅=⋅===-=⎩⎨⎧-==⎩⎨⎧=+=+-⎪⎩⎪⎨⎧=⋅=⋅==-=-A BD P n m n m x z y z x y AD z y x ABD AD n y z y x z x y x PD z y x PBD PD P D C B A xyz ACBAD C 1B 1A 1D 1P练习: 所成的角的余弦值与平面的中点,求是中, 如图,正方体 ..1111111BD B BECC E D C B A ABCD -.311.211111111所成的角的余弦值与平面,试求的上的点,和分别是、中,的正方体 在以边长为 BD A EF F C BE D C BC F E D C B A ABCD ==-.21.3的余弦值求二面角,,,,平面 C PB A BC AC PA BC AC ABC PA --===⊥⊥ABC D B 1C 1D 1E A 1ABC DB 1C 1D 1 EF A 1BA CPBACP.''2'1.32'9060''''''.4所成角的大小 与)异面直线 (的大小)二面角 ( 求,,且,平面中,平面 如图,三棱柱 AO B A O AB O OA OO OB AOB OB O OAB O OBB B A O OAB --===︒=︒∠=∠⊥-ABO'A'B'O。
第8节 立体几何中的向量方法(二)——求空间角
令 x=3,则 n=(3,- 3,3)为平面 DEF 的一个法向量.
设直线 AC 与平面 DEF 所成角为 θ,
→ |AC· n| |-6-6| 21 → 则 sin θ=|cos〈AC,n〉|= = = , → 7 4 21 |AC|· |n|
21 所以 AC 与平面 DEF 所成角的正弦值为 . 7
11
@《创新设计》
)
目录
考点二 用空间向量求线面角
[例 2] (2018· 洛阳二模)已知三棱锥 A - BCD,AD⊥平面 BCD,BD⊥CD,AD= BD=2,CD=2 3 ,E,F 分别是 AC,BC 的中点,P 为线段 BC 上一点,且 CP =2PB. (1)求证:AP⊥DE;(2)求直线 AC 与平面 DEF 所成角的正弦值.
15
@《创新设计》
目录
考点二 用空间向量求线面角
利用向量法求线面角的方法: (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向 量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐 角或钝角的补角,取其余角就是斜线和平面所成的角.
5
@《创新设计》
取 BC 的中点 Q,连接 PQ,MQ,
图(2)
目录
考点一 用空间向量求异面直线所成的角
[例 1] (1)(一题多解)(2017· 全国Ⅱ卷)已知直三棱柱 ABC - A1B1C1 中,∠ABC= 120° ,AB=2,BC=CC1=1,则异面直线 AB1 与 BC1 所成角的余弦值为( ) 3 15 10 3 A. B. C. D. 2 5 5 3
8
@《创新设计》
目录
考点一 用空间向量求异面直线所成的角
立体几何中的向量方法求空间角和距离
§8.7 立体几何中的向量方法(二)——求空间角和距离1. 空间向量与空间角的关系(1)已知异面直线l 1,l 2的方向向量分别为s 1,s 2,当0≤〈s 1,s 2〉≤π2时,直线l 1与l 2的夹角等于〈s 1,s 2〉;当π2<〈s 1,s 2〉≤π时,直线l 1与l 2的夹角等于π-〈s 1,s 2〉. (2)已知平面π1和π2的法向量分别为n 1和n 2,当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉;当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉. (3)已知直线l 的方向向量为s ,平面π的法向量为n ,则直线l 与平面π的夹角θ满足:sin θ=|cos 〈s ,n 〉|. 2. 距离公式点到直线的距离公式:d =|P A →|2-|P A →·s 0|2.点到平面的距离公式:d =|P A →·n 0|.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面的夹角.( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2].( √ )(5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) 2. 已知二面角α-l -β的大小是π3,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A.2π3 B.π3C.π2D.π6答案 B解析 ∵m ⊥α,n ⊥β,∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π2],∴m ,n 所成的角为π3.3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为 d =|OP →·n||n |=|-2-6+2|9=2,故选B.4. 若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_____________. 答案41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32,|a |=4+9+9=22,∴cos 〈n ,a 〉=n·a |n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 5. P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么平面α与β的夹角为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图, 作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴平面α与β的夹角为90°.题型一 求异面直线所成的角例1 长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010思维启迪 本题可以通过建立空间直角坐标系,利用向量BC 1→、AE →所成的角来求. 答案 B解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1), cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 思维升华 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系. 设AA 1=2AB =2,则B (1,1,0),E (1,0,1),C (0,1,0),D 1(0,0,2), ∴BE →=(0,-1,1), CD 1→=(0,-1,2),∴cos 〈BE →,CD 1→〉=1+22·5=31010.题型二 求直线与平面所成的角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点. (1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图), 则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0. 可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0, P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1), 所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 所成角的正弦值为24. 思维升华 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2013·湖南)如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.方法一 (1)证明 如图,因为BB 1⊥平面ABCD ,AC 平面ABCD ,所以AC ⊥BB 1.又AC ⊥BD ,所以AC ⊥平面BB 1D , 而B 1D 平面BB 1D ,所以AC ⊥B 1D .(2)解 因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ).如图,连接A 1D ,因为棱柱ABCD -A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°,所以A 1B 1⊥平面ADD 1A 1,从而A 1B 1⊥AD 1. 又AD =AA 1=3,所以四边形ADD 1A 1是正方形. 于是A 1D ⊥AD 1,故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D . 由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1. 故∠ADB 1=90°-θ, 在直角梯形ABCD 中,因为AC ⊥BD ,所以∠BAC =∠ADB . 从而Rt △ABC ∽Rt △DAB ,故AB DA =BC AB ,即AB =DA ·BC = 3.连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217, 即cos(90°-θ)=217.从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217.方法二 (1)证明 易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建 立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3), C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0). 因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0, 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0), 因为AC →·B 1D →=-3+3+0=0,所以AC →⊥B 1D →,即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),AC →=(3,1,0), B 1C 1→=(0,1,0).设n =(x ,y ,z )是平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪n ·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 题型三 求两个平面的夹角例3 (2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ;(2)求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知∠ACB =90°,故CA 、CB 、CC 1两两垂直,可以C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1∥DF . 因为DF 平面A 1CD ,BC 1平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正 方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系Cxyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.所以平面A 1CD 与平面A 1CE 夹角的正弦值为63. 思维升华 求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,π2].如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面P AC ;(2)求平面ABP 与平面ACP 夹角的余弦值.(1)证明 如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别 为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0), B (1,0,0),C (0,1,0),P (0,0,2),D (-12,12,0).设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量, 则由n 1·OD →=0,n 1·OP →=0, 得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0). 设n 2=(x 2,y 2,z 2)是平面P AC 的一个法向量, 则由n 2·P A →=0,n 2·PC →=0,得⎩⎪⎨⎪⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2. 取z 2=1,得n 2=(-2,2,1). 因为n 1·n 2=(1,1,0)·(-2,2,1)=0, 所以n 1⊥n 2.从而平面POD ⊥平面P AC . (2)解 因为y 轴⊥平面P AB ,所以平面P AB 的一个法向量为n 3=(0,1,0).由(1)知,平面P AC 的一个法向量为n 2=(-2,2,1). 设向量n 2和n 3的夹角为θ, 则cos θ=n 2·n 3|n 2|·|n 3|=25=105.所以平面ABP 与平面ACP 夹角的余弦值为105. 题型四 求空间距离例4 已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.思维启迪 所求距离可以看作CG 在平面GEF 的法向量的投影. 答案61111解析 建立如图所示的空间直角坐标系Cxyz ,则CG →=(0,0,2),由题意易得平面GEF 的一个法向量为n =(1,1,3), 所以点C 到平面GEF 的距离为d =|n ·CG →||n |=61111.思维升华 求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.(2012·大纲全国改编)已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AB =2,CC 1=22,E 为CC 1的中点,则点A 到平面BED 的距离为 ( )A .2 B. 3 C. 2 D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0), C (0,2,0),C 1(0,2,22),E (0,2,2). 设n =(x ,y ,z )是平面BED 的法向量. 则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BED 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BED 的距离是 d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1.利用空间向量求角典例:(12分)(2013·江西)如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,E 为BD 的中点,G为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,P A =32,连接CE 并延长交AD 于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 夹角的余弦值. 思维启迪 (1)可利用判定定理证明线面垂直;(2)利用AD 、AP 、AB 两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP 、DCP 夹角的余弦值. 规范解答(1)证明 在△ABD 中,因为E 为BD 的中点, 所以EA =EB =ED =AB =1, 故∠BAD =π2,∠ABE =∠AEB =π3.因为△DAB ≌△DCB ,所以△EAB ≌△ECB , 从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA .[2分]故EF ⊥AD ,AF =FD , 又因为PG =GD ,所以FG ∥P A . 又P A ⊥平面ABCD ,[4分]所以GF ⊥AD , 故AD ⊥平面CFG .[6分](2)解 以A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C ⎝⎛⎭⎫32,32,0,D (0,3,0),P ⎝⎛⎭⎫0,0,32, 故BC →=⎝⎛⎭⎫12,32,0,CP →=⎝⎛⎭⎫-32,-32,32,CD →=⎝⎛⎭⎫-32,32,0.[8分]设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CP →=0n 1·BC →=0即⎩⎨⎧-32x 1-32y 1+32z 1=012x 1+32y 1=0令y 1=-3,则x 1=3,z 1=2,n 1=(3,-3,2). [9分] 同理求得面DCP 的法向量为n 2=(1,3,2),[10分]从而平面BCP 与平面DCP 夹角θ的余弦值为 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=44×22=24.[12分]利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.温馨提醒(1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.用向量来求空间角,各类角都可以转化为向量的夹角来计算.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等体积法求解可能更方便.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1), B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴直线B 1D 和CD 1所成的角为90°.2. 如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( )A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 ∵四边形ABCD 是正方形,∴AC ⊥BD . 又∵SD ⊥底面ABCD ,∴SD ⊥AC .其中SD ∩BD =D ,∴AC ⊥平面SDB ,从而AC ⊥SB . 故A 正确;易知B 正确;设AC 与DB 交于O 点,连接SO .则SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO ,又OA =OC ,SA =SC ,∴∠ASO =∠CSO . 故C 正确;由排除法可知选D.3. (2013·山东)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为 ( )A.5π12 B.π3C.π4D.π6答案 B解析 如图所示:S ABC =12×3×3×sin π3=334.∴VABC -A 1B 1C 1=S ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1,∴tan ∠OAP =OPOA=3, 又0<∠OAP <π2,∴∠OAP =π3.4. 在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 夹角的余弦值为( )A.12B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1, 则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23. 所以平面A 1ED 与平面ABCD 夹角的余弦值为23.5. 在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC的距离为( )A.63B.33a C.a 3D.6a答案 B解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则 P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点 P 到平面ABC 的距离.∵P A =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心, 可得H 点的坐标为⎝⎛⎭⎫a 3,a 3,a 3. ∴PH =⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 二、填空题6. 已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面夹角的大小为________.答案 π4解析 cos 〈m ,n 〉=m ·n |m ||n |=22,∴〈m ,n 〉=π4.∴两平面夹角的大小为π4.7. 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1 所成的角是________. 答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.8. 正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为________. 答案3510解析 以A 为坐标原点,AB 、AD 、AA 1所在直线分别为x 轴、y 轴、 z 轴建立空间直角坐标系,如图所示, 则A 1(0,0,1),E (1,0,12),F (12,1,0),D 1(0,1,1).∴A 1E →=(1,0,-12),A 1D 1→=(0,1,0).设平面A 1D 1E 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·A 1E →=0,n ·A 1D 1→=0,即⎩⎪⎨⎪⎧x -12z =0,y =0.令z =2,则x =1.∴n =(1,0,2). 又A 1F →=(12,1,-1),∴点F 到平面A 1D 1E 的距离为 d =|A 1F →·n ||n |=|12-2|5=3510.三、解答题9. 如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,P A 与平面ABD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4, CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线P A 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角, ∴∠P AD =60°.在Rt △P AD 中,由AD =2,得PD =23,∴P (0,0,23). (2)∵P A →=(2,0,-23),BC →=(-2,-3,0), ∴cos 〈P A →,BC →〉=2×(-2)+0×(-3)+(-23)×0413=-1313,∴异面直线P A 与BC 所成的角的余弦值为1313.10.(2013·天津)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱 AA 1的中点. (1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.方法一 如图,以点A 为原点,以AD ,AA 1,AB 所在直线为x 轴, y 轴,z 轴建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1), B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明 易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →= 0,所以B 1C 1⊥CE .(2)解 B 1C →=(1,-2,-1). 设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m |·|B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217. (3)解 AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →|·|AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1,于是λ3λ2+2λ+1=26,解得λ=13(负值舍去), 所以AM = 2.方法二 (1)证明 因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1平面 A 1B 1C 1D 1,所以CC 1⊥B 1C 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E 平面CC 1E ,CC 1∩C 1E =C 1, 所以B 1C 1⊥平面CC 1E ,又CE 平面CC 1E ,故B 1C 1⊥CE .(2)解 过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1)知,B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G , 所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E =3,CC 1=2,可得C 1G =263.在Rt △B 1C 1G 中,B 1G =423, 所以sin ∠B 1GC 1=217, 即二面角B 1-CE -C 1的正弦值为217. (3)解 连接D 1E ,过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角. 设AM =x ,从而在Rt △AHM 中,有 MH =26x ,AH =346x . 在Rt △C 1D 1E 中,C 1D 1=1,ED 1=2, 得EH =2MH =13x .在△AEH 中,∠AEH =135°,AE =1, 由AH 2=AE 2+EH 2-2AE ·EH cos 135°, 得1718x 2=1+19x 2+23x , 整理得5x 2-22x -6=0,解得x =2(负值舍去). 所以线段AM 的长为 2.B 组 专项能力提升(时间:30分钟)1. 过正方形ABCD 的顶点A 作线段P A ⊥平面ABCD ,若AB =P A ,则平面ABP 与平面CDP的夹角大小为( ) A .30°B .45°C .60°D .90°答案 B解析 建立如图所示的空间直角坐标系,设AB =P A =1,知A (0,0,0),B (1,0,0),D (0,1,0),C (1,1,0),P (0,0,1)由题意得,AD ⊥平面ABP ,设E 为PD 的中点,连接AE ,则AE ⊥PD ,又∵CD ⊥平面P AD ,∴AE ⊥CD ,又PD ∩CD =D ,∴AE ⊥平面CDP .∴AD →=(0,1,0),AE →=(0,12,12)分别是平面ABP 、平面CDP 的法向量, 而〈AD →,AE →〉=45°,∴平面ABP 与平面CDP 的夹角大小为45°.2. 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________.答案 155解析 以D 为原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1),∴FD 1→=(-1,0,2),OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155. 3. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案 233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0. 令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离为d =|D 1A 1→·n ||n |=23=233.4. 如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC=90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求平面BPD 与平面ABD 的夹角.(1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0), C (23,6,0),D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0).∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC .又∵P A ∩AC =A ,∴BD ⊥平面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1),平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎪⎨⎪⎧ -23x +2y =0,-23x +3z =0, 解得⎩⎪⎨⎪⎧ y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12. ∴平面BPD 与平面ABD 的夹角为60°.5. (2013·北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求平面A 1BC 1与平面BB 1C 1夹角的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值. (1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , ∴AA 1⊥平面ABC .(2)解 在△ABC 中,AC =4,AB =3,BC =5,∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧ 4x 1=03y 1-4z 1=0 ∴取向量n 1=(0,4,3)由⎩⎪⎨⎪⎧ B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0. 取向量n 2=(3,4,0)∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=165×5=1625. 由题意知二面角A 1-BC 1-B 1为锐角,∴平面A 1BC 1与平面BB 1C 1夹角的余弦值为1625. (3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→.∴(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ.∴AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0则λ=925,因此BD BC 1=925.。
立体几何中的向量方法求空间角和距离
基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
课时作业7:§8.8 立体几何中的向量方法(二)——求空间角和距离
§8.8 立体几何中的向量方法(二)——求空间角和距离1.(2018·抚顺调研)在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2答案 D解析 以A 点为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2. 2.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52B .-14 C.14D .-52答案 B解析 以C 点为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴,y轴,z 轴,建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),设P (0,0,z ),其中0≤z ≤3,则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ),∴PD →·PB 1→=0+0+(2-z )(3-z )=⎝⎛⎭⎫z -522-14, 故当z =52时,PD →·PB 1→取得最小值-14.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12. 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则有⎩⎪⎨⎪⎧ A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧ y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2, ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23, 即所成的锐二面角的余弦值为23. 4.(2017·西安调研)已知六面体ABC —A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成的角为( )A .45°B .60°C .90°D .30°答案 A解析 如图所示,取AC 的中点N ,连接NB ,以N 为坐标原点,NB ,NC 所在直线分别为x 轴,y 轴,建立空间直角坐标系.则A ⎝⎛⎭⎫0,-a 2,0,C ⎝⎛⎭⎫0,a 2,0, B 1⎝⎛⎭⎫3a 2,0,a ,D ⎝⎛⎭⎫0,a 2,a 2, C 1⎝⎛⎭⎫0,a 2,a ,∴AB 1→=⎝⎛⎭⎫3a 2,a 2,a ,AD →=⎝⎛⎭⎫0,a ,a 2,CC 1→=(0,0,a ). 设平面AB 1D 的法向量为n =(x ,y ,z ),由n ·AB 1→=0,n ·AD →=0,可取n =(3,1,-2).∴cos 〈CC 1→,n 〉=CC 1→·n |CC 1→||n |=-2a a ×22=-22, ∵直线与平面所成角的范围是[0°,90°],∴直线CC 1与平面AB 1D 所成的角为45°.5.(2018·大同模拟)设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22C.223D.233答案 D 解析 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x轴,y 轴,z 轴,建立坐标系,则D (0,0,0),D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1—→=(2,0,0),DB →=(2,2,0),DA 1→=(2,0,2),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·DA 1→=0,n ·DB →=0, ∴⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1—→·n ||n |=23=233. 6.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°答案 C解析 如图所示,二面角的大小就是〈AC →,BD →〉.∵CD →=CA →+AB →+BD →,∴CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →,∴CA →·BD →=12[(217)2-62-42-82]=-24. 因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12, 又〈AC →,B D →〉∈[0°,180°],∴〈AC →,BD →〉=60°,故二面角为60°.7.(2017·昆明质检)如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是____________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12, ∵异面直线所成角的范围是(0,90°],∴EF 和BC 1所成的角为60°.8.(2018·南宁质检)在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值为________.答案 23解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的一个法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1). 设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=|n ·DC →||n ||DC →|=23. 9.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案 23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1, ∴tan ∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎫1,1,13, F ⎝⎛⎭⎫0,1,23,AE →=⎝⎛⎭⎫0,1,13, AF →=⎝⎛⎭⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由⎩⎪⎨⎪⎧ n ·AE →=0,n ·AF →=0,得⎩⎨⎧ y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3),取平面ABC 的法向量为m =(0,0,-1),则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 10.(2017·石家庄二模)设二面角α—CD —β的大小为45°,A 点在平面α内,B 点在CD 上,且∠ABC =45°,则AB 与平面β所成角的大小为________.答案 30°解析 如图,作AE ⊥平面β于点E ,在平面β内过E 作EF ⊥CD 于点F ,连接AF ,∵AE ⊥CD ,AE ∩EF =E ,∴CD ⊥平面AEF ,∴AF ⊥CD ,所以∠AFE 为二面角α—CD —β的平面角,所以∠AFE =45°,因为∠ABC =45°,所以∠BAF =45°.连接BE ,则∠ABE 为AB 与平面β所成的角.设AE =m ,则EF =m ,AF =2m ,BF =2m ,AB =2m ,所以sin ∠ABE =AE AB =12, 又因为∠ABE 为锐角,所以∠ABE =30°.11.(2017·洛阳二模)已知三棱锥A —BCD ,AD ⊥平面BCD ,BD ⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC 上一点,且CP =2PB .(1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值.(1)证明 作PG ∥BD 交CD 于G ,连接AG .∴CG GD =CP PB =2,∴GD =13CD =233. ∵AD ⊥平面BCD ,∴AD ⊥DC ,在Rt △ADG 中,tan ∠GAD =33, ∴∠DAG =30°, 在Rt △ADC 中,AC 2=AD 2+CD 2=4+12=16,∴AC =4,又E 为AC 的中点,∴DE =AE =2,又AD =2,∴∠ADE =60°,∴AG ⊥DE .∵AD ⊥平面BCD ,∴AD ⊥BD ,又∵BD ⊥CD ,AD ∩CD =D ,AD ,CD ⊂平面ADC ,∴BD ⊥平面ADC ,∴PG ⊥平面ADC ,∴PG ⊥DE .又∵AG ∩PG =G ,AG ,PG ⊂平面AGP ,∴DE ⊥平面AGP ,又AP ⊂平面AGP ,∴AP ⊥DE .(2)解 以D 为坐标原点,DB ,DC ,DA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz ,则D (0,0,0),A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),∴DF →=(1,3,0),DE →=(0,3,1),AC →=(0,23,-2).设平面DEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0, 令x =3,则n =(3,-3,3).设直线AC 与平面DEF 所成的角为θ,则sin θ=|cos 〈AC →,n 〉|=|AC →·n ||AC →||n |=|-6-6|421=217, ∴AC 与平面DEF 所成角的正弦值为217. 12.(2017·河南质检)如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,AB ⊥AC ,AB =AC =2,点E 在AD 上,且AE =2ED .(1)已知点F 在BC 上,且CF =2FB ,求证:平面PEF ⊥平面P AC ;(2)当二面角A —PB —E 的余弦值为多少时,直线PC 与平面P AB 所成的角为45°?(1)证明 ∵AB ⊥AC ,AB =AC ,∴∠ACB =45°,∵底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,∴∠ACD =45°,即AD =CD ,AC =2AD ,又AB ⊥AC ,∴BC =2AC =2AD ,∵AE =2ED ,CF =2FB ,∴AE =BF =23AD , 又∵AE ∥BF ,∴四边形ABFE 是平行四边形,∴AB ∥EF ,∴AC ⊥EF ,∵P A ⊥底面ABCD ,∴P A ⊥EF ,∵P A ∩AC =A ,P A ,AC ⊂平面P AC ,∴EF ⊥平面P AC ,又EF ⊂平面PEF ,∴平面PEF ⊥平面P AC .(2)解 ∵P A ⊥AC ,AC ⊥AB ,P A ∩AB =A ,P A ,AB ⊂平面P AB ,∴AC ⊥平面P AB ,则∠APC 为PC 与平面P AB 所成的角,若PC 与平面P AB 所成的角为45°,则tan ∠APC =AC P A=1,即P A =AC =2,取BC 的中点G ,连接AG ,则AG ⊥BC ,以A 为坐标原点,AG ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,-1,0),C (1,1,0),E ⎝⎛⎭⎫0,23,0,P (0,0,2), ∴EB →=⎝⎛⎭⎫1,-53,0,EP →=⎝⎛⎭⎫0,-23,2, 设平面PBE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·EB →=0,n ·EP →=0,即⎩⎨⎧ x -53y =0,-23y +2z =0,令y =3,则x =5,z =2,∴n =(5,3,2).∵AC →=(1,1,0)是平面P AB 的一个法向量,cos 〈n ,AC →〉=5+32×6=223, 即当二面角A —PB —E 的余弦值为223时,直线PC 与平面P AB 所成的角为45°.13.(2017·全国Ⅱ)已知直三棱柱ABC-A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105. 故选C.图②方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105. 所以异面直线AB 1与BC 1所成角的余弦值为105. 故选C.14.(2018·长春一检)已知三棱锥S —ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,Q 是三棱锥S —ABC 外接球上一动点,则点Q 到平面ABC 的距离的最大值为________. 答案 433 解析 将三棱锥S —ABC 放入棱长为2的正方体中,则到平面ABC 的距离最大的点应在过球心且和平面ABC 垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,所以2R =23(R 为外接球的半径),则点Q 到平面ABC 的距离的最大值为23×2R =23×23=433.15.(2017·安徽皖南八校联考)已知三棱锥P —ABC 的所有顶点都在表面积为16π的球O 的球面上,AC 为球O 的直径.当三棱锥P —ABC 的体积最大时,二面角P —AB —C 的大小为θ,则sin θ等于( )A.23B.53C.63D.73答案 C解析 如图,设球O 的半径为R ,由4πR 2=16π,得R =2,设点P 到平面ABC 的距离为d ,则0<d ≤2,因为AC 为球的直径,所以AB 2+BC 2=AC 2=16,则V 三棱锥P —ABC =16AB ·BC ·d ≤16·AB 2+BC 22·2=83,当且仅当AB =BC =22,d =2时,V 三棱锥P —ABC 取得最大值,此时平面P AC ⊥平面ABC ,连接PO ,因为PO ⊥AC ,平面P AC ∩平面ABC =AC ,PO ⊂平面P AC ,所以PO ⊥平面ABC ,过点P作PD ⊥AB 于D ,连接OD ,因为AB ⊥PO ,AB ⊥PD ,PO ∩PD =P ,所以AB ⊥平面POD ,则AB ⊥OD ,所以∠PDO 为二面角P —AB —C 的平面角,因为OD =12BC =2,所以PD =PO 2+OD 2=6, 则sin θ=sin ∠PDO =PO PD =63.故选C. 16.(2017·浙江)如图,已知正四面体D —ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角D —PR —Q ,D —PQ —R ,D —QR —P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α答案 B解析 如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知它们的对边都是DO ,∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心. 设点O 到△QRP ′三边的距离为a ,则OG =a ,OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a ,OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a ,∴OF <OG <OE ,∴OD tan β<OD tan γ<OD tan α, ∴α<γ<β.故选B.。
第43讲 │ 立体几何中的向量方法(二)——空间角与距离求解
第43讲 │ 要点探究
[思路]
建立恰当的空间直角坐标系,求出直线的方向向量
和平面的法向量,使用公式进行计算,
[答案] A
第43讲 │ 要点探究
[解析] 设正三棱柱所有棱长均为a,以C为顶点,CA为x
轴,CC1为z轴建立空间直角坐标系如图,
第43讲 │ 要点探究
1 则A(a,0,0),B1 a, 2 1 3 3 → a,a ,所以AB1 = - a, a,a , 2 2 2
第43讲 │ 问题思考 问题思考
► 问题1 (1)两直线的方向向量所成的角就是两条直 ) )
线所成的角;( 与平面所成的角;( 角.( )
(2 (3)两个平面的法向量所成的角是这两个平面所成的
[答案] (1)错
(2)错
(3)错
第43讲 │ 问题思考
第43讲 │ 要点探究
第43讲 │ 要点探究
→ → → → 同方法1,作AM⊥A1N于M,AM=AC+CD+λDA1 =(-1+λ,1+λ,- 3+ 3λ), → · 1=0得λ=3, → 由AM DA 5
2 8 2 3 → 所以AM=- , ,- . 5 5 5
→ → → → BN=BC+CD+μDA1=(-2+μ,1+μ, 3μ), → · 1=0得μ=1, → 由BN DA 5
第43讲 │ 要点探究
→ → → [解答] 方法1:设不共面的向量CB=a、CD=b、CA=c为 → → → 基向量,则DA1=CA1-CD=b+c, 过点A作AM⊥DA1于点M, → → → → 则AM=AC+CD+DM → → → =AC+CD+λDA1 =-c+b+λ(b+c) =(λ+1)b+(λ-1)c, → → → DA → 因为AM⊥DA1,所以AM· 1=0,
8.8_立体几何中的向量方法(Ⅱ)——求空间角与距离
3.点面距的求法 如图,设 AB 为平面 的一条斜线段,n 为平面 的 法向量,则 B 到平面 的距离 d=
AB n n
基础自测 1.如果平面的一条斜线与它在这个平面上的射 影的方向向量分别是 a=(1,0,1), b=(0,1,1), 那么,这条斜线与平面所成的角是( D ) A.90° B.30° C.45° D.60° 1 1 解析 ∵cos〈a,b〉= = , 2· 2 2
变式训练 1 如图所示,在棱长为 2 的正方体 ABCD—A1B1C1D1 中,E、F 分别为 A1D1 和 CC1 的中点.1求证:EF∥平面 ACD1; 2求异面直线 EF 与 AB 所成角的余弦值; 3在棱 BB1 上是否存在一点 P,使得二面角 P—AC—B 的大小为 30° ?若存在,求出 BP 的长,若不存在,请说明理由.
思维启迪: 建立空间直角坐标系, 求出各点及向量的坐标,
求出 AB 与 EG 夹角的余弦值的绝对值即可. 1
解 如图所示,建立空间直角坐标系,坐标原点为 C, 设 CA=2a,则 A2a,0,0,B0,2a,0,D0,0, 1 , A12a , 0 , 2,Ea , a , 1 , G(
2 在 Rt△D1DE1 中,D1E1= DE2+DD1 1
= AE2+AD2+DD2= 12+32+22= 14. 1 1 在 Rt△D1DF 中,FD1= FD2+DD2 1
2 = CF2+CD2+DD1= 22+42+22= 24.
在△E1FD1 中,由余弦定理得: D1E2+FD2-E1F2 21 1 1 cos∠E1D1F= = . 14 2×D1E1×FD1 21 ∴直线 EC1 与 FD1 所成的角的余弦值为 . 14
探究提高
课时作业5:§8.8 立体几何中的向量方法(二)——求空间角和距离
§8.8 立体几何中的向量方法(二)——求空间角和距离1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.224.(2016·长春模拟)在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15 B.255 C.55 D.255.如图,△ABC 是等腰直角三角形,其中∠A =90°,且DB ⊥BC ,∠BCD =30°,现将△ABC 折起,使得二面角A -BC -D 为直角,则下列叙述正确的是( )①BD →·AC →=0;②平面BCD 的法向量与平面ACD 的法向量垂直;③异面直线BC 与AD 所成的角为60°;④直线DC 与平面ABC 所成的角为30°.A .①③B .①④C .①③④D .①②③④6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14 C.14 D .-527.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________.9.(2017·石家庄月考)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10.(1)求证:BD ⊥平面POA ;(2)求二面角B -AP -O 的正切值.11.(2016·四川)如图,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠P AB=90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角PCDA 的大小为45°,求直线P A 与平面PCE 所成角的正弦值.12.(2016·潍坊模拟)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;π(2)判断点M的位置,使得平面BDM与平面ABF所成的锐二面角为3.答案精析1.C 2.C 3.B 4.C 5.B 6.B 7.13 8.23 9.2310.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴EF ⊥AC ,∴EF ⊥AO ,EF ⊥PO .∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA .(2)解 设AO ∩BD =H ,连接BO .∵∠DAB =60°,∴△ABD 为等边三角形,∴BD =4,BH =2,HA =23,HO =PO =3,在Rt △BHO 中,BO =HB 2+HO 2=7.在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0),∴AP →=(0,33,3),AB →=(2,23,0).设平面P AB 的法向量为n =(x ,y ,z ),由n ⊥AP →,n ⊥AB →,得⎩⎨⎧ 33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面P AB 的一个法向量为n =(-3,1,-3).由(1)知平面P AO 的一个法向量为BH →=(-2,0,0),设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913, ∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303, ∴二面角B -AP -O 的正切值为303. 11.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED .所以四边形BCDE 是平行四边形,从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE ,所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD ,从而CD ⊥PD .所以∠PDA 是二面角PCDA 的平面角,所以∠PDA =45°,设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知P A ⊥平面ABCD ,从而P A ⊥CE ,且P A ∩AH =A ,于是CE ⊥平面P AH .又CE ⊂平面PCE ,所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE ,所以∠APH 是P A 与平面PCE 所成的角.在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322. 所以sin ∠APH =AH PH =13.方法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD .于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠P AB =90°,且P A 与CD 所成的角为90°,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0).所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2).设平面PCE 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2, 解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+(-2)2+12=13. 所以直线P A 与平面PCE 所成角的正弦值为13. 12.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2,又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,∴BD ⊥平面ADEF ,又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N ,∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD ,∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0),设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1),∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ),∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0, 又DM →=(0,λ,2(1-λ)),DB →=(1,1,0), ∴⎩⎨⎧ λy +2(1-λ)z =0,x +y =0, 令x =1,得y =-1,z =λ2(1-λ), 故n 1=(1,-1,λ2(1-λ))是平面BDM 的一个法向量. ∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos 〈n 1,DN →〉|= 11+1+λ22(1-λ)2=12,得λ=23, ∴M (0,23,23), ∴点M 在线段CE 的三等分点且靠近点C 处.。
高中数学优质课件【立体几何中的向量方法——求空间角与距离】
面直线 AB 和 CD 所成角的余弦值为________.
1 4
解析:设等边三角形的边长为 2.取 BC 的
中点 O,连接 OA,OD.因为等边三角形 ABC 和
BCD 所在平面互相垂直,所以 OA,OC,OD 两
两垂直,以 O 为坐标原点,OD,OC,OA 所在
直线分别为 x 轴、y 轴、z 轴建立如图所示的空间
直角坐标系.
则 A(0,0, 3),B(0,-1,0),C(0,1,0),D( 3,0,0), 所以A→B=(0,-1,- 3),C→D=( 3,-1,0), 所以 cos〈A→B,C→D〉=|AA→→BB|·|CC→→DD|=2×1 2=14, 所以异面直线 AB 和 CD 所成角的余弦值为14.
1 2 3 45
4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量为 n=(2,
-2,1),已知点 P(-1,3,2),则点 P 到平面 OAB 的距离 d 等于( )
A.4
B.2
C.3
D.1
B 解析:P 点到平面 OAB 的距离为 d=|O→|Pn·|n|=|-2-96+2|=2.
12345
B1(1,1, 3),所以A→D1=(-1,0, 3),D→B1=(1,1, 3).设异面直线
AD1 与 DB1 所成的角为 θ,
所以 cos θ=|AA→→DD11|·|DD→→BB11|=2×2
5=5 5.Fra bibliotek所以异面直线
AD1
与
DB1
所成角的余弦值为
5 5.
2.有公共边的等边三角形 ABC 和 BCD 所在平面互相垂直,则异
l1与l2所成的角θ
a与b的夹角β
范围
第7章-7.7 立体几何中的向量方法-第2课时- 求空间角与距离
余角
余弦的绝对值
面面角:两 相交平面所 成的角 θ
两平面的法向量分别 通过图形判
两平面的法
[0,π] 向量的夹角 θ 为 n1,n2,则
定二面角的
或 π-θ
cos θ=cos〈n1,n2〉或 平面角是锐
cos θ=-cos〈n1,n2〉角还是钝角
1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若两条异面直线的方向向量夹角为 θ,则两异面直线所成的角也为 θ.( × ) 解析 向量的夹角范围是[0,π],与两异面直线的夹角范围不同,因此 两个角不一定相同.
由 BE⊥平面 ABCD,AB=BC,可知 AE=EC,又 AE⊥EC,∴EG= 3, 且 EG⊥AC.在 Rt△EBG 中,可得 BE= 2,故 DF= 22.
在 Rt△FDG 中,可得 FG= 26.
在直角梯形 BDFE 中,由 BD=2,BE= 2,DF= 22,可得 EF=322. 从而 EG2+FG2=EF2,∴EG⊥FG. 又 AC∩FG=G,可得 EG⊥平面 AFC. ∵EG 平面 AEC,∴平面 AEC⊥平面 AFC.
→→ ∵AE⊥EC,∴AE·CE=0,
即 1×1- 3× 3+4a2=0,解得 a= 22.
→ ∴AE=(1,
3,
2),A→F=-1,
3, 22,G→E=(1,0,
2).
∴A→F·G→E=-1,
3,
22·(1,0,
→→ 2)=0,GE·AC=(1,0,
2)·(0,2
2.若平面 α,β 的法向量分别为 a=1,
3,2 3 3,b=0,0,92,则 α,
β 构成的二面角大小为( D )
A.90°
第八章 8.8立体几何中的向量方法 求空间角与距离 (3)
题型三
利用空间向量解决探索性问题
例4
如图,棱柱 ABCD - A1B1C1D1 的所有棱长都等于 2 , ∠ABC
和∠A1AC均为60°,平面AA1C1C⊥平面ABCD. (1)求证:BD⊥AA1;
解析答案
(2)求平面AA1D1D与平面AA1C1C的夹角的余弦值; 解 由于OB⊥平面AA1C1C, ∴平面AA1C1C的一个法向量为n1=(1,0,0). 设n2=(x,y,z)为平面DAA1D1的一个法向量,
a x - =a 2=0,得
a x=2;
a a a → → 由FG· CP=x-2,-2,z-2 (0,-a,a) ·
a a2 = +az-2=0,得 z=0. 2
∴G
a 点坐标为2,0,0 ,即
G 点为 AD 的中点.
证明 → 取 AP 的中点 E,则 E( 3,2,1),BE=(- 3,2,1).
∵PB=AB,∴BE⊥PA.
→ → 又∵BE· DA=(- 3,2,1)· (2 3,3,0)=0,
→ → ∴BE⊥DA,∴BE⊥DA,
又PA∩DA=A,∴BE⊥平面PAD,
又∵BE平面PAB,
∴平面PAB⊥平面PAD.
解析答案
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点
P的位置,若不存在,请说明理由.
思维升华
解析答案
在四棱锥P—ABCD中,PD⊥底面ABCD,底面 ABCD为正方形,PD=DC,E、F分别是AB、 PB的中点. (1)求证:EF⊥CD; 证明
跟踪训练3
如图,分别以DA、DC、DP所在直线为x轴、y轴、z轴建立空间
高考数学一轮总复习 第八章 8.8立体几何中的向量方法(二)求空间角和距离
(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平 正弦值.
师生共研
题型三 求二面角
例3 (2018·达州模拟)如图,在梯形ABCD中,AB∥CD,A ∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形
(1)求证:BF⊥AE;
(2)求二面角B-EF-D的平面角的正切值.
a与n的夹角为β,则sin θ=|cos β|= |a||n| .
3.求二面角的大小 (1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂 二面角的大小θ=〈A→B,C→D〉 .
(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α, 二面角的大小θ满足|cos θ|= |cos〈n1,n2〉|,二面角的平面角
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与 二面角最大,并求此时二面角的余弦值.
谢谢
(1)证明:平面BEF⊥平面PEC;
(2)求二面角A-BF-C的余弦值.
技能提升练
13.如图,在四棱锥 S-ABCD 中,SA⊥平面 ABCD,底面 ABCD 为
∠BAD=90°,且 AB=4,SA=3.E,F 分别为线段 BC,SB 上的
满足BSFF=CBEE=λ,当实数
λ
9 的值为_1_6__时,∠AFE
解析 cos〈m,n〉=|mm|·|nn|=1·1 2= 22,即〈m,n〉=45
∴两平面所成二面角为45°或180°-45°=135°.
3.[P117A 组 T4(2)]如图,正三棱柱(底面是正三角形的直棱柱 底面边长为 2,侧棱长为 2 2,则 AC1 与侧面 ABB1A1 所成的角
题组三 易错自纠
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
立体几何中的向量方法——求空间角与距离-2023届高考数学一轮复习(新高考)
考点专练38:立体几何中的向量方法一、选择题1.在三棱锥A-BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2.若〈n 1,n 2〉=π3,则二面角A-BD-C 的大小为( ) A .π3 B .2π3 C .π3或2π3 D .π6或π32.如图,点A ,B ,C 分别在空间直角坐标系Oxyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2, 1, 2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A .43B .53C .23D .-233.如图,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A .33535B . 277C .33D .244.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12B .23C .33D .225.在直三棱柱ABC-A 1B 1C 1中,AA 1=2,二面角B-AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A .7B .6C .5D .26.(多选)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱V A 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B的平面角为γ,则α,β,γ大小关系正确的是() A.α>β B.α=βC.γ>β D.γ≥β二、填空题7.如图,在正方形ABCD中,EF∥AB.若沿EF将正方形折成一个二面角后,AE∶ED∶AD=1∶1∶2,则AF与CE所成角的余弦值为________→8.正四棱锥P-ABCD,底面四边形ABCD是边长为2的正方形,PA=5,其内切球为球G,平面α过AD与棱PB,PC分别交于点M,N,且与平面ABCD所成二面角为30°,则平面α截球G所得的图形的面积为___________三、解答题9.(2021·全国甲卷)已知直三棱柱ABC -A1B1C1中,侧面AA1B1B为正方形,AB =BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?10.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求a的值;(3)在(2)的条件下求直线PA与平面EAC所成角的正弦值.11.如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=3,AC=2,点E是PD的中点.(1)求证:PB∥平面AEC.(2)在线段PB上(不含端点)是否存在一点M,使得二面角M-AC-E的余弦值为10 10若存在,确定M的位置;若不存在,请说明理由.12.如图,已知△ABC是以AC为底边的等腰三角形,将△ABC绕AB转动到△PAB位置,使得平面PAB⊥平面ABC,连接PC,E,F分别是PA,CA的中点.(1)证明:EF⊥AB;(2)在①S△ABC=33,②点P到平面ABC的距离为3,③直线PB与平面ABC所成的角为60°这三个条件中选择两个作为已知条件,求二面角E-BF-A的余弦值.13.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为π6,③∠ABC=π3.如图,在四棱锥P ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA =AB=2,PD的中点为F.(1)在线面AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB 上的位置并给以证明;若不存在,请说明理由.(2)若________,求二面角F-AC-D的余弦值.参考答案:一、选择题1.C2.C3.A4.B5.A6.AC 二、填空题7.答案:45 8.答案:π3 三、解答题9.(1)证明:因为侧面AA 1B 1B 为正方形,所以A 1B 1⊥BB 1.又BF ⊥A 1B 1,而BF ∩BB 1=B ,BF ⊂平面BB 1C 1C ,BB 1⊂平面BB 1C 1C ,所以A 1B 1⊥平面BB 1C 1C .又ABC -A 1B 1C 1是直三棱柱,BC =AB ,所以平面BB 1C 1C 为正方形. 取BC 中点为G ,连接B 1G ,EG . 因为F 为CC 1的中点,所以BF ⊥B 1G . 又BF ⊥A 1B 1,且EG ∥A 1B 1,所以BF ⊥EG .又B 1G ∩EG =G ,B 1G ⊂平面EGB 1D ,EG ⊂平面EGB 1D ,所以BF ⊥平面EGB 1D . 又DE ⊂平面EGB 1D ,所以BF ⊥DE .(2)解:因为侧面AA 1B 1B 是正方形,所以AB ∥A 1B 1,由(1)知,A 1B 1⊥平面BB 1C 1C , 所以AB ⊥平面BB 1C 1C .又BC ⊂平面BB 1C 1C ,所以AB ⊥BC .设B 1D =x ,以B 为原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E(1,1,0),F(0,2,1),D(x,0,2),所以EF →=(-1,1,1),FD →=(x ,-2,1).易知,平面BB 1C 1C 的一个法向量可为n 1=(1,0,0).设平面DFE 的法向量n 2=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·FD →=0,即⎩⎪⎨⎪⎧-x 1+y 1+z 1=0,xx 1-2y 1+z 1=0.不妨取z 1=1,则x 1=32-x ,y 1=x +12-x,即n 2=⎝⎛⎭⎫32-x ,x +12-x ,1.设〈n 1,n 2〉=θ,则cos θ=⎪⎪⎪⎪⎪⎪32-x⎝⎛⎭⎫32-x 2+⎝⎛⎭⎫x +12-x 2+1=11+⎝⎛⎭⎫32-x -12⎝⎛⎭⎫32-x 2+1⎝⎛⎭⎫32-x 2.令32-x=t ,则cos θ=11+(t -1)2t 2+1t2=12t 2-2t+2=12()1t -122+32.当1t =12时,(cos θ)max =23=63,此时(sin θ)min =33. 故当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.(1)证明:因为PC ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥PC . 因为AB =4,AD =CD =2,所以AC =22, 取AB 的中点为N ,则可得CN ∥AD ,则CN ⊥AB ,所以BC =CN 2+NB 2=22,所以AC 2+BC 2=AB 2,所以AC ⊥BC . 又BC ∩PC =C ,所以AC ⊥平面PBC .因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)解:以点C 为原点,CN →,CD →,CP →分别为x 轴、y轴、z 轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,-2,0),设P(0,0,2a)(a>0),则E(1,-1,a),CA →=(2,2,0),CP →=(0,0,2a),CE →=(1,-1,a).设m =(x 0,y 0,z 0)为平面PAC 的法向量,则m ·CA →=m ·CP →=0,即⎩⎪⎨⎪⎧2x 0+2y 0=0,2az 0=0,取m =(1,-1,0).设n =(x ,y ,z)为平面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2). 依题意|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2. (3)解:由(2)可得n =(2,-2,-2),PA →=(2,2,-4).设直线PA 与平面EAC 所成角为θ,则sin θ=|〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.11.(1)证明:连接BD 交AC 于点F ,连接EF .在△PBD 中,由已知得EF ∥PB . 又EF ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解:由题意知,AC ,AB ,AP 两两垂直,所以以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz .则C(2,0,0),D(2,-3,0),P(0,0,3),B(0,3,0),E ⎝⎛⎭⎫1,-32,32. 设M(x 0,y 0,z 0),PM →=λ PB →(0<λ<1),则(x 0,y 0,z 0-3)=λ(0,3,-3),得M(0,3λ,3-3λ). 设平面AEC 的法向量为n 1=(x 1,y 1,z 1),由n 1·AE →=0,n 1·AC →=0,AE →=⎝⎛⎭⎫1,-32,32,AC →=(2,0,0),得⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2x 1=0,取y 1=1,得n 1=(0,1,1).设平面MAC 的法向量为n 2=(x 2,y 2,z 2).由n 2·AM →=0,n 2·AC →=0,AM →=(0,3λ,3-3λ),AC →=(2,0,0),得⎩⎪⎨⎪⎧3λy 2+(3-3λ)z 2=0,2x 2=0,取z 2=1,得n 2=⎝⎛⎭⎫0,1-1λ,1.设二面角M-AC-E 的大小为θ.因为二面角M-AC-E 的余弦值为1010,所以θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=2-1λ2·⎝⎛⎭⎫1-1λ2+1=1010, 化简得9λ2-9λ+2=0,解得λ=13或λ=23.易知当λ=23时,θ为钝角,所以λ=13,所以PM →=13PB →.故存在点M ,当PM →=13PB →时,二面角M-AC-E 的余弦值为1010.12.(1)证明:如图(1),过点E 作ED ⊥AB ,垂足为D ,连接DF .由题意知,△PAB ≌△CAB ,易证△EDA ≌△FDA ,所以∠EDA =∠FDA =π2,即FD ⊥AB .因为ED ⊥AB ,ED ∩FD =D ,所以AB ⊥平面EFD . 又因为EF ⊂平面EFD ,所以EF ⊥AB .图(1)(2)解:过点P 作PO ⊥AB ,垂足为O ,连接CO ,则CO ⊥AB .因为平面PAB ⊥平面ABC ,所以PO ⊥平面ABC .以O 为坐标原点,以OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图(2)所示的空间直角坐标系.图(2)设AB =a ,∠ABC =θ,由条件①得S △ABC =12a 2sin θ=33,由条件②得PO =asin θ=3,由条件③得∠PBO =60°,即θ=120°.若选条件①②,可求得a =23,B(3,0,0),A(33,0,0),P(0,0,3),C(0,3,0). 因为E ⎝⎛⎭⎫332,0,32,f ⎝⎛⎭⎫332,32,0,所以BF →=⎝⎛⎭⎫32,32,0,BE →=⎝⎛⎭⎫32,0,32.设平面BEF 的一个法向量m =(x ,y ,z),由⎩⎪⎨⎪⎧m ·BF →=0,m ·BE →=0,得⎩⎨⎧32x +32y =0,32x +32z =0,取m =(-3,1,1),又易知平面BFA 的一个法向量n =(0,0,1), 故cos 〈m ,n 〉=m ·n |m ||n |=15=55,所以二面角E-BF-A 的余弦值为55.若选①③或②③均可求得a =23,下同.13.解:(1)在线段AB 上存在点G ,使得AF ∥平面PCG ,且G 为AB 的中点. 证明如下:设PC 的中点为H ,连接FH ,GH ,如图.易证四边形AGHF 为平行四边形, 则AF ∥GH .又GH ⊂平面PCG ,AF ⊄平面PGC ,所以AF ∥平面PGC . (2)选择①.因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AD . 由题意可知,AB ,AD ,AP 两两垂直,故以A 为坐标原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(2,2,0),D(0,2,0),P(0,0,2),F(0,1,1), 所以AF →=(0,1,1),CF →=(-2,-1,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎪⎨⎪⎧y +z =0,-2x -y +z =0.令y =1,则x=-1,z =-1,则u =(-1,1,-1). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=33,即二面角F AC D 的余弦值为33. 选择②.设BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥PA ,且FM =1. 因为PA ⊥平面ABCD ,所以FM ⊥平面ABCD ,FC 与平面ABCD 所成的角为∠FCM , 故∠FCM =π6.在直角三角形FCM 中,CM =3.又因为CM =AE ,所以AE 2+BE 2=AB 2, 所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3).易知平面ACD 的一个法向量为v =(0,0,2). 设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角FACD 的余弦值为217. 选择③.因为PA ⊥平面ABCD ,所以PA ⊥BC . 取BC 中点E ,连接AE .因为底面ABCD 是菱形,∠ABC =π3,所以△ABC 是正三角形.又E 是BC 的中点,所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧ u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角FAC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角F AC D 的余弦值为217。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间的角常见的有: 线线角、线面角、面面角。
一、线线角:
异面直线所成角的范围: 0, 2 C D
•
(2011·陕西卷)如图,在△ABC中,∠ABC =60°,∠BAC=90°,AD是BC上的高,沿AD 把△ABD折起,使∠BDC=90°. • 设E为BC的中点,求AE与DB夹角的余弦值.
z
y x
易得D(0,0,0),B(1,0,0),C(0,3,0), 1 3 A(0,0, 3 ),E ( , ,0) , 2 2 1
• 求二面角最常用的方法 • (1)分别求出二面角的两个面所在平面的法向 量,然后通过两个平面的法向量的夹角得到二 面角的大小,但要注意结合实际图形判断所求 角是锐角还是钝角. • (2)分别在二面角的两个平面内找到与棱垂直 且以垂足出发的两个向量,则这两个向量的夹 角的大小就是二面角的大小. • 以上两种方法各有利弊,要善于结合题目的特 点选择适当的方法解题.
三、面面角: 二面角的范围: [0, ]
①方向向量法: 将二面角转化为二面角的两个面的方向向量 (在二面角的面内且垂直于二面角的棱)的 夹角。如图,设二面角 l 的大小为 , 其中 AB l , AB , CD l , CD
B A
D
C l
AB CD cos cos AB, CD AB CD
AB CD cos cos AB, CD AB CD
x
解:设 n=(x,y,z)是平面 AMN 的一个法向量, 1 → =(0,1,2),AN= - ,1,0 , → ∵AM 2 0+y+2z=0, → AM·n=0, 由 → 得 -1x+y=0. AN·n=0, 2 解得平面 AMN 的一个法向量 n=(4,2,-1). 由题意知,平面 ABC 的一个法向量为 m=(0,0,1). -1 m·n 21 ∴cos〈m,n〉= = =- . |n||m| 21 21×1 21 ∴二面角 M-AN-B 的余弦值是 . 21
三、面面角: 二面角的范围: [0, ]
②法向量法
n1, n2
n2
n1,2 n
n1,2 n
l
n2
n1
n1, n2
n1
l
cos
cos n1 , n2
思考:
CD, AB 与 的关系? D1 A B DC , AB 与 的关系? 设直线CD的方向向量为a,AB的方向向量为b
b a,
b
a
ห้องสมุดไป่ตู้
a, b
a
b
结论:
| cos a, b |
n, BA 2
B
B
n
结论:sin | cos n, AB |
• 1.若直线l的方向向量与平面α的法向量的夹 角等于120°,则直线l与平面α所成的角等于( ) • A.120° B.60° • C.30° D.60°或30° • 解析: 由题意得直线l与平面α的法向量所在 直线的夹角为60°,∴直线l与平面α所成的角 为90°-60°=30°. • 答案: C
如图所示,在四棱锥P-ABCD中, 底面ABCD是矩形,PA⊥平面ABCD,PA= AD=2,AB=1,AM⊥PD于点M. z • 求直线CD与平面ACM 所成角的正弦值.
•
y x
• 利用向量法求线面角的方法: • (1)分别求出斜线和它在平面内的射影直线 的方向向量,转化为求两个方向向量的夹 角(或其补角); • (2)通过平面的法向量来求,即求出斜线的 方向向量与平面的法向量所夹的锐角,取 其余角就是斜线和平面所成的角.
1.异面直线所成角: cos | cos a, b | 2.直线与平面所成角: sin | cos n, AB |
a
C
a b
D
D1
A
B
A n
3.二面角:
B
C l
B
①方向向量法:
A
D
O
n
②法向量法:
【注意】法向量的方向:一 进一出,二面角等于法向量 夹角;同进同出,二面角等 于法向量夹角的补角。
22 cos AE, DB 22 AE DB 1 22 4 2
AE DB
二、线面角:
直线与平面所成角的范围: [0, ] 2 A
B
思考:
A
n
O
设平面的法向量为n,则 n, BA 与的关系? A
n, BA 2
cos
cos n1 , n2
【注意】法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角。
•
已知三棱柱ABC-A1B1C1的侧棱垂直于 底面,∠BAC=90°,AB=AA1=2,AC=1 ,M、N分别是A1B1、BC的中点.
z
y
• 求二面角M-AN-B的余弦值.