一元二次方程性质特点及练习
一元二次方程知识点总结&练习
一元二次方程的解法【知识点归纳与总结】一、概念:一元二次方程的一般形式为:ax 2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
二、基本思路与方法: 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
1 用直接开平方法解形如 (x-m)2=n (n≥0) 的方程,其解为x=m±.例1.解方程(1)75 (3x+1)2=7 (2)9x 2-24x+16=112.配方法:用配方法解方程ax 2+bx+c=0 (a≠0) 先将常数c 移到方程右边:ax 2+bx=-c 将二次项系数化为1:x 2+b a x=-ca方程两边分别加上一次项系数的一半的平方:x 2+b a x+(b 2a )2=-c a +(b2a)2方程左边成为一个完全平方式:(x+)2= 当b 2-4ac≥0时,x+=±∴ x= (这就是求根公式)例2.用配方法解方程 3x 2-4x-2=03.公式法:把一元二次方程化成一般形式,然后计算判别式△=b 2-4ac 的值,当b 2-4ac≥0时,把各项系数a, b, c 的值代入求根公式x=(b 2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x 2-8x=-54.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8(2) 2x2+3x=0(3) 6x2+5x-50=0(4)x2-2(+)x+4=0小结:一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
二次根式及一元二次方程复习及练习
二次根式小结与复习基础盘点1.二次根式的定义:一般地,我们把形如a (a ___0)的式子叫做二次根式,“”称为二次根式.定义诠释:(1)二次根式的定义是以形式界定的,如4是二次根式; (2)形如a b (a ≥0)的式子也叫做二次根式;(3)二次根式a 中的被开方数a ,可以是数,也可以是单项式、多项式、分式,但必须满足a ≥0. 2.二次根式的基本性质(1)a _____0(a ___0);(2)()2a =_____(a ___0);(3)a a =2=()()⎩⎨⎧0_____0_____a a ;(4)=_________(a ___0,b ___0);(5=_________(a ___0,b ___0).3.最简二次根式必须满足的条件为:(1)被开方数中不含___;(2)被开方数中所有因式的幂的指数都_____.4.二次根式的乘、除法则:(1)=______(a ___0,b ___0);(2)=_______(a ___0,b ___0).复习提示:(1)进行乘法运算时,若结果是一个完全平方数,则应利用==a a 2()()⎩⎨⎧<-≥00a aa a 进行化简,即将根号内能够开的尽方的数移到根号外; (2)进行除法运算时,若除得的商的被开方数中含有完全平方数因数,应运用积的算术平方根的性质将其进行化简.5.同类二次根式:几个二次根式化成______后,如果_____相同,这几个二次根式就叫做同类二次根式.6.二次根式的加减法则:二次根式加减时,可以先将二次根式化成_____,然后把_______进行合并. 复习提示:(1)二次根式的加减分为两个步骤:第一步是_____,第二步是____,在合并时,只需将根号外的因式进行加减,被开方数和根指数不变;(2)不是同类二次根式的不能合并,如:53+≠8;(3)在求含二次根式的代数式的值时,常用整体思想来计算. 7.二次根式的混合运算(1)二次根式的混合运算顺序与实数中的运算顺序一致,也是先_,再__,最后__,有括号的先_内的. 复习提示:(1)在运算过程中,有理数(式)中的运算律,在二次根式中仍然适用,有理数(式)中的乘法公式在二次根式中仍然适用; (2)二次根式的运算结果可能是有理式,也可能是二次根式,若是二次根式,一定要化成最简二次根式. 8.二次根式的实际应用利用二次根式的运算解决实际问题,主要从实际问题中列出算式,然后根据运算的性质进行计算,注意最后的结果有时需要取近似值.1 二次根式有意义的条件例1 若式子43-x 在实数范围内有意义,则x 的取值范围是( )A.x ≥34B.x >34C.x ≥43D.x >43方法总结:判断含有字母的二次根式是否有意义,就是看根号内的被开方数是不是非负数,如果是,就有意义,否则就没有意义,当二次根式含有分母时,分母不能为0.2 二次根式的性质例2 下列各式中,正确的是( )A.()332-=- B.332-=- C.()332±=± D.332±=方法总结:()a a =2成立的条件是a ≥0,而在化简()2a 时,先要判断a 的正负情况.3 二次根式的非负性例3 已知32552--+-=x x y ,则xy 2的值为( )A.—15B.15C.215-D.215 方法总结:二次根式a (a ≥0)具有双重非负性,即a ≥0、a ≥0. 4 最简二次根式例4 下列二次根式中,最简二次根式是( )A.51B.5.0C.5D.50 方法总结:在进行二次根式化简时,一些同学不知道化到什么程度为止,切记,一定要化到最简二次根式为止. 5 二次根式的运算 例5 计算1824-×31=____.方法总结:二次根式的加减运算,一定要先化简才能得知算式中哪些二次根式可以合并,除法运算先化为乘法再运算,混合运算时要正确使用运算法则.6 二次根式的化简求值例6若120142013-=m,则34520132mmm--的值是_____.方法总结:解决此类问题应注意代数式的变形和整体思想的运用.一元二次方程1、一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程。
一元二次方程求解方法及常见练习题
一元二次方程求解方法及常见练习题一元二次方程求解方法
一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c
是已知常数,且a ≠ 0。
求解一元二次方程需要使用以下两种方法:方法一:公式法
一元二次方程的解可以通过使用求根公式得到。
求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)
其中 ±表示两个解,√ 表示开平方根。
方法二:配方法
配方法通过对一元二次方程进行配方来求解。
具体步骤如下:
1. 将方程形式转换为 a(x + p)^2 + q = 0 的形式,其中 p 和 q 是需要求解的常数;
2. 根据配方法公式,其中 A = a,B = 2ap,C = ap^2 + q,求解方程 Ax^2 + Bx + C = 0;
3. 求解完方程后,根据 (x + p)^2 = 0 的性质,得到一元二次方程的解。
常见练题
以下是一些常见的一元二次方程练题:
1. 求解方程 x^2 - 5x + 6 = 0;
2. 求解方程 2x^2 + 3x - 2 = 0;
3. 求解方程 4x^2 - 12x + 9 = 0;
4. 求解方程 x^2 + 4 = 0;
5. 求解方程 5x^2 - 2x + 1 = 0。
以上练题可以使用公式法或配方法来求解,根据个人喜好和题目特点选择合适的方法进行求解。
希望以上内容对你解决一元二次方程求解的问题有所帮助!。
一元二次方程概念专项练习
一元二次方程概念专项练习知识梳理:1.一元二次方程的一般形式:a x2+bx+c=0(a≠0)2.一元二次方程的特点:①整式方程②a不为0③只含有一个未知数④未知数的最高次数为23.重点:一元二次方程的识别与判断4.难点:题目不表明所需要判断的方程是一元二次方程还是一元一次方程时,需要分类讨论一、选择题1、在下列方程中是一元二次方程的是()A.x2-2xy+y2=0 B.x(x+3)=x2-1 C.x2-2x=3 D.x+ =02、下列方程为一元二次方程的是 ( )A. B. C. D.3、下列方程中,一元二次方程个数()①、;②、;③、;④、;⑤、.A、5个B、4个C、3个D、2个4、已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥25、以1,-2为根的一元二次方程是A.x2+x-2=0B.x2-x+2=0C.x2-x-2=0D.x2+x+2=06、已知x=0是二次方程(m +1)x2+ mx + 4m2- 4 = 0的一个解,那么m的值是()A.0 B.1 C.- 1 D.7、若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A.1 B.-1 C.2 D.-28、若关于x的一元二次方程的常数项为0,则m的值等于A.1 B.2 C.1或2 D.09、定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D.10、若为方程的解,则的值为()A.12B.6C.9D.16二、填空题11、如果,则一元二次方程必有一个根是.12、已知是方程的解,则代数式的值为 .13、已知,则的值是 .14、某中学摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有名学生,则根据题意列出的方程是。
实际问题与一元二次方程知识点总结及重难点精析
实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。
一元二次方程知识总结及习题
一元二次方程的定义与解法知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2。
同时还要注意在判断时,需将方程化成一般形式。
例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
例1 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。
(1)x x 2752=; (2)()()832=+-x x ; (3)()()()22343+=+-x x x例2 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解例 1 关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则=a例 2 已知关于x 的一元二次方程)0(02≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a ,=+-c b a例3 已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程032=-+c x x 的一个根,求方程032=-+c x x 的根及c 的值。
初三数学课本练习和习题-一元二次方程
一元二次方程22.1 一元二次方程【知识点】1、一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。
一般形式:ax 2﹢bx ﹢c =0 (a 、b 、c 为常数,且a ≠0)其中,a 是二次项系数,b 是一次项系数,c 是常数项。
注意,系数是包括前面的符号的。
一元二次方程的解也叫做一元二次方程的根。
2、单循环比赛公式:2)1(-n n 双循环比赛公式:n (n ﹣1)【练习】1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
(1)x x4152=- (2)8142=x (3)25)2(4=+x x (4)38)1)(23(-=+-x x x2. 根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短的一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ;(4)一个直角三角形的斜边长为10 cm ,两条直角边相差2 cm ,求较长的直角边长x 。
3. 如图,有一块长方形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?4. 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【习题】一元二次方程【复习巩固】1. 将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次性系数及常数项:2. 根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.28 m2,求半径。
(2)一个直角三角形的两条直角边相乘3 cm,面积是9 cm2,求较长直角边的长。
一元二次方程基本题型展示
题型1一元二次方程的概念问题例1 关于x的方程(m-)xm2-1-x+3=0是一元二次方程,则m的值为.解:根据一元二次方程的定义,得m2-1=2,m- ≠0.解之,得m=±,m≠ .所以m=- .点评:本题应注意两点:①未知数的最高次数是2;②二次项系数不能为0.题型2一元二次方程的解法问题解一元二次方程时,首先考虑用因式分解法,这种方法最简捷;其次考虑用求根公式法,这种方法是万能的,它能解所有的一元二次方程;再次考虑用配方法,因为这种方法较为复杂.如果方程可以直接开平方,就用直接开平方法.例2 已知关于x的方程2x2-ax-a2=0的一个根为1,求另一个根.解:把1代入方程,得2-a-a2=0,即a2+a-2=0.分解因式,得(a+2)(a-1)=0,所以a=-2或a=1.当a=-2时,原方程为x2+x-2=0.解得x1=1,x2=-2,即另一个根为-2.当a=1时,原方程为2x2-x-1=0.解得x1=1,x2=- .即另一个根为- .故原方程的另一个根为-2或- .例3 已知(x2+y2)2-y2=x2+6,求x2+y2的值.解:原方程可化为(x2+y2)2-(x2+y2)-6=0.分解因式,可得(x2+y2+2)(x2+y2-3)=0.因x2+y2+2≠0,故x2+y2-3=0,即x2+y2=3.点评:一个方程两个未知数,想求出x,y的值后,再求x2+y2的值是不可能的.故我们可以把x2+y2看成一个整体元,将方程化为关于x2+y2的一元二次方程,通过解方程达到求值的目的.题型3一元二次方程根的判别式问题一元二次方程根的判别式δ=b2-4ac,只要知道它的值,不需要解方程便能判断方程根的情况.另外,它在解含有参数的一元二次方程中起着限制作用,即参数的取值要确保方程有实数根.例4 已知关于x的方程mx2-(2m+1)x+m+3=0.(1) m取何值时方程有两个不相等的实数根?(2) m取何值时方程有两个相等的实数根?(3) m取何值时方程没有实数根?解:δ=[-(2m+1)]2-4m(m+3)=-8m+1.(1)当-8m+1>0且m≠0,即m<且m≠0时,方程有两个不相等的实数根.(2)当-8m+1=0且m≠0,即m= 时,方程有两个相等的实数根.(3 )当-8m+1<0且m≠0,即m>时,方程没有实数根.点评:这类问题的一般解法是:首先计算δ,然后根据题设列出不等式或方程,解方程或不等式求出参数的值或取值范围;当二次项系数含有参数时,还要注意二次项系数不能为零.例5 已知关于x的方程x2+2(2-m)x+3-6m=0,求证:无论m取什么实数,方程总有实数根.证明:δ=[2(2-m)]2-4(3-6m)=4m2+8m+4=4(m+1)2.∵无论m取什么实数,总有4(m+1)2≥0,即δ≥0,∴无论m取什么实数,方程总有实数根.题型4一元二次方程根与系数的关系问题一元二次方程根与系数的关系,也是中考的重点内容,与它有关的代数式计算变化多样,要引起重视.例6 已知方程x2-5x+7=0的两根为x1,x2,求下列代数式的值:(1)(x1-1)(x2-1);(2)+ ;(3)+ .解:由根与系数的关系,得x1+x2=5,x1x2=7.(1)(x1-1)(x2-1)=x1x2-(x1+x2)+1=7-5+1=3.(2)+ = = .(3)+ =(x1+x2)2-2x1x2=52-2×7=11.点评:运用根与系数的关系求参数的值时,所求参数的值一定要保证方程有实数根.因此,根与系数的关系要与判别式δ≥0结合起来用.题型5一元二次方程的应用问题列一元二次方程解应用题,关键是审清题意,发现题目中的等量关系,并将其“译”成数学式子.一般步骤是:①审题,明确已知与未知;②设未知数,可直接设或者间接设;③列方程,把等量关系转化为方程;④解方程,检验后写出答语.例7 一个三位数,十位上的数字比个位上的数字大3,百位上的数字等于个位上数字的平方.若这个三位数比它的个位上的数字与十位上的数字之积的25倍大202,求这个三位数.解:设个位数字为x,则十位上的数字为x+3,百位上的数字为x2.由题意,得100x2+10(x+3)+x=25x(x+3)+202.整理,得75x2-64x-172=0. 解得x1=2,x2=- (不合题意,舍去).∴x+3=5,x2=4.这个三位数是452.例8 某农具厂今年1月份生产一批甲、乙两种型号的新式农具,其中乙型农具16台.从2月份起,甲型农具每月增产10台,乙型农具按相同的增长率逐月递增.又知2月份甲、乙两种型号农具的产量之比为3∶2,3月份两种型号的农具产量之和为65台.求乙型农具每月的增长率和甲型农具1月份的产量.分析:本题要求的有两个未知数,间接的未知数有多个,但2月份的产量起承上启下的作用,因此可以设2月份甲型农具的产量为3x台,见下表.解:设2月份甲型号农具的产量为3x台.由题意,得(3x+10)+1+ •2x=65.整理,得x2+12x-220=0. 解得x1=10,x2=-22(不合题意,舍去).∴×100%=25%,3x-10=20.答:乙型农具每月的增长率为25%,甲型农具1月份的产量为20台.注:“本文中所涉及到的图表、注解、公式等内容请以pdf格式阅读原文。
一元二次方程资料1
一元二次方程方程定义:只含有一个未知数(即“元”),并且未知数的最高次数为2(即“次”)的 整式方程叫做一元二次方程。
标准形式:ax²+bx+c=0(a ,b ,c 为常数,x 为未知数,且a≠0)。
特点:(1)有且只含有一个未知数; (2)且未知数的最高次数是2; (3)是整式方程。
备注:要判断一个方程是否为一元二次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为 ax ²+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
一、选择题1.下列方程①21x y +=,②()253x x x x -=-,③211t t+=,④2560x x --=,⑤x ²-2=0⑥ax ²+bx+c=0 ⑦(m-1)x ²+4x+2=0 ⑧x ²-2=(x+3)²其中是一元二次方程的是( )A.0个B.1个C.2个D.3个 2.已知2x =-是方程280x m +-=的根,则m 的值是( ) A .12B .4C .-4D .0 3.已知关于x 的方程()2230mx m x m +--+=,则它是( ) A .一元二次方程B .一元一次方程C .一元二次方程或一元一次方程D .无法讨论确定二、填空题1.若()2121m x mx --=是关于x 的一元二次方程,则m 的取值范围是 。
2.把方程2352x x =-化为一元二次方程的一般形式为 。
3.已知关于x 的方程260x mx +-=的一个根是2,则m = 。
4.(x-7)(2x+1)=7 中的二次项是 ,一次项系数是 ,常数项是 。
5.已知x a =是方程250x x --=的一个根,则代数式2a a -= 。
6.已知2x =-246x x --= 。
三、解答题1. 135)32(12=+-++x x m m m 是一元二次方程,则m 为何值?2.关于x 的方程04)3()3(1=+++--x a x a a ,a 为何值时,(1)是一元一次方程(2)是一元二次方程?3.(m ²-1) x ²+( m -1) x -1=0是关于x 的一元一次方程,求m 的取值及方程的解。
一元二次方程解法及其配套练习-精心--方法全面-例题经典
一元二次方程解法及其配套练习定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项.解法一: ——直接开方法适用围:可解部分一元二次方程直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,我们也可以用直接开方法来解方程。
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即所以,方程的两根x1,x2例2.市政府计划2年将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.例3.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同C时出发,几秒后△PBQ的面积等于8cm2?解:设x秒后△PBQ的面积等于8cm2 则PB=x,BQ=2x依题意,得:12x·2x=8x2=8根据平方根的意义,得x=±即x1,x2可以验证,和都是方程12x·2x=8的两根,但是移动时间不能是负值.所以PBQ的面积等于8cm2.例4.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=p<0则方程无解配套练习题一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13B.(x-13)2=-89,原方程无解C .(x-23)2=59,x 1=23x 2 D .(x-23)2=1,x 1=53,x 2=-13二、填空题1.若8x 2-16=0,则x 的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a 、b 2-12b+36=0,那么ab 的值是_______.三、综合提高题1.解关于x 的方程(x+m )2=n .2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗?(2)鸡场的面积能达到210m 2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少? 列出方程化简后得:x 2+6x-16=0 x 2+6x-16=0移项→x 2+6x=16两边加(6/2)2使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移 一次系数一半方两边加上最相当例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略例2.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:12(8-x)(6-x)=12×12×8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.例3.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=12(6x+7)+12,x+1=16(6x+7)-16,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=12y+12,x+1=16y-16依题意,得:y2(12y+12)(16y-16)=6去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72,y4-y2=72(y2-12)2=2894y2-12=±172y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-2 3当y=-3时,6x+7=-3 6x=-10 x=-5 3所以,原方程的根为x1=-23,x2=-53CAQP例5. 求证:无论y 取何值时,代数式-3 y 2+8y-6恒小于0. 解:略配套练习题一、选择题1.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0C .(x-13)2=89D .(x-13)2=1092.下列方程中,一定有实数解的是( ).A .x 2+1=0 B .(2x+1)2=0 C .(2x+1)2+3=0 D .(12x-a )2=a 3.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-24.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-35.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ).A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-116.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ). A .1 B .-1 C .1或9 D .-1或9二、填空题1.方程x 2+4x-5=0的解是________.2.代数式2221x x x ---的值为0,则x 的值为________.3.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,所以求出z 的值即为x+y 的值,所以x+y 的值为______.4.如果x 2+4x-5=0,则x=_______.5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数.6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 2x2.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.3.如果x 2-4x+y 2,求(xy )z的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元? 5.已知:x 2+4x+y 2-6y+13=0,求222x yx y-+的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件. ①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用围:可解全部一元二次方程首先,要通过Δ=b 2-4ac 的根的判别式来判断一元二次方程有几个根 1.当Δ=b 2-4ac<0时 x 无实数根(初中)2.当Δ=b 2-4ac=0时 x 有两个相同的实数根 即x1=x2 3.当Δ=b 2-4ac>0时 x 有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:求根公式的推导用配方法解方程(1) ax 2-7x+3 =0 (2)a x 2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=2b a -+,x 2=2b a--(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a)2 即(x+2b a)2=2244b aca -∵4a 2>0,4a2>0,当b 2-4ac ≥0时2244b aca-≥0∴(x+2b a)2)2直接开平方,得:x+2ba = 即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
一元二次方程综合练习
一元二次方程 1. 一元二次方程的概念:(1)注意一元二次方程定义中的三个条件:有一个未知数,含未知数的最高次是2,整式方程,是判断一个方程是否是一元二次方程的依据。
(2)强调:要先把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0),才能确定a 、b 、c 的值。
2. 一元二次方程的解法:(1)直接开平方法:()它是以平方根的概念为基础,适合于形如,类型的方程。
ax b c a c +=≠≥200()(2)配方法:()先把二次项系数化为,再对进行配方,即在方程两边同时加上一次项系数一半的平方,就能配出一个含有未知数的一次式的完全平方式,变形为:的形式,再直接开平方解方程。
1x px p x m n n 22220+⎛⎝ ⎫⎭⎪+=≥()(3)公式法:用配方法推导求根公式,由此产生了第三种解法公式法,它是解一元二次方程的主要方法,是解一元二次方程的通法。
关键是把方程整理成一元二次方程的一般形式,确认、、的值(特别要注意正、负号),求出的值(以便决定有无必要代入求根公式),若,则代入求根公式。
a b c b ac b ac x b b aca∆=--≥=-±-22244042(4)因式分解法:适用于方程左边易于分解,而右边是零的方程。
我们在解一元二次方程时,要注意根据方程的特点,选择适当的解法,使解题过程简捷些。
一般先考虑直接开平方法,再考虑因式分解法,最后考虑公式法。
对于二次项系数含有字母系数的方程,要注意分类讨论。
3. 一元二次方程根的判别式()来判断。
即根的情况可以用判别式一元二次方程∆-≠=++ac b a c bx ax 400 22 当时,方程有两个不相等的实数根。
b a c 240-> 当时,方程有两个相等的实数根。
b a c 240-=当时,方程没有实数根。
ba c 240-<根的判别式△=b 2-4ac 的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围。
22页一元二次方程__同步训练含答案
一元二次方程 同步训练21.1 一元二次方程(1) 一元二次方程的概念一、学习要求:通过学习感受现实生活和学习环境中方程知识的实际意义、体会建模思想,接受和理解一元二次方程及相关概念,通过交流、辨析,能将方程化为一般形式,认识二次项系数、一次项系数、常数项等概念,并注意系数的符号.二、同步训练: (一)填空题:1.一元二次方程5x 2=3x +2的一般形式是____________,它的二次项系数是______,一次项系数是______,常数项是______.2.已知方程(m +1)x 2-2mx =1是一元二次方程,那么m ≠______.3.当m ______时,方程223213x x mx =--不是关于x 的一元二次方程. 4.已知:方程(m 2-4)x 2-6(m -2)x +3m -4=0,当m ______时,它是一元二次方程,当m ______时,它是一元一次方程.(二)选择题:5.把方程(2x +1)(3x +1)=x 化成一般形式后,一次项系数和常数项分别是( ) (A)4,1 (B)6,1 (C)5,1 (D)1,6 6.下列方程中,一元二次方程是( )(A)2x 4-5x 2=0(B)(2x 2+7)2-3=0 (C)012=+xx(D)0312142=++-x x 7.把方程(2x -1)(3x +2)=x 2+2化成一般形式后,二次项系数和常数项分别是( )(A)5,-4 (B)5,1 (C)5,4 (D)1,-4 (三)解答题:8.根据题意,列出方程:(1)一个三角形的底比高多2cm ,三角形面积是30cm 2,求这个三角形的底和高.(2)两个连续正整数的平方和是313,求这两个正整数.(3)已知两个数的和为6,积为7,求这两个数.9. 已知关于x 的一元二次方程3(x -k )2+4k -5=0的常数项等于1,则所得关于k 的一元二次方程的一般形式是什么?21.1 一元二次方程(2) 一元二次方程的进一步理解一、学习要求:进一步理解一元二次方程的概念,灵活掌握二次项系数、一次项系数、常数项,体会一元二次方程与现实生活的关系.二、同步训练: (一)填空题:1.方程(x +1)(x +2)=3化为一般形式是____________. 2.两个连续奇数的积是255,求这两个数,若设较小奇数为x ,则根据题意,可得方程为____________.3.一个矩形的长比宽多2cm ,面积为30cm 2,求这个矩形的长与宽,设矩形的长为x cm ,列出方程为____________.(二)选择题:4.下列各方程中,一定是关于x 的一元二次方程的是( ) (A)mx 2+8x =6x (x -1)-2 (B)ax 2+bx +c =0(C)(m 2+1)x 2-5x +3=0(D)x1+5x +8=0 5.下列各方程中,一定是关于x 的一元二次方程的个数是( )①1232=-x x ;②mx 2+nx -4=0;③11-=-x x x ;④x 2-x 2(1+x 2)-2=0 (A)4个 (B)3个 (C)2个 (D)1个6.长50cm ,宽30cm 的矩形薄铁片,在四个角截去四个大小相同的正方形,做成底面积为1200cm 2的无盖长方体盒子.设截去的小正方形边长为x cm ,列出的正确方程是( )(A)(50-2x )(30-2x )=1200 (B)(50-x )(30-x )=1200 (C)(50-2x )(30-x )=1200 (D)50 ×30-4x 2=1200 (三)解答题:7.根据下列问题,列出方程(不必求解).学校有一块长方形空地,长42米,宽30米,准备在中间开辟花圃,四周修建等宽的林荫小道,使小道的面积和花圃面积相等,求小道的宽.8. 根据方程:(50+x )(40+x )=3000,你能结合身边的实际,编一个应用问题吗?试试看.21.1 一元二次方程(3) 直接开平方解一元二次方程一、学习要求:在进一步理解一元二次方程的有关概念的基础上,结合平方根的意义,初步体会利用开平方可以将一些一元二次方程降次转化为一元一次方程.二、同步训练: (一)填空题:1.x (x +2)=5(x +2)的一般形式是_______,其中二次项系数是______,一次项系数是______,常数项是______.2.若x =2满足方程x 2-12x -m =0,则m =______. 3.形如方程x 2=a (a ≥0)的解是______.4.形如方程(x +m )2=n (n ≥0)的解是______. (二)选择题:5.方程(x +2)2=9的解为( ) (A)x 1=9,x 2=-9 (B)x 1=9,x 2=0 (C)x 1=-9,x 2=0 (D)x 1=1,x 2=-56.方程(x +3)2-9=0的解的情况为( ) (A)x 1=3,x 2=-3 (B)x 1=0,x 2=-6 (C)x 1=9,x 2=-6 (D)x 1=6,x 2=07.方程4x 2-1=0的根的情况是( )(A)x =±2(B)0,2121=-=x x (C)21±=x (D)无实根(三)解答题: 8.解下列方程: (1)x 2=169; (2)5x 2=125; (3)(x +3)2=16;(4)(6x -7)2-128=0.9. 若等式24x a ·(a 1-2x)4=a 9成立,求x 的值.21.2 降次——解一元二次方程21.2.1 配方法一、学习要求:在掌握了利用求平方根的方法解一元二次方程以后,结合完全平方的特征,体会转化思想:即配方转化降次求解一元二次方程.理解配方法的要领,掌握配方法的基本步骤.二、同步训练: (一)填空题: 1.根据公式a 2±2ab +b 2=(a ±b )2,填充下列各式:(A)x 2+8x +______=(x +______)2 (B)x 2-2x +______=(x -______)2 (C)x 2+x +______=(x +______)2 (D)x 2-x +______=(x -______)2 (二)选择题:2.用配方法解方程x 2-3x -1=0时,以下解法中的配方过程正确的是( ) (A)x 2-3x -1=0 (B)x 2-3x -1=0 (C)x 2-3x -1=0 (D)x 2-3x -1=0x 2-3x +9=9+1 x 2-3x +9=1 1494932+=+-x x1232332+=+-x x(x -3)2=10 (x -3)2=1 413)23(2=-x 25)23(2=-x (三)解答题:3.用配方法解下列方程: (1)x 2-6x +4=0; (2)x 2+5x -6=0; (3)x 2+6x +8=0;(4)x 2+4x -12=0; (5)(2x -3)2-3=0; (6)x 2+2mx -n 2=0.4. 求证:不论a 、b 取何实数,多项式a 2b 2+b 2-6ab -4b +14的值都不小于1.21.2.2 公式法(1)一、学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.二、同步训练: (一)填空题: 1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______. 3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______.(二)选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( ) (A)(x -1)2=m 2+1 (B)(x -1)2=m -1 (C)(x -1)2=1-m (D)(x -1)2=m +1 5.方程x 2=x +1的解是( )(A)1+=x x(B)251±=x (C)1+±=x x(D)251±-=x 6.方程x 2-6x -3=0的解的情况为( ) (A)有两个相等的实数根 (B)有两个不等的实数根 (C)有一个实数根 (D)没有实数根 7. 在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( ) (A)m =0,n =0 (B)m ≠0,n ≠0 (C)m ≠0,n =0 (D)m =0,n ≠0 (三)解答题:8.用公式法解方程: (1)2x 2+2x =1; (2)5x +2=3x 2; (3)x (x +8)=16; (4)(2y +1)(3y -2)=3.21.2.2 公式法(2)一、学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率.二、同步训练: (一)填空题:1.方程x 2+x -3=0的两根是____________. 2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________.(二)选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( )(A)p =1 (B)p >0 (C)p ≠0 (D)p 为任意实数5.已知x 2-3x +1=0,则xx 1的值为( ) (A)3(B)-3 (C)23(D)16.下列方程中,两实根之和等于零的是( ) (A)9x 2+4=0 (B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6 (三)解答题: 7.解下列方程: (1)x 2+3x -4=0; (2)x 2-x -1=0; (3)-2x 2=5x -3; (4)3x 2+2x =4.8. 一根长36cm 的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm 的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.21.2.3 因式分解法(1)一、学习要求:在理解了利用求平方根的思想来达到降次求解一元二次的方程之后,因式分解又是一种转化的思想,来实现将一元二次方程降次为一元一次方程求解.二、同步训练:(一)填空题:1.当x=3时,(x-3)(x+3)的值为____________.2.方程x(x-3)=0的根为______________.3.方程x2=x的右边化为零后变为________,左边分解因式后化为______,原方程的解为______(二)选择题:4.关于x的方程(m2-m)x2+mx+n=0是一元二次方程的条件是( )(A)m≠0(B)m≠1(C)m≠0或m≠1(D)m≠0且m≠15.方程x2=2x的解是( )(A)x=0 (B)x=2 (C)x=0或x=2 (D)x=±26.方程(x-3)2=3-x的解是( )(A)x=3 (B)x=2或x=3 (C)x=2 (D)x=4(三)解答题:7.用因式分解法解方程:(1)(x-1)(x-2)=0;(2)x2-3x=0;(3)x2-4x+4=0;(4)x2-5x+4=0.8. 若等腰三角形的两边长分别是方程x2-9x+14=0的两根.那么这个等腰三角形的周长是多少?21.2.3 因式分解法(2)一、学习要求:进一步体会利用因式分解法降次的基本思想,掌握因式分解法求解一元二次方程.二、同步训练:(一)填空题:1.分解因式:2x2+5x-3=____________.2.用因式分解法解方程x2-5x=6,得方程的根为____________.3.方程2(x+3)2-5(x+3)=0的解为______.最简便的解法是____________.4.若代数式x2+6x的值为零,则x的值为______.(二)选择题:5.已知(x+y)(x+y+2)=15,则x+y的值为( )(A)3或5 (B)3或-5 (C)-3或5 (D)-3或-56.下列方程:①x2-5x-6=0;②x2-6x-5=0;③x2+5x+6=0;④x2+6x+5=0.适宜用因式分解求解的是( )(A)①、②、③、④(B)①、③、④(C)①、②、③(D)②、③、④(三)解答题:7.解下列方程:(1)9(x-3)2=25;(2)6x2-x=1;(3)x2+4x-96=0;(4)x(x-1)=2;(5)4(2x-1)2=9(x-2)2;(6)(2x-3)2-2(3-2x)=8.8. 当k是什么整数时,方程(k2-1)x2-6(3k-1)x+72=0只有正整数根?21.2 解一元二次方程综合一、学习要求:在掌握了配方法、公式法及因式分解法求解一次二次方程之后,同学们应注意灵活地应用这些知识.二、同步训练: (一)填空题:1.方程0)75.0)(5.0()43(2=--+-x x x 的较小根是____________.2.已知单项式xxb a 3222-与4221b a -是同类项,则x 的值是__________. 3.++x x 222______=(x +______)2. 4.4x 2-______+9=(______-3)2. (二)选择题:5.方程x (x 2+1)=0的实数根的个数是( ) (A)0 (B)1 (C)2 (D)36.下列方程中,两根分别为-1+3和-1-3的是( ) (A)0)31)(31(=--++x x(B)0)31)(31(=+--+x x(C)0)31)(31(=--+-x x (D)0)31)(31(=++-+x x (三)解答题: 7.解下列方程 (1)x 2-6x +4=0; (2)x 2-22x -3=0; (3)2y (y +2)=(y +2);(4)(2x -1)2-4=0; (5)3y 2+1=23y ; (6)(2x -1)(x -2)=-1.8. 小明养了一群鸽子,小亮问小明养了几只鸽子,小明说:“如果你给我一只鸽子,那么鸽子总数的平方是鸽子总数的9倍.”你知道小明现在有几只鸽子吗?阅读与思考——一元二次方程的近似解与连分数学习要求:将一些具体值代入所要解的一元二次方程,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,逐步估计出一元二次方程的近似解.这就是求一元二次方程近似解的基本要领.下面介绍另外一种估计一元二次方程近似解的方法.方程:x 2-3x -1=0,因为x ≠0,所以先将其变形为x =x 13+,用x 13+代替x ,得xxx 131313++=+=反复若干次用x 13+代替x ,就得到xx +++++++=31313133313形如上式右边的式子称为连分数.可以猜想,随着替代次数的不断增加,右式最后的x1对整个式子的值的影响将越来越小,因此可以根据需要,在适当的时候把x 1忽略不计,例如,当忽略x =x13+中的x 1时,就得到x =3,当忽略xx 1313++=的x 1时,就得到313+=x ;如此等等.于是就可以得到一系列分数:,,3131313,31313,313,3 ++++++即:.30303.333109,3.31033,333.3310,3 ===可以发现它们越来越趋于方程x 2-3x -1=0的正根.同学们不妨利用此方法求一求方程x 2-5x -1=0的近似解.21.3 实际问题与一元二次方程(1)一、学习要求:在学习一元二次方程的解法的过程中,同学们应注意与实际问题相联系,逐步培养用方程的思想与知识解决实际问题的能力,培养学数学用数学的意识.二、同步训练:(一)填空题:1.某公司10月份产值为a 万元,比5月份增长20%,则5月份产值为____________.2.一个六位数,低位上的三个数字组成的三位数是a ,高位上的三个数字组成的三位数是b ,现将a ,b 互换,则得到的六位数是____________3.一项工程,甲班干完需m 天,乙班干完需(m +2)天,甲、乙两班合干,完成工程需___________天.(二)选择题:4.甲走20天的路程乙走30天,已知乙每天走15千米,问甲每天走多少千米?在下列几种设未知数的写法中,正确的是( )(A)设甲每天走x (B)设甲速为x 千米 (C)设甲走x 千米 (D)设甲每天走x 千米5.一件工作,甲独做4天完成,乙独做6天完成,则二人合做( )天完成.(A)6 (B)5 (C)512 (D)2(三)解答题:6.列方程解应用题:(1)两个数的差为4,它们的积为45,求这两个数.(2)一个直角三角形的三条边的长是三个连续的整数,求三条边的长.(3)某林场第一年造林200亩,第一年到第三年共造林728亩,求后两年造林面积的平均增长率.7. 我国古代数学家杨辉所著的《田亩比类乘除捷法》中有这样一题:直田积(矩形面积)八百六十四步(平方前),只云长阔(长与宽)共六十步,问阔及长各几步?21.3 实际问题与一元二次方程(2)一、学习要求:进一步运用方程解决实际问题,逐步培养逻辑思维能力和分析问题、解决问题的能力.二、同步训练:(一)填空题:1.某公司今年的年产值是1000万元,若以后每年的平均增长率为10%,则两年后该公司的年产值是______万元.2.制造某种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是每件81元,则平均每次降低成本的百分率是______.3.一块长方形硬纸片,在它的四个角上截去四个小正方形,折成一个没有盖子的长方体盒子,已知纸片的长为40cm,宽为32cm,要使盒子的底面积为768cm2,则截去的小正方形边长应为______cm.(三)解答题:4.有一个两位数恰等于其个位与十位上的两个数字乘积的3倍,已知十位上的数字比个位上的数字小2,求这个两位数.5.某电冰箱厂今年每个月的产量都比上个月增长同样的百分数.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月增长率.6.某养鸡场的矩形鸡舍一边靠墙,另三边用竹篱笆围成,现有材料可制作竹篱笆13m,若欲围成20m2的鸡舍,鸡舍的长、宽应各是多少?7. 第6题中,利用13m的竹篱笆,能围成21m2的鸡舍吗?能围成22m2的鸡舍吗?若能围成,求出鸡舍的长和宽,若不能围成,说明理由.21.3 实际问题与一元二次方程(3)一、学习要求:通过应用一元二次方程解决一些实际问题,进一步体会学数学用数学的意识,培养分析问题和解决问题的能力.二、同步训练:(二)选择题:1.已知两个连续奇数的积为63,求这两个数.设其中一个数为x ,甲、乙、丙三同学分别列出方程 ①x (x +2)=63 ②x (x -2)=63 ③(x -1)(x +1)=63其中正确的是( )(A)只有① (B)只有② (C)只有①② (D)①②③都正确2.某机床厂今年一月份生产机床500台,三月份生产机床720台,求二,三月份平均每月的增长率,设平均每月增长的百分率为x ,则列出方程正确的是( )(A)500+500x =720 (B)500(1+x )2=720 (C)500+500x 2=720 (D)(500+x )2=7203.生物兴趣小组的同学,将自己采集到的标本向本组其他组员各赠送一件,全组共互赠了182件,全组共有多少名同学?设全组有x 名同学,则根据题意列出的方程是( )(A)x (x +1)=182 (B)x (x -1)=182 (C)x 21(x +1)=182 (D)x 21(x -1)=182 4.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二月、三月平均每月的增长率是多少.设每月的平均增长率为x ,根据题意列方程为( )(A)50(1+x )2=175 (B)50+50(1+x )2=175(C)50(1+x )+50(1+x )2=175 (D)50+50(1+x )+50(1+x )2=175(三)解答题:5.为响应国家“退耕还林”的号召,改变某省水土流失严重的现状,2004年某省退耕还林1600公顷,到2006年全年退耕还林1936公顷,问这两年平均每年退耕还林的增长率是多少?6.某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券的年利率高2个百分点,到期后,此人将乙种债券兑换人民币共得本息和112元,求甲种债券的年利率.7. 在长为a 的线段AB 上有一点C ,且AC 是AB 和BC 的比例中项,试求线段AC 的长.*21.4 观察与猜想——一元二次方程根与系数的关系一、学习要求:一元二次方程根与系数的关系作为观察与猜想提供给同学们,同学们还是应认真研究,交流体会,它能更深入地认识和理解一元二次方程.学有余力的同学还可以学习它在其它方面的应用.二、同步训练:(一)填空题:1.如果x 1,x 2是方程2x 2+4x -1=0的两根,那么x 1+x 2=______,x 1·x 2=______.2.若α,β是一元二次方程x 2-3x -2=0的两个实数根,则11αβ+=______. 3.若α,β是方程x 2-3x =5的两根,则α2+β2-αβ的值是______4.若x 1,x 2是方程2x 2+ax -c =0的两个根,则x 1+x 2-2x 1x 2等于______(结果用a ,c 表示).(二)选择题:5.一元二次方程ax 2+bx +c =0有一个根是零的条件是( )(A)b 2-4ac =0 (B)b =0 (C)c =0 (D)c ≠06.若α,β是方程2x 2+3x -4=0的两根,则++的值是( )(A)-7 (B)213- (C)21- (D)77.已知一元二次方程5x 2+kx -6=0的一个根是2,则方程的另一个根为( ) (A)53 (B)53- (C)-3 (D)38.已知一元二次方程2x 2-3x +3=0,下列说法中正确的是( )(A)两个实数根的和为23-(B)两个实数根的和为23 (C)两个实数根的积为23 (D)以上说法都不正确 (三)解答题:9.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系计算下列各式的值: (1);221221x x x x +(2)(x 1-x 2)2.10.若关于x 的方程2x 2+(k +1)x +k +2=0的一个根是2,求它的另一个根.11. 已知关于x 的方程x 2-2(m -2)x +m 2=0.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.一元二次方程 数学活动数学活动(1)一、学习要求:通过合作、交流、归纳与探索,挖掘一元二次方程两根与一些二次三项式的分解因式之间的内在联系,认识二次三项式的因式分解,并进一步理解一元二次方程的根.二、做一做:我们已经学过一些特殊的二次三项式的因式分解,如3x 2-2x =x (3x -2),x 2-9=(x +3)(x -3),x 2+4x +4=(x +2)2但对于一般的二次三项式ax 2+bx +c (a ≠0),你能把它分解因式吗?x 1,x 2,则二次三项式分解因式为ax 2+bx +c =_________________________.你能说说其中的道理吗?根据你们得到的结论,试一试将下列因式分解.(1)x 2+20x -69; (2)24x 2-2x -35; (3)x 2-x -1; (4)2x 2-6x +3.数学活动(2)一、学习要求:通过合作、交流利用方程的知识解决一些实际问题,体会建立数学模型、学数学用数学的意识,提高学习基本素养.二、同步训练:1.如果与水平面成45°角向斜上方投掷标枪,那么标枪飞行的水平距离S (单位:m)与标枪出手的速度v (单位:m/s)之间大致有如下关系:28.92+=v S .某同学按这种要求投掷标枪,标枪飞行的水平距离为42m ,求标枪出手时的速度(结果精确到0.1m/s).2.某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元?3.小明将勤工俭学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品,剩下的450元连同应得税后利息又全部按一年定期存入银行.如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(利息税为利息的20%,结果精确到0.01%).数学活动(3)一、学习要求:通过合作、交流、实践与探索,初步学习把现实世界的问题化为纯数学的问题,即建立数学模型,培养创新精神与实践能力.二、课题:洗衣服的数学问题.现在衣物已打好了肥皂,揉搓得很充分了,再拧一拧,当然不可能完全把水拧干,设衣服上还残留含有污物的水1斤,用20斤清水来漂洗,怎样才能漂得更干净?(1)如果把衣服一下放到20斤清水里,那么连同衣服上那1斤水,一共21斤水,污物均匀分布在这21斤水里,拧干后,衣服上还有1斤水,所以污物残存量是原来的 211如何洗,效果更佳呢?(2)如果衣服上残存水量是1.5斤或2斤,洗衣用水量是37斤,那么又该怎么洗法?第二十一章 一元二次方程 小结一、学习要求:通过复习,全面认识和理解一元二次方程的有关概念,掌握用公式法、因式分解法求解一元二次方程.理解配方法原理及这一思想的含意,会用方程的思想解决一些实际问题,认识根与系数之间的关系.二、同步训练:(一)填空题:1.方程(2x -1)(3x +2)=x 2+2化为一般形式后,a =______,b =______,c =______.2.y 2-4y +______=(y -______)2.3.+-x x 252______=(x -______)2. 4.如果关于x 的一元二次方程x 2+px +q =0的两个根是x 1=1,x 2=3,那么这个一元二次方程是______.5.等腰△ABC 两边的长分别是一元二次方程x 2-5x +6=0的两个解,则这个等腰三角形的周长是______.(二)选择题:6.①,542=-x ②xy =1,③2122=+x x;④0312=x ,以上方程中,是一元二次方程的有( ) (A)0个 (B)1个 (C)2个 (D)3个7.x 2-3=3x 化为一般式后,a ,b ,c 的值分别为( )(A)0,-3,-3 (B)1,-3,3 (C)1,3,-3 (D)1,-3,-38.解方程3x 2+27=0得( )(A)x =±3 (B)x =3 (C)x =-3 (D)无实根9.方程0)21()21(2=--+x x 的解是( ) (A)332,021-==x x (B)223,121-==x x (C)322,021-==x x(D)x 1=0,x 2=110.下面是李刚同学在一次测验中解答的填空题,其中答对的是( ) (A)若x 2-8=0,则22=x (B)方程x (2x -1)=2x -1的解为x =1(C)若方程x 2+2x +k =0有一个根是-3,则k =-3 (D)若分式1232-+-x x x 的值等于零,则x =1或2 (三)解答题:11.用适当的方法解下列方程: (1);17.052=+x (2)4x 2+3x =0; (3)x 2-25x +144=0;(4)(3y -2)2-5(3y -2)=14; (5)x 2-6x +6=0;(6)(x +6)(x -7)=14.12.一个两位数的两个数字之和为9,把个位数与十位数字互换后所得的新数乘以原数,积为1458,求这个两位数.13.有一个两位数等于其各位数字之和的4倍,其中十位数字比个位数字小2,求此两位数.14.已知关于x 的方程x 2-bx -a =0有两等根,且一次函数y=ax +b 的图像如图所示,又a 、b 满足5||2=--b a b ,求a 2+b 2的值.15.爱华中学从2003年到2006年四年内师生共植树2008棵,已知该校2003年植树353棵,2004年植树500棵,如果2005年和2006年植树棵数的年增长率相同,那么该校2006年植树多少棵?一元二次方程 全章测试一、填空题(每题6分,满分36分)1.一元二次方程的一般形式是________________,当一次项系数为零时,其形式为________________.2.方程2x 2=9的二次项系数是________________,一次项系数是________________常数项是________________二、选择题:3.方程①5x 2-38=x ,②4x 2-5y +9=0,032=x ③,0312=+-x x ④中,是一元二次方程的有( ) (A)①② (B)① (C)①③④ (D)①③4.把方程x 2+3=4x 配方,得( )(A)(x -2)2=7 (B)(x +2)2=1 (C)(x -2)2=1 (D)(x +2)2=25.方程x 3=3x 的所有的解为( )(A)0 (B)0,3 (C)3,3- (D)3,3,0-6.方程(x +m )2=n 2的解为( )(A)x =-m ± n (B)x =m ±n (C)x =m +n (D)x =-m +n三、解答题:7.解下列方程:(每题6分,满分36分)(1)x 2-3x +2=0; (2)(y -2)2=3; (3)(2x +1)2+3(2x +1)=0;(4)x 2-4x =8; (5)6x 2-4=2x ; (6)3x 2+5(2x +1)=0.8.(9分)一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数,求这个两位数.9.(9分)某发电厂规定,该厂家属区的每户居民如果一个月的用电量不超过akWh ,那么这个月这户居民只要交10元电费.如果超过akWh ,则这个月除仍要交10元电费外,超过部分还要按100a 元/kWh 交费.下表是一户居民3月和410.(10分)一次函数y =x +b 与反比例函数xk y 3+=图象的交点为A (m ,n ),且m 、n (m <n )是关于x 的一元二次方程kx 2+(2k -7)x +k +3=0的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求点A 的坐标与一次函数、反比例函数的解析式.一元二次方程 同步训练 参考答案21.1 一元二次方程(1) 一元二次方程的概念1.5x 2-3x -2=0,5,-3,-2. 2.-1 3.=3 4.≠±2, =-2 5.A 6.D 7.A 8.(1)设宽为x cm ,x (x +2)=15 (2)设两个连续的整数分别为x ,x +1.x 2+(x +1)2=313.(3)设一个数为x .x (6-x )=7 9. 3k 2+4k -6=021.1 一元二次方程(2) 一元二次方程的进一步理解1.x 2+3x -1=0 2.x (x +2)=255 3.x (x -2)=30 4.C 5.D 6.A 7.设小道的宽为x 米.(42-2x )(30-2x )=304221⨯⨯ 8. 略 21.1 一元二次方程(3) 直接开平方解一元二次方程1.x 2-3x -10=0,1, -3, -10 2.-20 3.a x ±= 4.n m x ±-= 5.D 6.B 7.C8.(1)x =±13 (2)x =±5 (3)x 1=1,x 2=-7 (4)6287±=x 9. 25或21- 21.2.1 配方法1.(A)16,4 (B)1,1 (C)21,41 (D).21,41 2.C 3.(1),531+=x 532-=x (2)x 1=1,x 2=-6 (3)x 1=-2,x 2=-4 (4)x 1=2,x 2=-6 (5)233±=x (6)22n m m +±- 4. 提示:将a 2b 2+b 2-6ab -4b +14进行配方为a 2b 2-6ab +9+b 2-4b +4+1=(ab -3)2+(b -2)2+1,可证21.2.2 公式法(1)1.4x 2+7x +3=0,4,7,3 2.b 2-4ac 3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t 4.D 5.B 6.B 7.C 8. (1)231±-=x (2)2,3121=-=x x ,(3)x 244±-= (4)65,121-==y y 21.2.2 公式法(2)1.2131,213121--=+-=x x 2.x 1=-2,x 2=1 3.y 2+4y -140=0 4.C 5.A 6.D 7.(1)x 1=1,x 2=- 4 (2)251,25121-=+=x x (3)211=x ,x 2=- 3 (4)3131,313121--=+-=x x 8. 长:cm 2219+ 宽cm 2219-,或长cm 2339+ 宽cm 2339- 21.2.3 因式分解法(1) 1.0 2.x 1=0,x 2=3 3.x 2-x =0,x (x -1)=0,x 1=0,x 2=1 4.D 5.C 6.B 7.(1)x 1=1,x 2=2 (2)x 1=0,x 2=3 (3)x 1=x 2=2 (4)x 1=4,x 2=1 8. 1621.2.3 因式分解法(2)1.(2x -1)(x +3) 2.x 1=6,x 2=-1 3.-3,21- 因式分解 4.0或-6 5.B 6.B 7.(1)34,31421==x x (2)31,2121-==x x (3)x 1=8,x 2=-12 (4)x 1=2,x 2=-1 (5)78,421=-=x x(6)25,2121=-=x x 8. 1,2,3.提示:分两种情况讨论:(1)当k 2-1=0,即k =±1,检验当k =1时,x =6,k =-1时,x =-3(不合题意舍去) (2)k 2-1≠0时,用因式分解法可得,16,11221-=+=k x k x 因k 为整数,要使x 1,x 2,都为整数,只有k =2,k =3,综上所述k =1,2,321.2 解一元二次方程综合1.85 2.4或-1 3.2,2 4.12x ,2x 5.B 6.D 7.(1)53,5321-=+=x x (2)52,5221-=+=x x (3)21,221=-=y y (4)23,2121=-=x x (5)3321==y y (6)1,2321==x x 8. 8只 21.3 实际问题与一元二次方程(1)1.a 65万元 2.1000a +b 3.22)2(++m m m 4.D 5.C 6.(1)5,9或-5,-9 (2)3,4,5 (3)20% 7. 阔为24步,长为36步21.3 实际问题与一元二次方程(2)1.1210 2.10% 3.4 4.24 5.20% 6.长8m ,宽2.5m 或长5m ,宽4 m .7. 能围成21m 2的,长为7m ,宽为3m ,也可为长6m ,宽3.5m ,不能围成22m 2的21.3 实际问题与一元二次方程(3)1.C 2.B 3.B 4.D 5.10% 6.10% 7.a 215- *21.4 观察与猜想——一元二次方程根与系数的关系1.-2,21- 2.23- 3.24 4.c a +-2 5.C 6.B 7.B 8.D 9.(1)29 (2)3 10.21- 11. m =-2,提示:由,562221=+x x ,即(x 1+x 2)2-2x 1x 2=56,所以有[2(m -2)]2-2m 2=56 解之m 1=-2,m =10,检验可知m =10不合题意第二十一章 一元二次方程 数学活动(1):(1)(x -3)(x +23) (2)(6x +7)(4x -5) (3))251)(251(--+-x x (4))233)(233(2--+-x x (2):1.标枪出手时的速度约为19.8m/s. 2.每件衬衫应降价20元. 3.这种存款的年利率大约为1.44%(3):略第二十一章 一元二次方程 小结1.5,1,-4 2.4,2 3.45,1625 4.x 2-4x +3=0 5.7或8 6.B 7.D 8.D 9.C 10.C 11.(1)26±=x (2)43,021-==x x (3)x 1=9,x 2=16 (4)y 1=0,y 2=3 (5)33±=x (6)x 1=-7,x 2=8 12.18或81 13.24 14.45 15.605棵第二十一章 一元二次方程 全章测试1. ax 2+bx +c =0(a ≠0),ax 2+c =0(a ≠0)2. 2,0,-93. D4. C5. D6. A7. (1)x 1=1,x 2=2 (2)32,3221-=+=y y (3)211-=x ,x 2=-2 (4)x 1=,322+ 3222-=x (5)321-=x ,x 2=1 (6)3105,310521--=+-=x x 8. 25或36 9. a =50(kWh) 10. (1)k =1,(2)A (1,4),y =x +3,4 yx。
一元二次方程练习题及答案
一元二次方程练习题及答案一元二次方程是初中数学中的重要内容,也是高中数学中的基础知识。
掌握一元二次方程的解法对于学生来说至关重要。
本文将介绍一些一元二次方程的练习题及其答案,帮助读者更好地理解和掌握这一知识点。
一、基础练习题1. 解方程:x^2 - 5x + 6 = 0解答:首先,我们可以尝试因式分解来解这个方程。
将方程因式分解为(x - 2)(x - 3) = 0,得到两个解:x = 2和x = 3。
2. 解方程:2x^2 + 3x - 2 = 0解答:这个方程无法直接因式分解,我们可以使用求根公式来解。
根据求根公式x = (-b ± √(b^2 - 4ac)) / 2a,代入a = 2,b = 3,c = -2,得到两个解:x = 0.5和x = -2。
3. 解方程:3x^2 + 7x + 2 = 0解答:这个方程也无法直接因式分解,我们继续使用求根公式。
代入a = 3,b = 7,c = 2,得到两个解:x = -0.333和x = -2。
二、进阶练习题1. 解方程:4x^2 - 12x + 9 = 0解答:这个方程看起来可以因式分解,但是我们发现无法找到两个数相乘为9且相加为-12的情况。
因此,我们需要使用求根公式。
代入a = 4,b = -12,c = 9,得到两个解:x = 1.5和x = 1.5。
2. 解方程:x^2 + 4 = 4x解答:将方程移项得到x^2 - 4x + 4 = 0。
这个方程可以因式分解为(x - 2)^2 =0,得到一个解x = 2。
3. 解方程:2x^2 - 5x + 2 = 0解答:这个方程无法直接因式分解,我们使用求根公式。
代入a = 2,b = -5,c = 2,得到两个解:x = 0.5和x = 2。
三、挑战练习题1. 解方程:x^2 + 2x + 1 = 0解答:这个方程可以因式分解为(x + 1)^2 = 0,得到一个解x = -1。
2. 解方程:3x^2 + 2x + 1 = 0解答:这个方程无法直接因式分解,我们使用求根公式。
一元二次方程的基本性质和特点
(1)是否存在实数 ,使 成立?若存在,求出 的值;若不存在,请说明理由。
(2)求使 的值为整数的实数 的整数值。
5、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
特尔教育一对一个性化辅导讲义
学科:数学任课教师:授课时间:2014年月日(星期)
姓名
年级
性别
总课时
教
学
目
标
掌握一元二次方程的一般性质和特点。
难
点
重
点
一元二次方程的一般性质,根据考题判断其所考察的知识内容。
课
堂
教
学
过
程
课前检查
作业完成情况:优□良□中□差□
建议:
知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是 ,求另一个根及 值.
课堂
检测
听课及知识掌握情况反馈
教学需:加快□;保持□;放慢□;增加内容□
课后
作业
签
字
教学组长签字:
7.已知:x2+4x+y2-6y+13=0,求 的值.
8,关于x的一元二次方程(a-1) x2+x+a2-1=0的一个根为0,则求a的值
中考实题:
1、已知:关于 的方程 .求证: 取任何实数时,方程总有实数根;
2、已知关于x的一元二次方程 有两个相等的实数根,求 的值
一元二次函数的图像和性质及练习题目
一元二次函数的图象和性质一、【课程要求】1.掌握二次函数的图像和性质,结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.通过三个“二次”掌握函数、方程、不等式之间的关系二、【重点难点】①二次函数的图象和性质,②一元二次方程根的存在性及根的个数,函数最值问题。
三、【命题规律】从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
本节在高考中,重点考察数形结合与等价转化数学思想,通过三个“二次”之间的相互转化,考查函数的方程思想,对于二次函数的区间最值,尤其是含有参数的区间最值问题,要求选择合理的标准分类讨论,。
四、【知识回顾】(一) 二次函数基本知识1.二次函数的定义:形如2(0,,)y ax bx c a a b c =++≠且为常数的函数叫关于x 的二次函数。
2.二次函数的解析式的三种形式(1)一般式(三点式):2(0)y ax bx c a =++≠,配方后为 。
其中顶点坐标为 ,对称轴为 。
(2)顶点式(配方式):20()()y a x h k a ≠=-+,其中顶点坐标为 ,对称轴为 。
(3)两根式(零点式):120()()()y a x x x x a ≠=--,其中12,x x 是方程20ax bx c ++=的两个根,同时也是二次函数的图像与x 轴交点()()12,00x x ,,的横坐标。
求函数解析式时,一般采用 待定系数法3.二次函数的图像和性质(1)二次函数2(0)y ax bx c a =++≠的图像是一条 ,其对称轴为 ,顶点坐标为 ,开口方向由 决定。
(2)二次函数2(0)y ax bx c a =++≠的单调性以对称轴为分界。
当0a >时,函数图像开口向 ,当x ∈ 时,()f x 单调递增,当x ∈ 时,()f x 单调递减,当x = 时,()f x 有最小值。
方程与不等式之一元二次方程技巧及练习题附解析
1 1X 方程与不等式之一元二次方程技巧及练习题附解析根的判别式建立关于 a 的不等式,求出a 的取值范围. 【详解】解:由于原方程是二次方程,所以 •••原方程有两个不相等的实数根, •△ =b2-4ac=4-4a >0 ,解得 a < 1;综上,可得a MQ 且a < 1; 故选D . 【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△> 0?方程有两个不相等的实数根; ⑵^=0?方程有两个相等的实数根; (3) △< 0?方程没有实数根.【分析】 【详解】•••一元二次方程 X2- 2x - m = 0无实数根=4+4m<0,即 m<-1•••一次函数的比例系数m+1<0,图像经过二四象限截距m-1<0,则图象与y 轴交与负半轴,图像过第三象限•••一次函数y =(m+1)X + m - 1的图像不经过第一象限,故选 3.下列各式的变形中,正确的是(2.若一元二次方程 X 2— 2x — m = 0无实数根,则一次函数 过第()象限. A .四 【答案】D 【解析】 y = (m + 1)x + m — 1的图象不经B . C. D .A . X 28x 10配方变为(X 4)21 B . X (X 2一、选择题1 •关于X 的一元二次方程 B . A . a > 1【答案】D 【解析】 【分析】由于原方程是一元二次方程,ax 2+2x+1=0有两个不相等的实数根,那么 a 的取值范围是() C. a < 1D . a<1 且 a 工0a=1首先应该确定的是aM0然后再根据原方程根的情况,利用aM0D.1 1XX ) C. 2X 210X 9 0配方变为(2X5)216 D . ( Xy)(\ 2 2y) X y【答案】D 【解析】 【分析】【详解】D 选项,易观察到两多项式中存在相同项及互为相反数项,满足平方差公式,其中相同项 为-x , y 与-y 互为相反数,即有(-x-y )( -x+y )=x 2-y 2,正确故选:D . 【点睛】此题主要考查一元二次方程中配方法的运算及整式除法,平方差公式,掌握整式混合运算 的法则及配方法的步骤是解题的关键•此题为基础题型,比较简单.4.国庆期间电影《我和我的祖国》第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作 x ,则方程可以列为(B . 3(1 X)2102C. 3 3(1 X )210 【答案】D 【解析】 【分析】用含x 的代数式表示出第二天和第三天的票房收入,三天的票房收入再相加即得答案 【详解】解:设平均每天票房收入的增长率记作 x ,则3 3(1 x) 3(1 X)210 .故选:D. 【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为 化后的量为b ,平均变化率为 X ,则经过两次变化后的数量关系为:a 1 x 25•若a , b 为方程x 25x 10的两个实数根,则 2a 2 3ab 8b 2a 的值为()A 、C 选项,利用配方法的步骤进行计算即可, 断.B 、D 选项为根据整式的除法和乘法即可判A 选项, x 2-8x-1=0利用配方法得, x 2-8x+16-16=1 整理得 B 选项, 2整式的除法, x xx x(x 1)(x-4) 2=17,选项错误1——,选项错误x 1 C 选项,2X 2+10X +9=0将x2系数化为1得,5x0,利用配方法得x 2 5x 25 253,整理得, 4 42-,故该选项错误;4A . 3(1 x) 102D . 3 3(1 x) 3(1 X )210a ,变A. -41B. -35C. 39D. 45【答案】C 【解析】 【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0, a+b=5, ab=-1,把 2a 2 3ab 8b 2a 变形为 2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】•••a , b 为方程x 25x 10的两个实数根,二 a 2-5a-1=0, a+b=5, ab=-1 ,二2a 23ab 8b 2a =2(a 2-5a-1)+3ab+8(a+b)+2=2 X 0+3 01) +8 X 5+2 =39.故选:C. 【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程【解析】 【分析】 由-2a2+4a - 5=- 2 (a - 1) 2- 3 可得:xw 3.【详解】■/x= - 2a 2+4a - 5= - 2 (a - 1) 2- 3<- 3,^不论 a 取何值,xw 3.故选D . 【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.【解析】 【分析】根据一元二次方程解的定义,把 x=1代入x 2+bx+1=0得关于b 的一次方程,然后解一次方程即可. 【详解】ax 2+bx+c=0(a 却的两个根为山b X I 、X 2,贝y x i +x 2= — , x ia•=-;熟练掌握韦达定理是解题关a键.26.若 2a 4a 5 x ,则不论取何值,一定有A . X 5【答案】D B . C. xD . x 37.已知x=1是一元二次方程 上2+力K+l = 0的解,则b 的值为()C .I -2I I A . 0【答案】CB . 1 D . 2&在解方程(x+2)( x - 2) =5时,甲同学说:由于 程的根X 1=-1 , X 2=7;乙同学说:应把方程右边化为(x+3)( X - 3) =0,得方程的根 X 1= - 3, 确的是..()A .甲错误,乙正确 B.甲正确,乙错误 C.甲、乙都正确D.甲、乙都错误【答案】 【解析】X 2-4=5, X2-9=0,(x+3)(x+2)( X - 2) =5,(x-3) =0,x+3=0 或 x-3=0, x i =-3,X 2=3,所以甲错误,乙正确, 故选A.9.下列方程中,有实数根的是( )A . J X 22 0C . J 1 X 1【答案】D 【解析】 【分析】根据二次根式的性质逐项分析即可. 【详解】A .B . C. 5=1 X5 可令 x+2=1, x - 2=5,得方 0,得x 2- 9=0,再分解因式,即X 2=3 •对于甲、乙两名同学的说法,下列判断正B . J X 2 V2x 1D . Tn X•/ X 2+2 >2 .J X 2 2 0,故不正确;••• X -2» 且 2-x>0 ••• X =2,. J X 2 丘—X 0,故不正确; ••• 71—X 0, . J —X 1 1 0,故不正确; •/ x+1^0, -X>p D . -1 夯(切. •••y/n解:把 x=1 代入 x2+bx+1=0得 1+b+1=0,解得 b=-2. 故选:C. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次 方程的解.2二 x -x-1=0,•/ ?=1+4=5 > 0,•-心」5,x 2=1(舍去),2 2••• 尸x 有实数根,符合题意.故选D . 【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知 识点是解答本题的关键.10.若一次函数y kx b 的图象不经过第二象限,则关于 x 的方程x 2kx b 0的根的 情况是()【分析】利用一次函数性质得出 k >0, b<0,再判断出△=k2-4b >0,即可求解.【详解】 解:Q 一次函数y kx b 的图象不经过第二象限,k 0,b 0, k 2 4b 0 ,方程有两个不相等的实数根. 故选:A . 【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的 判别式是解题的关键.11•某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是()A . 225(1- x )2=196C. 225( - x 2)= 196【答案】AA .有两个不相等的实数根 C.无实数根【答案】A【解析】 B .有两个相等的实数根 D .无法确定B . 196(1- x )= 2252D . 196(什 x 2)= 225【解析】 【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格 把相应数值代入即可求解. 【详解】第一次降价后的价格为 225X ( 1-x ),第二次降价后的价格为 225X (1 - X ) X( 1 - x ),则 225 ( 1 - x ) 2=196. 故选A . 【点睛】本题考查了一元二次方程的应用-增长率问题.均变化率为X ,则经过两次变化后的数量关系为由题意知,2017年蔬菜产量为:100 (1+8.1%), 2018年蔬菜产量为:100 (1+8.1%) (1+x ),然后根据2018年底产量达到144吨列方程即可. 【详解】解:•••某种植基地 2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%,••• 2017 年蔬菜产量为:100 (1+8.1%),••• 2018年比2017年产量的增长率为 x , 2018年底产量达到144吨, ••• 2018 年蔬菜产量为:100 (1+8.1%)( 1+x )= 144,故选D . 【点睛】本题主要考查了由实际问题抽象出一元一次方程的应用,熟练掌握这些知识是解题的关键13.如图,过点C 1,2分别作x 轴、y 轴的平行线,交直线 y x 5于A 、B 两点, k 若反比例函数y —(X 0)的图象与VABC 有公共点,贝U k 的取值范围是()xX (1-降低的百分率)=225, 若设变化前的量为a ,变化后的量为b ,平a (1±<) 2=b .12.某种植基地2016年蔬菜产量为100吨,2017年产量的增长率为 x , 2018年底产量达到144吨,则x 满足( A . 100 2017年比2016年产量增长 8.1%, 2018年比C 100 【答案】 【解析】(1+x ) 2= 144 (1+8.1%) +x = 144D)B . 100 ( 1+8.1%)( 1 - x )= 144 D . 100 (1+8.1%)( 1+x )= 144【答案】 【解析】 【分析】由点C 的坐标结合直线 AB 的解析式可得出点 A 、B 的坐标,求出反比例函数图象过点 C 时的k 值,将直线AB 的解析式代入反比例函数解析式中,令其根的判别式 值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段 得出结论.【详解】 解:令 y = -X + 5 中 x = 1 贝y y = 4, •- B (1 , 4); 令 y = -x + 5 中 y = 2,贝U x = 3,•- A (3, 2),A . 2B . 2 k 6 C. 2 k 4D . 4 k 6△为可求出k 的取 AB 上,综上即可当反比例函数 (x > 0)的图象过点C 时,有2=半,解得:k = 2, 将y = - x + 5代入k中,整理得:x 2- 5x + k = 0 ,x•△=( -5) 2-4k >p ••• k空4 25当k = 25时,解得:45x=—2•••若反比例函数 -(x > 0)的图象与△ABC 有公共点,则k 的取值范围是2 < kI5,x4故选:A . 【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A 、C 时的k 值以及直线与双曲线有一个交点时k 的值.14.已知关于x 的一元二次方程 3X 2+4X -5=0,下列说法正确的是() 方程有两个相等的实数根方程有两个不相等的实数根A .B . C.没有实数根 D . 无法确定【答案】B【解析】试题分析:先求出 △=42 - 4 X 3( - 5) =76 > 0,即可判定方程有两个不相等的实数根.故 答案选 B. 考点:一元二次方程根的判别式.15. 代数式 x 2 4x 5 的最小值是(【解析】【分析】此题考查了配方法,若二次项系数为 系数不为 1 ,则可先提取二次项系数,将其化为【详解】••• X 2+4X +5=X 2+4X +4-4+5= (x+2) 2+1•••( X +2) 2>0 ■'■( X +2) 2+I >1•••当X =-2时,代数式X2+4X +5的最小值为1 . 故选: B .【点睛】此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变 式子的值. x 2 8x 9 0,变形后的结果正确的是 ( ) 2 2 2 B . x 4 7 C . x 4 25 D . x 4 7 答案】 解析】所以故选【点睛】 本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关 键. A . 5 【答案】 BB . 1C .4D .没有最小值 1,则常数项是一次项系数的一半的平方,若二次项1 后再计算. 16. 用配方法解方程A . x【分析】先将常数项移到右侧,【详解】2 x2 xx 2 8x 8x8x 9 42 然后两边同时加上一次项系数一半的平方,配方后进行判断即可0, 42,7, D.17.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 笆的总长为35米,与墙平行的边留有 160平方米,则鸡场与墙垂直的边长为(35 (X1) 则根据题意列方程为:X ——12解得:X 1= 16, X 2 = 20 (大于墙长,舍去),宽为:亜4=10(米),2所以鸡场的长为16米,宽为10米,即鸡场与墙垂直的边长为 10米.故选:C.【点睛】本题考查的是一元二次方程的应用,理解题意,正确的列方程,牢记长方形的面积 宽,一元二次方程的求解是本题的关键与重点. 18. 下列一元二次方程中,没有实数根的是(A . X 2 — 2x = 0B . X 2— 2x+1 = 0 【答案】D【解析】【分析】根据判别式即可求出答案.【详解】 A. ^= 4,故选项A 有两个不同的实数根;B. ^= 4 — 4= 0,故选项B 有两个相同的实数根;C. ^= 1+4 X2 9,故选项C 有两个不同的实数根;18米),另三边用竹篱笆围成,竹篱 (门用其它材料做成),若鸡场的面积为 1米宽的门A . 7.5 米【答案】C【解析】【分析】 设长为x ,则根据图可知一共有三面用到了篱笆,长用的篱笆为( 的总和为篱笆的长 35米,长 >宽=面积【详解】B . 8米 C. 10米 D . 10米或8米x-1 )米,与2倍的宽长 160平方米,根据这两个式子可解出长和宽的值. 解:设鸡场的长为 X ,因为篱笆总长为35米,由图可知宽为: 35(X 1 米, 2 160,=长X) C. 2x 2— x — 1 = D . 2x 2— x+1 = 0 味D.^= 1 - 8 =- 7故选项D 没有实数根; 故选D .【点睛】 本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基 础题型.19. 在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图, 如图所示,如果要使整幅挂图的面积是方程是() 【解析】【分析】=长>宽,我们可得出本题的等量关系应该是:(风景画的长 度)><(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程【详解】由题意,设金色纸边的宽为 xcm ,得出方程:(80+2X )( 50+2X ) =5400, 整理后得:X2 65X 350 0故选:B.【点睛】 本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公 式,然后根据等量关系列出方程是解题关键 .【分析】由已知方程的系数可得两根的关系(根据韦达定理或者叫根与系数的关系),再将所求代 数式变形可求得代数式结果.,设金色纸边的宽为 xcm ,那么x 满足的5400cm 2 A . X 2C. X 2【答130X 130X 1400 0 1400 0 B . D . X 2 65X 350 0 X 2 65X 350 0 +2个纸边的宽 根据矩形的面积 20.设a ,卩是方程X 2 9X 1 0的两根,则 a 2009 a 1 H 2009 B 1 的值是 A . 0【答案】D【解析】 B . 1 C. 2000 D . 40000002000 g2000 故选D. 【点睛】(1 )将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法 . (2)二次函数为ax 2 bx c 0(a 不等于0)的两个不同实数根:a f 满足b c-,g -a a【详解】解:(X B 是方程X 2 9x 1 0的两个实数根1 0,2009 a 1 2009 卩 a 2 9 a 1 2000 f 2 9 卩 1 20004000000 4000000。
一元二次方程(知识点+考点+题型总结)
一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2":①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+xx C 02=++c bx ax D 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 .★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A 。
m=n=2 B 。
m=2,n=1 C 。
n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 .针对练习:★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 .★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
一元二次方程的像与性质
一元二次方程的像与性质一元二次方程是数学中重要且常见的一类方程,由形如ax^2 + bx +c = 0的表达式组成,其中a、b和c为已知的实数常数,且a不等于0。
解一元二次方程可以帮助我们解决与物理、工程、经济等领域有关的问题,并且掌握一元二次方程的像与性质对于我们深入理解方程及其解的本质具有重要意义。
一、一元二次方程的定义与基本形式一元二次方程是指只含有一个未知数,并且该未知数在方程中的最高次数为2的方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知实数常数,并且a不等于0。
这里的x表示未知数,而a、b、c则为系数。
二、一元二次方程的图像形态与性质一元二次方程的图像是平面上的一个曲线,这个曲线叫做抛物线。
抛物线的开口方向与二次项系数a的符号有关。
当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。
抛物线与x轴的交点称为方程的根,即方程的解。
方程的根可以有0个、1个或者2个,具体情况取决于方程的判别式b^2 - 4ac的值。
当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根。
抛物线的对称轴是垂直于x轴,并且通过抛物线的顶点。
抛物线的顶点坐标可以通过求解方程的一阶导数为0的点来得到。
具体而言,抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)表示抛物线的方程。
抛物线的图像呈现出左右对称的形状,方程关于对称轴对称。
抛物线在对称轴上有一个最高点(顶点)或者一个最低点(谷底)。
抛物线的最高点或者最低点称为极值点,其坐标由方程的次数和系数决定。
三、一元二次方程的应用与解题技巧对于一元二次方程的应用来说,我们通常需要解决与现实生活相关的问题。
以下是解决一元二次方程应用问题的一般步骤:1.建立方程:根据实际问题确定待求量与问题中已知量之间的关系,建立一元二次方程。
2.解方程:使用求根公式或者配方法等解方程的方法,求得方程的根。
一元二次方程有什么特点
一元二次方程有什么特点一元二次方程是数学中的一种重要方程,具有鲜明的特点。
它在各个领域中有着广泛的应用,如物理、化学、工程等领域。
接下来,我们将详细探讨一元二次方程的特点,以及它在实际问题中的应用。
一、一元二次方程的定义及形式一元二次方程是指只含有一个未知数,且该未知数的最高次数为2的方程。
它的一般形式为:ax²+bx+c=0其中,a、b、c为已知常数,且a≠0。
二、一元二次方程的特点1.二次项系数不为零:在一元二次方程中,二次项系数a不为零,这是它与一元一次方程的主要区别。
二次项系数a的正负性决定了方程的性质。
2.图像特征:一元二次方程的解可以表示为抛物线。
通过分析二次项系数a、一次项系数b和常数项c,可以确定抛物线的开口方向、对称轴和顶点坐标。
3.根的判别式:一元二次方程的根的判别式为Δ=b²-4ac。
根据判别式的值,可以判断方程的根的情况:-Δ>0:方程有两个不相等的实根;-Δ=0:方程有两个相等的实根,即两个相同的实根;-Δ<0:方程无实根,但有两个共轭复根。
4.解的求法:一元二次方程有三种求解方法,分别是直接开平方法、配方法和解根公式法。
求解过程中,需要根据方程的特点和根的判别式选择合适的方法。
三、一元二次方程在实际问题中的应用1.物理学:在一元二次方程中,引力定律、简谐振动等问题中涉及到物体运动轨迹的解析,可以通过一元二次方程来描述。
2.工程学:在建筑、机械等领域,一些构件的尺寸和形状可以通过一元二次方程来表示,如抛物线、椭圆等。
3.经济学:在经济学中,一元二次方程可以用来描述成本、收益等函数关系,如成本函数、收益函数等。
4.生物学:在生物学中,一元二次方程可以用来描述种群增长模型,如Logistic曲线。
总之,一元二次方程具有独特的特点,它在各个领域的应用十分广泛。
通过深入理解和掌握一元二次方程的性质,我们可以更好地解决实际问题。
一元二次方程的特点
一元二次方程的特点一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 是已知的实数且a不等于0。
一元二次方程是高中数学中的重要内容,它具有许多特点和性质,下面将对这些特点进行详细的解释,并围绕中心扩展下的描述。
一、一元二次方程的特点1. 二次项、一次项和常数项:一元二次方程中的ax^2、bx和c分别是二次项、一次项和常数项。
其中,二次项包含了变量的平方,一次项包含了变量的一次幂,常数项没有变量。
这三项的系数和次数决定了方程的性质。
2. 非线性方程:一元二次方程是非线性方程,因为它的变量的次数为2。
与线性方程不同,一元二次方程的图像是一个抛物线,而不是直线。
3. 解的个数:一元二次方程的解的个数与方程的判别式有关。
当判别式大于0时,方程有两个不相等的实数根;当判别式等于0时,方程有两个相等的实数根;当判别式小于0时,方程没有实数根。
4. 根与系数的关系:一元二次方程的根与系数之间存在着特殊的关系。
设方程ax^2 + bx + c = 0的两个根分别为x1和x2,则有以下关系成立:x1 + x2 = -b/a,x1 * x2 = c/a。
5. 对称性:一元二次方程具有对称性。
设方程ax^2 + bx + c = 0的两个根分别为x1和x2,那么方程中的二次项系数a和一次项系数b的和与乘积的关系也可以通过x1和x2来表示:a = (x1 + x2)/2,b = (x1 * x2)/2。
二、一元二次方程的中心扩展中心扩展是指围绕某个中心或核心概念对相关知识进行深入探讨和拓展。
在讨论一元二次方程的特点时,可以以根与系数之间的关系为中心进行扩展,探究这种关系在实际问题中的应用。
1. 方程的根与图像的关系:一元二次方程的图像是一个抛物线,而方程的根则是抛物线与x轴的交点。
根与图像的关系可以帮助我们更好地理解方程的解的个数和性质。
当方程有两个实数根时,抛物线与x轴有两个交点;当方程有一个实数根时,抛物线与x轴有一个切点;当方程没有实数根时,抛物线与x轴没有交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.在下列方程中,一元二次方程的个数是( ).
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2- =0
A.1个 B.2个 C.3个 D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、 一次项系数和常数项分别为( ).
7.已知:x2+4x+2-6y+13=0,求 的值.
8,关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0,则求a的值
中考实题:
1、已知:关于 的方程 .求证: 取任何实数时,方程总有实数根;
2、已知关于x的一元二次方程 有两个相等的实数根,求 的值
3、已知 、 是关于 的一元二次方程 的两个非零实数根,问: 与 能否同号?若能同号请求出相应的 的取值范围;若不能同号,请说明理由。
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是 ,求另一个根及 值.
课堂
检测
听课及知识掌握情况反馈
教学需:加快□;保持□;放慢□;增加内容□
课后
作业
签
字
教学组长签字:
4、已知 、 是一元二次方程 的两个实数根。
(1)是否存在实数 ,使 成立?若存在,求出 的值;若不存在,请说明理由。
(2)求使 的值为整数的实数 的整数值。
5、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
8.方程3x2+9=0的根为( ).
A.3 B.-3 C.±3 D.无实数根
二、填空题
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.
A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则( ).
A.p=1 B.p>0 C.p≠0 D.p为任意实数
4.方程x(x-1)=2的两根为( ).
A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2
如:3x²+mx²+3x+1=0 x²+x+1=x²-2等等
根的判别式:一元二次方程 中, 叫做一元二次方程 的根的判别式,通常用“ ”来表示,即
如果方程 的两个实数根是 ,那么 , 。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
7、若关于x的一元二次方程 的两个实数根为 、 ,且满足 ,试求出方程的两个实数根及k的值.
8、已知关于x的一元二次方程x2+ 2(k-1)x+k2-1 = 0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
9、已知:关于 的方程
特尔教育一对一个性化辅导讲义
学科:数学 任课教师: 授课时间:2014 年 月 日(星期 )
姓名
年级
性 别
总课时
教
学
目
标
掌握一元二次方程的一般性质和特点。
难
点
重
点
一元二次方程的一般性质,根据考题判断其所考察的知识内容。
课
堂
教
学
过
程
课前检查
作业完成情况:优□良□中□差□
建议:
知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
3.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
4.代数式 的值为0,则x的值为________.
5.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______, 所以求出z的值即为x+y的值,所以x+y的值为______.
6.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.
2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理, 都能化成如下形式ax2+bx+c=0(a≠0)。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
*需注意到底什么是系数,必须先合并同类项之后再讨论系数。
5.方程ax(x-b)+(b-x)=0的根是( ).
A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b2
6.已知x=-1是方程ax2+bx+c=0的根(b≠0),则 =( ).
A.1 B.-1 C.0 D.2
7.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).