南昌大学《数字信号处理》期中试卷

合集下载

数字信号处理期中测试答案(新)

数字信号处理期中测试答案(新)

1判断系统是否为线性和非时变的。

(1))3()()(+=n x n x n y 非线性非时变(2))()(3n x n y =+3非线性时变2、若有一个时域连续信号x(t),简述时域采样不失真的条件。

若有一个频域连续信号)(ωj e X ,请简述频域采样不失真的条件又是什么。

A 、时域采样不失真条件:若x(t)在频域带限,即存在一个Ωmax <∞,则对x(t)采样,若采样间隔T 足够小,即采样频率Ωs 足够大且满足Ωs ≥2Ωmax ,则采样得到的信号x(n)可以无失真地还原x(t)。

B 、频域采样不失真条件:①对于频域连续周期的信号)(ωj e X ,若其在时域x(n)为有限长,假设有效点为M 点,则对)(ωj e X 采样若满足在一个周期内采样点数N ≥M ,则采样信号可以无失真地还原)(ωj e X ;3、计算序列x(n)=R 4(n)的傅里叶变换(DTFT )和6点的DFT 。

4、计算2/181431211211>++----z z z z 逆z 变换。

x(n)=[4(-0.5)n -3(-0.25)n ]u(n)5.解:(a )对差分方程进行Z 变换得到: ()()()()()()()251z 251z 0z 112102211121-=+==--=--==⇒++=------,z z z z z z z X z Y z H z X z z Y z z Y z z Y ,极点故,零点(b )系统是稳定的,故收敛域里面包含单位圆,故收敛域取12z z z <<6、计算序列{x(n)}={1,2,3,4,5}(p=5点)和{h(n)}={1,2,2,1}(Q=4点)的线性卷积和5点的圆周卷积,并指出在什么情况下线性卷积和圆周卷积的结果是一样的。

(1)线性卷积的结果是y(n)={1,4,9,15,21,21,14,5},为L=P+Q-1点。

5点的圆周卷积y 5(n)={22,18,14,15,21},为N=5点。

数字信号处理_期中考试题及答案完美破解版

数字信号处理_期中考试题及答案完美破解版

期中考试题一. 判断题。

( R )1、当x(t)为实信号时,其频谱与翻转频谱互为共轭。

( R )2、若信号x(t)的频谱为X(f),则延迟信号x(t-5)的振幅谱将不发生变化。

(W )3、若信号x(t)的频谱为X(f),则X(t)的频谱为x(f)。

( R )4、若信号x(t)的频谱为X(f),则x(t)cos(2πf0t)的频谱为(1/2)[X(f-f0)+X(f +f0)]。

( R )5、若信号x(t)的频谱为X(f),则x(-t)的频谱为X(-f)。

( W )6、信号x(n)=cos(n/7-π/3)为一周期信号。

二. 计算证明题。

1、 在[-2,2]上有一方波0,21,()2,11,0,1 2.t x t t t -≤<-⎧⎪=-≤≤⎨⎪<<⎩求它的傅氏级数。

(p11) 解:002212421000000,21,()2,11,0,1 2.4,1/411()20,1;2sin sin 220,;2lim 1,2sin sin 22.2i nti nf t n n n n n n t x t t t T f c x t e dt e dtT n c nnf n c nf n c nnf c nf n ππππππππππ-++---→-≤<-⎧⎪=-≤≤⎨⎪<<⎩======≠===∴==⎰⎰2、 求方波2,||4,()0,|| 4.t x t t <⎧=⎨>⎩的频谱。

(p14) 解:42242,||4,()0,|| 4.2sin 8()2.i ft i ftf t x t t f X x t e dt e dt f ππππ+∞+---∞-<⎧=⎨>⎩===⎰⎰3、 求信号sin ()tx t t ππ=的频谱。

(p20)解:1,||,sin 2()()0,||.sin 1/2,()()()1,||1/2,sin ()()0,||1/2.t f x t X f t f f X f f X t x f t t x t X f t t δπδδππδπππ<⎧=⇔=⎨>⎩∧==-⇔<⎧=⇔=⎨>⎩4、写出离散信号()2(3)3(3)(1)x n n n n δδδ=-+++-的数学表达式。

数字信号处理期中测试答案

数字信号处理期中测试答案

1.线性时不变系统的单位脉冲响应用h(n)表示,输入x(n)是以N 为周期的周期序列,试证明输出y(n)亦是以N 为周期的周期序列。

证明:()()()()()()()()()()m m y n h m x n m x n N x n kN m x n m y n h m x n kN m y n kN ∞=-∞∞=-∞=-+-=-=+-=+∑∑以为周期,所以所以y(n)亦是以N 为周期的周期序列。

2.已知()()()()13122x n n n n δδδ=+-+-,()()()23x n u n u n =--,试求信号x(n),它满足()()()12*x n x n x n =。

解:()()()()233x n u n u n R n =--=()()()()()()()()()()123333*3122*3122x n x n x n n n n R n R n R n R n δδδ==+-+-⎡⎤⎣⎦=+-+-(){}1,4,6,5,2x n =3.时域离散线性时不变系统的系统函数H(z)为()()()1H z z a z b =--,a 和b 为常数。

(1)要求系统稳定,确定a 和b 的取值域。

(2)要求系统因果稳定,确定a 和b 的取值域。

解:(1)极点为a 和b ,系统稳定的条件是包含单位圆。

所以,1,1a b ≠≠即可使系统稳定。

(2)因果稳定,要求极点全在单位圆内,所以01,01a b ≤<≤<。

4.已知(){}(){}1,2,2,1,3,2,1,1x n h n ==-,计算两序列5点循环卷积。

解:10122342101229221011912210160122102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦5. 已知一个有限长序列)5(2)()(-+=n n n x δδ 。

(1) 求它的10点离散傅里叶变换)(k X 。

数字信号处理期中大作业题

数字信号处理期中大作业题

《数字信号处理》期中作业一、填空题1. 若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 。

2. 若y(n)=T[x(n)],则时不变系统应该满足的条件是: 。

3. 已知,的反变换 。

4. FFT 的基本运算单元称为 运算。

5. ,变换区间,则 。

6. ,,是和的8点循环卷积,则 。

7. 设代表x (n )的付里叶变换,则x (-n )的付里叶变换为:________。

8. 设h (n )和x (n )都是有限长序列,长度分别是N 和M ,只有当h (n )和x (n )循环卷积长度L 满足___________时,其循环卷积等于线性卷积。

9. 假设时域采样频率为32kHz ,现对输入序列的32个点进行DFT 运算。

此时,DFT 输出的各点频率间隔为______Hz 。

二、选择题1. 以下序列中 的周期为5。

A. B. C. D.2. 在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系( )。

A.T s >2/f hB.T s >1/f hC.T s <1/f hD.T s <1/(2f h )3. FIR 系统的系统函数的特点是 。

A.只有极点,没有零点B.只有零点,没有极点C.没有零、极点D.既有零点,也有极点4. 有限长序列,则 。

A. B.C. D. 5. 设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+N B. M+N-1 πωππωω≤<<⎩⎨⎧=2202)(j e X )(ωj e X =)(n X )3()(-=n n x δ8=N =)(k X {}21121121)(01,,,,,,,)(==n n x {}02310)(02,,,,)(==n n x )(3n x )(1n x )(2n x =)2(3x )(ωj e X )853cos()(π+=n n x )853sin()(π+=n n x )852()(π+=n j e n x )852()(ππ+=n j e n x )(Z H 10)()()(-≤≤+=N n n x n x n x op ep =-*)(n N x )()(n x n x op ep +)()(n N x n x op ep -+)()(n x n x op ep -)()(n N x n x op ep --C. M+N+1D. 2(M+N)三、计算题设序列x(n)的傅氏变换为()j X e ω,试求下列序列的傅立叶变换。

数字信号处理试卷及参考答案

数字信号处理试卷及参考答案

一、 填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。

2. DFT 是利用nkN W 的 、 和 三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。

4. FIR 数字滤波器有 和 两种设计方法,其结构有 、和 等多种结构。

二、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

( )2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

( )3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

( )4. 冲激响应不变法不适于设计数字带阻滤波器。

( )5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

( )6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

( )7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

( )8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

( )三、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?四、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

数字信号处理考试试题及答案

数字信号处理考试试题及答案

数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。

2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。

3、若有限长序列x(n)的长度为N ,h(n)的长度为M ,则其卷积和的长度L 为 N+M-1。

4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率—离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。

6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x(n)一定绝对可和。

7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 。

8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。

9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高。

10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器。

11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。

12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π错误!未找到引用源。

的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。

14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。

15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。

《数字信号处理》期中考试试卷(2012年)参考答案

《数字信号处理》期中考试试卷(2012年)参考答案

电子科技大学第一页(共4页)2011–2012学年第二学期期中考试试卷(参考答案)开课学院: 物理与电子信息学院 课程名称: 数字信号处理 考试形式:开卷,所需时间90分钟注意事项:1、教师出题时请勿超出边界虚线;2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线;3、答题请用蓝、黑钢笔或圆珠笔。

一、填空(共20分,每空2分)1. 采样频率f s 对应于模拟角频率Ω= 2πf s ,对应于数字角频率ω= 2π 。

2. 如果8点序列x(n)的 16点DFT 为X 16(k)={X(0),X(1),X(2),……X(15)},则其8点DFT 为X 8(k)= {X(0), X(2), X(4), X(6), X(8), X(10), X(12), X(14)} 。

3. 对模拟信号进行数字信号处理,在A/D 转换器前信号要经过前置低通,该低通滤波器的作用是__防混叠滤波__;在D/A 转换器后信号要经过后置低通,该低通滤波器的作用是 防镜像滤波 。

4. 已知序列x (n )= a n u (n )的Z 变换收敛域为|Z|>|a |,序列y (n )= a n u (n -M)的Z 变换的收敛域为|Z|>|a |,则序列x(n)-y(n)的Z 变换的收敛域为 |Z|>0 。

5. 当单位脉冲响应分别为h 1(n )和h 2(n )的两个线性时不变离散时间系统级联(串联)时,其级联系统的单位脉冲响应为 h 1(n )*h 2(n ) ,系统函数为 H 1(z )H 2(z ) 。

6. 凡是因果系统,系统的极点只能在单位圆内。

(对或错)( 错 )7. 若某序列的傅立叶变换(DTFT )存在,则其离散傅立叶变换(DFT )也存在。

(对或错)( 对 )二、计算题(共20分,每题10分)1. 计算周期序列x[n]=cos(πn/M)的自相关序列R xx ,其中M 为正整数,并确定R xx 的周期。

数字信号处理试卷及答案

数字信号处理试卷及答案

A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。

A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。

三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。

(完整word版)数字信号处理试卷及答案两份.docx

(完整word版)数字信号处理试卷及答案两份.docx

数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。

2.线性时不变系统的性质有律、律、律。

3.对x(n)R4(n)的Z 变换为,其收敛域为。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。

5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。

6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。

7.因果序列x(n) ,在Z→∞时,X(Z)=。

二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。

这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。

2. 什么是信号的量化?请说明量化的过程。

3. 简述数字信号处理的应用领域。

4. 请解释什么是数字滤波器的频率响应。

5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。

1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。

数字信号处理--期中试卷及答案

数字信号处理--期中试卷及答案

期中试卷一、填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、序列)(n x 的N 点DFT 是)(n x 的Z 变换 在 的N 点等间隔采样。

3、要使圆周卷积等于线性卷积而不产生混叠的必要条件是4、FFT 时间抽取法所需的运算工作量不论是复乘还是复加都是与 成正比的。

5. 已知一个长度为N 的序列x(n),它的离散傅立叶变换X (K )=DFT[x(n)]= ___________6.)3()(-=n n x δ,8=N ,则=)(k X 。

7、用来计算N =16点DFT 直接计算需要_ 次复加法,需要 次复乘法二、选择题:1. 信号通常是时间的函数,数字信号的主要特征是:信号幅度取( ) ;时间取 ( ) 。

A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.下列系统(其中[]y n 为输出序列,[]x n 为输入序列)中哪个属于线性系统?( )A.[][1][]y n y n x n =-B. [][][1]y n x n x n =+C. [][]1y n x n =+D. [][][1]y n x n x n =--3、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 4.以下序列中 的周期为5。

A.)853cos()(π+=n n x B.)853sin()(π+=n n x C.)852()(π+=n j e n xD.)852()(ππ+=n j e n x5.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( )A.有限长序列B.右边序列C.左边序列D.双边序列6.序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z < B.a Z ≤ C.a Z > D.a Z ≥7. DFT 的物理意义是:一个( ) 的离散序列x (n )的离散付氏变换X (k )为x (n )的DTFT 在区间[0,2π]上的( )。

数字信号处理教程试题及答案

数字信号处理教程试题及答案

数字信号处理教程试题及答案一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2) 3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N) 4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型B.级联型C.并联型D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称8.适合带阻滤波器设计的是:( )A )n N (h )n (h ---=1 N 为偶数B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

数字信号处理期中考试试题

数字信号处理期中考试试题

1. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313sin()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a 2. 设系统差分方程为:)(2n by )1()(n x n ay n y )(-+-=其中)(n x 为输入,)(n y 为输出。

当边界条件选为 02y 30)1()2(0)0()1(=-=-=)()(y y试判断系统是否是线性的?是否是移不变的?3. 讨论一个序列)( n x ,其z 变换为:)(z X 的收敛域包括单位圆,试求其)0(x 的值。

4、已知一线性时不变离散系统,其激励)n (x 和响应)n (y 满足下列差分方程:)(1-n y 21n y n x =-)()( (1)试画出该系统的结构框图。

(2)求系统函数H(z),并画出零极点图。

(3)求系统的单位脉冲响应h(n),并讨论系统的稳定性和因果性。

5.如下图,序列x(n)是周期为6的周期性序列,试求其傅立叶级数的系数。

6.画出8点按时间抽取的基-2FFT 算法的运算流图。

7. 如果一台通用计算机的速度为每次复乘需10n μ,计算一次复加需要1n μ.用它来计算1024点的DFT[x(n)] ,请问直接计算DFT 需要多少时间,用FFT 运算需多少时间?8.滤波器的单位抽样响应为h(n)=u(n)-u(n -4),求其系统函数,画出其横截型结构图。

2131011)(--+-=z z z X9.已知FIR 滤波器的单位冲击响应为)3()2(27)1(27)()(---+--=n n n n n h δδδδ 试画出其级联型结构实现。

10、已知FIR 滤波器)1)(3(3)(H a ++=s s s ,使用双线性变换法将以下模拟传递函数变成数字传递函数H(z),采样周期T=0.5。

数字信号处理试题和答案

数字信号处理试题和答案
210 点的基 2 FFT 需要 10 级蝶形运算,总的运算时间是______μs。
二.选择填空题
1、δ(n)的 z 变换是 A 。
A. 1
B.δ(w)
C. 2πδ(w)
D. 2π
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率 fs
与信号最高频率 fmax 关系为: A 。
A. fs≥ 2fmax
A.h(n)=δ(n)
B.h(n)=u(n)
C.h(n)=u(n)-u(n-1)
D.h(n)=u(n)-u(n+1)
21.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆
B.原点
C.实轴
D.虚轴
22.已知序列 Z 变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列

A. 2y(n),y(n-3) B. 2y(n),y(n+3)
C. y(n),y(n-3)
D. y(n),y(n+3)
9、用窗函数法设计 FIR 数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带
比加三角窗时
,阻带衰减比加三角窗时

A. 窄,小
B. 宽,小
C. 宽,大
D. 窄,大
10、在 N=32 的基 2 时间抽取法 FFT 运算流图中,从 x(n)到 X(k)需 B 级蝶形运
B。
A. N/2
B. (N-1)/2
C. (N/2)-1
D. 不确定
7、若正弦序列 x(n)=sin(30nπ/120)是周期的,则周期是 N= D 。
A. 2π
B. 4π
C. 2

数字信号处理及答案

数字信号处理及答案

《数字信号处理》考试试卷(附答案)一、填空(每空 2 分 共20分)1.连续时间信号与数字信号的区别是:连续时间信号时间上是连续的,除了在若干个不连续点外,在任何时刻都有定义,数字信号的自变量不能连续取值,仅在一些离散时刻有定义,并且幅值也离散化㈠。

2.因果系统的单位冲激响应h (n )应满足的条件是:h(n)=0,当n<0时㈡。

3.线性移不变系统的输出与该系统的单位冲激响应以及该系统的输入之间存在关系式为:()()*()()()m y n x n h n x m h n m ∞=-∞==-∑,其中x(n)为系统的输入,y(n)为系统的输出,h(n)w 为系统的单位冲激响应。

㈢。

4.若离散信号x (n )和h (n )的长度分别为L 、M ,那么用圆周卷积)()()(n h n x n y N O=代替线性卷积)()(n x n y l =*h (n)的条件是:1N L M ≥+-㈣。

5.如果用采样频率f s = 1000 Hz 对模拟信号x a (t ) 进行采样,那么相应的折叠频率应为 500 Hz ㈤,奈奎斯特率(Nyquist )为1000Hz ㈥。

6.N 点FFT 所需乘法(复数乘法)次数为2N ㈦。

7.最小相位延迟系统的逆系统一定是最小相位延迟系统㈧。

8.一般来说,傅立叶变换具有4形式㈨。

9.FIR 线性相位滤波器有4 种类型㈩。

二、叙述题(每小题 10 分 共30分) 1.简述FIR 滤波器的窗函数设计步骤。

答:(1)根据实际问题所提出的要求来确定频率响应函数()j d H e ω;(2.5分)(2)利用公式1()()2j j d d h n H e e d πωωπωπ-=⎰来求取()d h n ; (2.5分)(3)根据过渡带宽及阻带最小衰减的要求,查表选定窗的形状及N 的大小;(2.5分)(4)计算()()(),0,1,...1d h n h n w n n N ==-,便得到所要设计的FRI 滤波器。

数字信号处理试卷

数字信号处理试卷

数字信号处理试卷一、填空题 (每题2分,共20分)1.模拟信号()a x t 的频谱为()a X j Ω,对()a x t 进行理想采样,采样间隔为T ,得到采样信号ˆ()a x t ,频谱为ˆ()a X j Ω,则ˆ()aX j Ω与()a X j Ω的关系为:___________________。

2. 已知一个长度为N 的序列x(n),它的离散傅立叶变换X (k )=DFT[x(n)]= ______________________,其存在的充分必要条件是:___________3、h(n)和x(n)都是有限长序列,长度分别是N 和M ,要使圆周卷积等于线性卷积而不产生混叠的必要条件是______________________。

4、双边序列Z 变换的收敛域形状为:______________________。

5、线性时不变系统离散时间因果系统的系统函数为228(1)()252z z H z z z --=++,则系统的极点为______________________;系统的稳定性为_________。

系统单位冲击响应h(n)的初值______________。

6. 基2DIT —FFT 的基本运算单元是蝶形运算,完成N=256点FFT 需要_______________级蝶形运算,最末一级有______________个不同的旋转因子。

二、判断题(每题2分,共10分)1.若一线性时不变离散时间系统的极点全部位于z 平面的单位圆内,则该系统是稳定的。

( )2.利用离散傅里叶变换分析连续信号频谱,其频率分辨率只与截取时间长度有关,与窗的形状没有关系。

( )3.已知某离散时间系统为y(n)=T[x(n)]=x(5n+3),则该系统为线性时不变系统。

( )4.一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其作DFT 变换。

( )5.序列的傅立叶变换是周期函数。

( )三、计算题(每题5分,共20分)1. (4)*(7)n u n δ+-2.求()()n x n a u n =的z 变换3.求()()n x n a u n =的离散傅里叶变换DFT4. 用z 变换求下列两个序列的卷积:1(),01()20,()()(1)n n h n otherwise x n n n δδ⎧≤≤⎪=⎨⎪⎩=+-四.问答题(共50分)1.(10分)设系统由下面差分方程描述:y(n)=y(n-1)+y(n-2)+x(n-1),(1)求系统的系统函数H(z)。

数字信号处理试卷及详细答案(三套)

数字信号处理试卷及详细答案(三套)

数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是连续(连续还是离散?)。

2、 双边序列z 变换的收敛域形状为圆环或空集。

3、 某序列的DFT 表达式为∑-==1)()(N n knMWn x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2。

4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为不稳定。

系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在。

5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为64+128-1=191点点的序列,如果采用基FFT2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为256点。

6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。

7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --=,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。

8、请写出三种常用低通原型模拟滤波器巴特沃什滤波器、切比雪夫滤波器、 椭圆滤波器。

二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

大学《数字信号处理》课程考试试卷(含答案)

大学《数字信号处理》课程考试试卷(含答案)

某大学《数字信号处理》课程考试试卷适应专业: 考试日期:考试时间:120分钟 考试形式:闭卷 试卷总分:100分 一、考虑下面4个8点序列,其中 0≤n ≤7,判断哪些序列的8点DFT 是实数,那些序列的8点DFT 是虚数,说明理由。

(本题12分) (1) x 1[n ]={-1, -1, -1, 0, 0, 0, -1, -1}, (2) x 2[n ]={-1, -1, 0, 0, 0, 0, 1, 1}, (3) x 3[n ]={0, -1, -1, 0, 0, 0, 1, 1}, (4) x 4[n ]={0, -1, -1, 0, 0, 0, -1, -1},二、数字序列 x(n)如图所示. 画出下列每个序列时域序列:(本题10分) (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);三、已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H 试确定该系统H(z)的收敛域和脉冲响应h[n]。

(本题10分) 四、设x(n)是一个10点的有限序列 x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(本题12分)(1) X(0), (2) X(5), (3) ∑=90)(k k X ,(4)∑=-95/2)(k k j k X e π五、x(n)和h(n)是如下给定的有限序列x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?(14分)六、用窗函数设计FIR 滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。

数字信号处理考试试题

数字信号处理考试试题

数字信号处理考试试题数字信号处理作为一门涉及众多领域的重要学科,对于电子信息、通信工程、自动化等专业的学生来说,是一门具有挑战性但又极为关键的课程。

为了有效检验学生对这门课程的掌握程度,以下是一套精心设计的数字信号处理考试试题。

一、选择题(每题 3 分,共 30 分)1、下列关于数字信号的描述,正确的是()A 数字信号在时间上和幅值上都是离散的B 数字信号在时间上离散,幅值上连续C 数字信号在时间上连续,幅值上离散D 数字信号在时间上和幅值上都是连续的2、若一个离散时间系统的单位脉冲响应为 hn =δn 2,则该系统是()A 因果系统且稳定B 因果系统但不稳定C 非因果系统且稳定D 非因果系统但不稳定3、已知序列 xn ={1, 2, 3, 4},则其离散傅里叶变换 Xk的第一个值 X0为()A 10B 5C 2D 04、对于一个线性时不变系统,其频率响应为H(e^jω),输入信号为xn =cos(ω₀n),则输出信号的频率为()A ω₀B 2ω₀C ω₀/2D 不确定5、以下哪种数字滤波器的相位特性是非线性的()A 有限长单位冲激响应(FIR)滤波器B 无限长单位冲激响应(IIR)滤波器C 巴特沃斯滤波器D 切比雪夫滤波器6、在快速傅里叶变换(FFT)算法中,基 2 时间抽取算法的基本运算单元是()A 蝶形运算B 卷积运算C 乘法运算D 加法运算7、若要对一个连续信号进行数字处理,为了避免混叠现象,采样频率至少应为信号最高频率的()A 05 倍B 1 倍C 2 倍D 4 倍8、数字滤波器的系统函数 H(z) =(1 z^(-1))/(1 + 05z^(-1)),其极点位于()A z =-2B z = 2C z =-05D z = 059、离散时间信号 xn =sin(πn/4) 的周期为()A 4B 8C 16D 不存在10、下列关于窗函数的说法,错误的是()A 窗函数可以用于改善数字滤波器的性能B 矩形窗的主瓣宽度最小C 汉宁窗可以降低旁瓣幅度D 窗函数的长度越长,滤波效果越好二、填空题(每题 3 分,共 30 分)1、数字信号处理的主要研究内容包括________、________和________。

《数字信号处理》期中试卷

《数字信号处理》期中试卷

• 7 用单位脉冲序列及其加权和表示下 图所示的序列。
• 8 设线性时不变系统的单位脉冲响应 h(n)和输入序列x(n)如下图所示,要6点基2DIT-FFT算法的运算流图, 要求输入是倒序,输出是顺序。 • 5.求x(n)=anu(n)的Z变换及其收敛域. • 6.对实信号进行谱分析,要求谱分辨率 F≤20Hz,信号最高频率=2.0kHz,试确定 最小记录时间 TP min ,最大的采样间隔 Tmax , 最少的采样点数 N min 。如果频带宽度不变, 要求谱分辨率增加3倍,最少的采样点数是 N 多少 ? min
1.设系统的单位取样响应h(n)=u(n),求 对于任意输入序列x(n)的输出y(n),并检 验系统的因果性和稳定性。 2 2.判断序列 x(n) A cos( n ) ,A是 7 4 常数,是否周期的,若是周期的,请确 定其周期。 3.已知
5 z 1 X ( z) , 2 | z | 3, 求逆Z 变换 1 2 1 z 6z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》期末试卷
一、填空题 (每题2分,共20分)
1已知一个有限长序列x(n)的圆周移位为f(n)=x((n+m))N R N (N),则 F (K )=DFT[f(n)]= ______________________
2. 已知一个长度为N 的序列x(n),它的离散傅立叶变换X (K )=DFT[x(n)]= ___________
3、要使圆周卷积等于线性卷积而不产生混叠的必要条件是
4、长度为N 的序列)(n x 之傅立叶变换为)(ωj e X ,其周期是______________
5、FFT 时间抽取法所需的运算工作量不论是复乘还是复加都是与 成正比的。

6. 基2DIT —FFT 的基本运算单元是蝶形运算,完成N=256点FFT 需要_______________级蝶形运算,最末一级有______________个不同的旋转因子;编程时需_______________重循环嵌套程序实现DIT —FFT 运算。

7..如果FIR 滤波器的单位脉冲响应h(n)满足______________条件时,滤波器具有第二类线性相位
特性,其相位特性函数Φ(w)= ______________。

8、采用模拟-数字转换法设计数字滤波器时,S 平面的左半平面必须映射到Z 平面的_____________
A 实轴上 B.单位圆上 C. 单位圆外部 D. 单位圆内

9.采样频率确定时,DFT 的频率分辨率取决于____________
A 抽样点数 B. 抽样间隔 C. 信号带宽 D. 量化误差
10.脉冲响应不变法的主要缺点是频谱的交叠所产生的 效应。

二、假设LTI 系统单位脉冲响应)(n h 和输入信号)(n x 分别用下式表示:
)(n h =R 8(n ),)(n x =0.5n
R 8(n ) (1)计算并图示该系统的输出信号y (n )
(2)求该系统的系统函数)(z H 及其零、极点;
(3)如果对)(n x 和)(n h 分别进行16点DFT ,得到H (K )和X (K )
令Y1(K )=H (K )X (K ), K=0,1,2,。

,15
y 1 (n )=IDFT[Y1(K )], n ,K=0,1,2,3,。

,15
画出y 1 (n )的波形。

(4)用快速卷积法计算该系统输出y (n )的计算框图(FFT 计算作为一个框),并注明FFT 的最小计算区间N 等于多少? (15分)
三、设x(n)=δ(n )+δ(n-1)完成下列各题。

求:
(1).求出[])()(n x DFT k X =,变换区间长度4=N ,并画出)(k X ~k 曲线;
(2).将)(n x 以4为周期进行周期延拓,形成)(~n x ,求)(~n x 的离散傅立叶级数
系数)(~k X ,并画出)(~k X ~k 曲线。

(3).求出)(~n x 的傅立叶变换)(ωj e X ,并画出|)(ωj e X |~ω 曲线。

(10分)
四、数字滤波器的系统函数为
1+Z -1
H (Z )=----------------------
1-1.2728 Z -1+ 0.81Z -2
(1) 写出它的差分方程并画出典范型结构的信号流图;
(2) 判断该滤波器不是因果稳定,阐述相应理由
(3) 按照零、极点分布定性画出其幅频特性曲线,并近似求出其幅频特性峰值点频率
(计算结果保留4 位小数) (15分)
五、设FIR 网络的单位脉冲响应)4(2)3()1()(2)(-+-+-+=n n n n n h δδδδ,
(1) 画出一种乘法器最少的基本运算结构流图;
(2) 试写出该滤波器的相位特性ωωθ~)(的表达式,该滤波器相位特性有何特 点?为什么?
(3) 设频率采样点数5=N ,试写出频率采样)(k H 的表达式,并画出频率采样 结构图。

(4) 该滤波器是高通滤波器吗?试阐述你的结论.(15分)
六、已知模拟滤波器的传递函数为:
s H (s)= 1+s ττ
(其中τ=RC,是常数). 用双线性变换法将该模拟滤波器转换成数字滤波器H(z),为了简单,设采样间隔T=1S
(1) 求出该数字滤波器的系统函数H (Z );
(2) 画出该数字滤波器直接型结构;最后分析该数字滤波器的频率特性相对原
模拟滤波器的频率特性是不是存在失真,试说明理由?
(3) 能不能用脉冲响应不变法将该模拟滤波器转换成数字滤波器, 试说明理
由?.(15分)。

相关文档
最新文档