国内外四足机器人发展及普及

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:对四足机器人研究应用的历史与现状做了介绍,列举出国内外主要研究机构及其主要研究成果,对四足机器人研究的热点和难点问题进行了归纳总结,并展望了四足机器人的发展趋势。

关键词:四足机器人;研究与应用;历史与现状;难点与热点;发展趋势

1. 引言

移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸发展成轮式移动机器人(包括履带式);二是基于仿生技术的运动仿生机器人。运动仿生机器人按移动方式分为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动仿生机器人。

自然环境中有约50%的地形,轮式或履带式车辆到达不了,而这些地方如森林,草地湿地,山林地等地域中拥有巨大的资源,要探测和利用且要尽可能少的破坏环境,足式机器人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探索,足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。现研制成功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究很少。

曾长期作为人类主要交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能力和负载能力自然是人们研究足式机器人的重点仿生对象。因而四足机器人在足式机器人中占有很大的比例。长期从事足式机器人研究的日本东京工业大学的広濑茂男等学者认为:从稳定性和控制难易程度及制造成本等方面综合考虑,四足机是最佳的足式机器人形式[1],四足机器人的研究深具社会意义和实用价值。

2. 国内外四足机器人研究历史与现状

四足机器人的研究可分为早期探索和现代自主机器人研究两个阶段。

2.1 四足机器的早期探索

中国古代的“木牛流马”以及国外十九世纪由Rygg设计的“机械马”,是人类对足式行走行机器的早期探索。而Muybridge在1899年用连续摄影的方法研究动物的行走步态,则是人们研究足式机器人的开端。20世纪60年代,机器人进入了以机械和液压控制实现运动的发展阶段。美国学者Shigley(1960)和Baldwin(1966)都使用凸轮连杆机构设计了机动的步行车[2]。这一阶段的研究成果最具代表性的是美国的Mosher于1968年设计的四足车“Walking Truck” [3](图1)。

图1 Walking truck

80年代,随着计算机技术和机器人控制技术的广泛研究和应用,真正进入了具有自主行为的现代足式机器人的广泛研究阶段。

2.2 现代自主四足机器人研究现状

以微型计算机技术广泛应用为标志的现代四足机器人的研究和应用受到世界广泛的关注。现代四足机器人研究最系统和取得研究成果最多的是日本东京工业大学的広濑茂男等领导的広癞·福田机器人研究室(HIROSE·FUKUSHIMA ROBTICS LAB),该实验室从80年代开始四足机的研究,持续研究20多年,共试制成功3个系列、12款四足机器人。发表相关研究论文172篇[4]。其它如美国的MIT,卡耐基梅隆大学,加拿大,德国,法国,新加坡,韩国等国家均有四足机器人样机研制成功。国内也进行了四足机器人的基础研究和试验研究,如吉林工业大学,北京航空航天大学、上海交通大学,哈尔滨工业大学,中国科技大学等单位。表1列出了国内外主要从事研究四足机的单位和其研制的典型样机型。

表1 国内外部分四足机器人研究机构和代表机器人一览表

2.3 国外研制的典型样机及主要技术特征

四足机器人研究的代表是日本东京工业大学的広濑·福田机器人研究实验室。从80年开始至今已研制出3个系列12款四足机器人。第一代四足移动机器人KUMO-I外形似长腿蜘蛛(图2),它是世界上第一个具有自主行走的现代足式机器人[5]。随后研制成功世界上第一个能上下爬行楼梯的四足机器人PV-II(图3)。之后研制成功两款NINJA系列爬壁系列机器人和8款TITAN系列以野外探测和挖掘地雷为使用目标的机器人。其中最有代表性的是TITAN系列机器人TITAN—VIII[6](图4)。该款机器人的软硬件齐全,功能比较完备,具有多种运动步态选择。在该上机配套先进而完整的专门针对四足移动机器人开发的操作系统VK-I,因而该机器人特别适合于教学研究用。整机售出约5O多套给日本的多个大学和研究所及世界很多研究机构作为基础研究和应用研究的平台。其基本参数:每足具有3个自由度,其中大腿关节具有前后转动和上下转动2个自由度,膝关节具有一个上下转动自由度。采用新型的电机驱动和绳传动,质量约4O kg,有效负载5~7 kg,行走速度决定于负载情况,一般在0.3~0.9m/s之间变化。另一款有特点的机型是9O年代研制成功TITAN-Ⅵ型,该步行机采用新型的直动型腿机构,避免了上楼梯过程中腿间的干涉,并采用2段变速驱动机构,对腿的支撑相和摆动相分别进行驱动,能以50 mm/s的速度,在倾角为3O°~4O°楼梯上步行。

9O年代広濑茂男等研制成功壁面全方位移动系列机器人NINJA-I(图5)及NINJA-II,NINJA-I的每条腿由3自由度的平行连杆机构构成,长、宽、高分别为:1800mm,500mm,400mm,质量45kg,各关节轴由12个4Ow 的直流电机驱动,每个脚底的吸盘被分为20个小吸盘,产生大约1500N的吸力,上升速度为48cm/min,横向移动速度为96cm/min.能在壁面及天花板上全方位移动。近年研制成功的典型四足机器人是TITAN-IX[7](图6)。为适应如此复杂的任务,专门研制了更先进的机器人操作控制系统VK-II。截至目前,広濑·福田研究室已研制出第12款机器人TITAN-XI[8]。

表2 広濑·福田研究室研究的典型四足机器人

图2 KUMO-I 图3 PV-II 图4 TITAN-VIII

图5 NINJA-I 图6 TITAN-XI 图7 Patrush-II

图8 Tekken-IV 图9 BigDog 图10 LittleDog

另外,日本电气通信大学的木村浩(Hiroshi Kimura)等研制成功很有特点的两个系列四足步行机器人Patrush系列和Tekken系列。二代Patrush-II(图7),用两个微处理机控制,采用瑞士Maxon直流伺服电机驱动,每个关节安装了一个光电码盘,每只脚安装了两个微开关。

最具有创新性的成果是采用基于神经振荡子模型CPG(Central Pattern Generator)的控制策略[9,10]。而CPG是足式机器人近10年来在控制方面取得的最具突破性成果[11]。2000-2003年研制成功具有宠物狗外形的机器人Tekken系列的第四代,Tekken3和Tekken4采用了新颖的机构设计和激光导航系统[12],该系列继承了Patrush系列的优点。第四代Tekken-IV(图8)用一台PC机系统控制,瑞士Maxon直流伺服电机驱动,每个关节安装了一个光电码盘、陀螺仪、倾角计和触觉传感器。控制系统也采用基于神经振荡子模型的CPG控制器和反射机制构成的系统,其中基于CPG的控制器用于生成机体和四条腿的节律运动,而反射机制通过传感器信号的反馈,来改变CPG的周期和相位输出。Tekken4 能够实现不规则地面的自适应动态步行,显示了生物激励控制对未知的不规则地面有自适应能力的优点。Tekken 系列另一特点是利用了激光和CCD摄像机导航,成功的实现在封闭回廊中无碰快速行走,且可以辨别和避让前方存在的人和动物。

日本进行四足机器人研究的还有日本东北大学。1992年,日本东北大学的木村浩(Hiroshi Kimura)、中野泶二等研究开发出具有四腿和两轮分别独立移动的混合步行机器人Chariot-I,2004年,开发出腿轮移动机器人Chariot-III”,并对其进行步态及控制方面的研究。

2005年,他们开发供高龄人、残疾人等步行困难者使用的步行机器人Chariot-IV。该步行机具有较高机动性和不平地面步行的稳定性,可自如地上下台阶。另外还有日本的空气动力实验室(Kyoto Univ.Tsuchiya Lab)也在研究四足机[13]。

美国的MIT Leg Lab实验室早在1986年研制完成了一款四足机器人。美国的四足机的典型代表是卡耐基美隆大学的Boston dynamics实验室研制的BigDog(图9)和LittleDog(图10)。

BigDog是最像仿生对象的仿生机器人,外形和体特比例很像一头凶猛的猎犬,负载52KG 的重量能够在粗糙的瓦砾地面或泥泞地面以不同步态自如行走,野外行走能力很强。最大的特点是具有较强的机体平衡能力,在剧烈的侧面冲击作用下,能保持平衡而不倒。在卡耐基.梅隆大学2006.11.3 的机器人学术报告会上,Martin Buehler(Director of Robotics Boston Dynamics)称,已列入计划将BigDog的四足机器人深入研究,使其性能达到能走、跑、平衡、爬行等动态移动、运载货物、识别粗糙地形能力、自主控制能力等方面达到一个新的水

相关文档
最新文档