人教版初中数学图形的平移,对称与旋转的图文解析
初中数学知识归纳平移旋转和对称变换
初中数学知识归纳平移旋转和对称变换初中数学知识归纳:平移、旋转和对称变换数学是一门具有广泛应用的学科,也是培养学生逻辑思维和解决问题能力的重要学科之一。
在初中数学中,平移、旋转和对称变换是数学中常见的几何变换操作,对于学生们的几何观念理解和图形思维的培养具有重要意义。
本文将对初中数学中的平移、旋转和对称变换进行归纳和总结。
一、平移(Translation)平移是指在平面内按照一定的方向和距离将图形移动到另一个位置的几何变换操作。
平移操作不改变图形的大小和形状,只是改变了图形的位置。
在平移中,每个点都按照相同的方向和距离进行移动。
平移的基本要素有:平移向量和被平移图形。
平移向量是指平移的方向和距离,可以用箭头表示。
被平移图形是指需要进行平移操作的图形。
二、旋转(Rotation)旋转是指按照某个中心点和旋转角度将图形绕这个中心点进行旋转的几何变换操作。
旋转不改变图形的大小和形状,只是改变了图形的方向。
在旋转中,每个点都绕着中心点按照相同的角度进行旋转。
旋转的基本要素有:旋转中心、旋转角度和被旋转图形。
旋转中心是指旋转的中心点,旋转角度是指旋转的角度大小,可以用度数表示。
被旋转图形是指需要进行旋转操作的图形。
三、对称变换(Symmetry)对称变换是指通过某条线、某个点或某个面将图形镜像成另一个图形的几何变换操作。
对称变换不改变图形的大小和形状,只是改变了图形的位置或方向。
在对称变换中,每个点通过指定的对称轴或对称中心得到对应的镜像点。
常见的对称变换有关于x轴、y轴和原点的对称等。
关于x轴的对称是指图形在x轴上下对称,即图形上的每个点与其镜像点关于x轴对称;关于y轴的对称是指图形在y轴左右对称,即图形上的每个点与其镜像点关于y轴对称;关于原点的对称是指图形在原点内外对称,即图形上的每个点与其镜像点关于原点对称。
综上所述,初中数学中的平移、旋转和对称变换是数学几何中常见的几何变换操作。
通过学习和理解这些几何变换,学生们可以更好地把握图形的性质和形态,同时培养几何思维和问题解决能力。
平移旋转与对称平移旋转与对称的定义与性质
平移旋转与对称平移旋转与对称的定义与性质平移、旋转和对称是几何学中重要的概念和操作。
它们是描述和变换图形位置和形状的基本工具。
本文将详细介绍平移、旋转和对称的定义及其性质。
一、平移的定义与性质平移是指将一个图形沿着一定方向移动一定距离,而不改变其形状和方向。
下面是平移的定义与性质:定义:平移是指将一个图形中的所有点,按照同样的方向和距离,同时保持相对位置的变换操作。
性质:1. 平移不改变图形的大小、形状和方向。
2. 平移后的图形与原图形之间的对应关系保持不变。
3. 平移是一个向量运算,可以用向量表示平移的方向和距离。
4. 任意两个平移可以合成为一个平移。
二、旋转的定义与性质旋转是指将一个图形绕着某个固定点旋转一定角度,使得旋转后的图形与原图形相似但方向和位置发生变化。
下面是旋转的定义与性质:定义:旋转是指将一个图形绕着固定点旋转一定角度,使得旋转前后图形中的对应点的距离保持不变。
性质:1. 旋转不改变图形的大小、形状和方向。
2. 旋转后的图形与原图形之间的对应关系保持不变。
3. 旋转可以按顺时针或逆时针方向进行。
4. 旋转是一个变换操作,可以用旋转中心和旋转角度来描述。
三、对称的定义与性质对称是指将一个图形分割成两个部分,使得两个部分关于某条直线、点或中心对称。
下面是对称的定义与性质:定义:对称是指将一个图形按照某个轴线或点进行折叠或旋转,使得折叠或旋转后的图形与原图形重合。
性质:1. 对称不改变图形的大小、形状和方向。
2. 对称后的图形与原图形之间的对应关系保持不变。
3. 图形关于对称轴对称时,对称轴上的点不动;图形关于对称中心对称时,对称中心不动。
4. 对称操作是可逆的,即对称两次会得到原来的图形。
综上所述,平移、旋转和对称是几何学中常用的图形变换操作。
它们各自有着特定的定义和性质,可以描述和变换图形的位置和形状。
理解和掌握平移、旋转和对称的定义与性质,将有助于我们在解决几何问题和应用几何知识时进行准确的操作和分析。
最新对称、平移、旋转知识点
轴对称图形1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。
折痕所在的直线叫做对称轴。
注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头)2、轴对称图形性质:对称点到对称轴的距离相等。
3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。
4、在方格纸上补全轴对称图形关键:找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。
5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。
平移1、物体在同一平面上沿直线运动,这种现象叫做平移。
注意:平移只是沿水平方向左右移动(×)平移不仅仅局限于左右运动。
2、平移二要素:(1)平移方向;(2)平移距离。
将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。
3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。
4、在方格纸上平移图形的方法:(1)找出图形的关键点;(2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点;(3)把各点按原图顺序连接,就得到平移后的图形。
注意:用箭头标明平移方向(→)旋转1、旋转:物体绕某一点或轴的转动。
2、旋转方向:与时针运动方向相同的是顺时针方向;与时针运动方向相反的是逆时针方向;3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。
4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向变了。
5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线段都旋转相同的角度,对应点到旋转点的距离相等。
6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。
7、简单图形旋转90°的画法:(1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线;(2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点;(3)参照原图形顺次连接所画的对应点。
《图形的旋转》图形的平移旋转与对称PPT课件
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、知人者智,自知者明。胜人者有力,自胜者强。——老子
初中数学复习资料——图形的平移、旋转、轴对称(1)
图形的平移、旋转、对称 济宁学院附属中学李涛[知识梳理](1) 图形平移的基本要素及特点是什么?在平面内,将一个图形沿某个方向移动一定单位距离,这样的图形运动称为平移.要素1:沿某一个方向移动;要素2:移动一定的单位距离.平移的特点:平移不改变图形的形状和大小.(2)图形平移的作图中应注意什么问题?因为图形经过平移后,对应点所连的线段平行,(或在同一条线上)且相等;对应线段平行(或在一条直线上)且相等;对应角相等.如图6-1所示,对应点所连的线段AD ∥BE ∥CF ,且AD=BE=CF ,BC ∥EF ,BC=EF .AC ∥DF ,AC=DF ;对应角的关系是∠ABC=∠DEF ,∠BCA=∠EFD ,∠GAB=∠FDE .所以在图形平移的作图中要注意以下几点:①首先确定图形中的关键点;②将这些关键点沿指定的方向移动指定的单位距离;③然后连接对应的部分形成相应的图形.(3)图形旋转的基本要素及特点是什么?在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.要素1:绕一个定点(旋转中心)要素2:沿某个方向向旋转一定的角度.图形旋转的特点:旋转不改变图形的形状和大小.(4)图形旋转的作图中应注意什么问题?因为图形经过旋转后,对应点旋转的角度都相等,方向都相同,对应点到旋转中心的距离相等,且对应线段、对应角相等.如图所示,旋转中心与对应点所连的线段的关系是OA=OD ,OB=OE ,OC=OF ;对应线段的关系是AB=DE ,BC=EF ,CA=FD ;对应角的关系是∠ABC=∠DEF ,∠BCA=∠EFD ,∠CAB=∠FDE所以在图形旋转的作图中要注意以下几个问题:①首先确定旋转中心;②其次确定图形的关键点;③将这些关键点沿指定的方向旋转指定的角度;④然后连接对应的部分,形成相应的图形.(5)中心对称图形的基本要求是什么?他有什么特点?中心对称图形是一种特殊的旋转对称图形.在平面内,将一个图形绕着中心旋转180°后能与自身重合,则这种图形叫做中心对称图形,这个中心叫做对称中心. 要素1:绕一个定点(对称中心)要素2:旋转180°后与自身重合.中心对称图形的特点:图形绕着它自身的中心旋转180°后能与自身重合.(6)图形中心对称的作图中应注意什么问题?因为在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分.如图所示,AO=OA ′,BO=OB ′.CO=OC ′, A 、O 、A ′三点在同一直线上,B 、O 、B ′三点在同一直线上,C 、O 、C ′三点在一条直线上.反过来,如果两个图形的对称点连线的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.所以在图形中心对称的作图中要注意以下几点:①首先确定图形的对称中心;②其次确定图形的关键点;③作这些关键点关于对称中心的对称点;④最后连接对应的部分,形成相应的图形.图6-1图6-2 图6-3考点一、轴对称图形与中心对称图形的识别【例1】如图,既是轴对称图形又是中心对称图形的是( )方法总结 识别某图形是轴对称图形还是中心对称图形的关键在于对定义的准确把握,抓住轴对称图形、中心对称图形的特征,看看能否找出其对称轴或对称中心,再去作出判断.触类旁通1 下面的图形中,既是轴对称图形又是中心对称图形的是( )考点二、图形的平移【例2】如图,把图①中的⊙A 经过平移得到⊙O (如图②),如果图①中⊙A 上一点P 的坐标为(m ,n ),那么平移后在图②中的对应点P ′的坐标为( )A .(m +2,n +1)B .(m -2,n -1)C .(m -2,n +1)D .(m +2,n -1)方法总结 在平面直角坐标系中,将点P (x ,y )向右(或左)平移a 个单位长度后,其对应点的坐标变为(x +a ,y )〔或(x -a ,y )〕;将点P (x ,y )向上(或下)平移b 个单位长度后,其对应点的坐标变为(x ,y +b )〔或(x ,y -b )〕.触类旁通2 如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为__________.考点三、图形的旋转【例3】如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2C .60,32D .60, 3 方法总结 图形在旋转过程中,图中的每一个点与旋转中心的连线都绕着旋转中心转动了相同的角度,对应线段相等,对应角相等.触类旁通3 如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,有下列结论:①∠CDF =α;②A 1E =CF ;③DF =FC ;④AD =CE ;⑤A 1F =CE .其中正确的是__________(写出正确结论的序号).考点四、平移、旋转作图【例4】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并写出点C2的坐标;(3)将△A2B2C2平移得到△A3B3C3,使A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.方法总结要画出一个图形的平移、旋转后的图形,关键是先确定一些关键点,根据相应顶点的平移方向、平移距离、旋转方向、旋转角度都不变的性质作出关键点的对应点,这种以“局部代整体”的作图方法是平移、旋转作图中最常用的方法.1.(上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形2.(浙江嘉兴)下列图案中,属于轴对称图形的是()3.(浙江丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.(山东德州)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是__________.(只要填写一种情况)5.(四川乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.6.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形7.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.68.如图是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8 cm,BE=4 cm,DH=3 cm,则图中阴影部分的面积为_____9.如图,E,F分别是正方形ABCD的边BC,CD上的点,BE=CF,连接AE,BF,将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=__________.。
图形的平移、旋转和轴对称课件
例2、观察下面两幅图案,指 出图案中的“基本图案”,说 明整个图案是怎样形成的,你 能设计出类似的图案吗?
解:图一是由一个“树 ”形图案通过三 次平移形成的;
图二是由图形的四分之一,即三根 形 为“基本图案”,绕图形中心向同一方 向旋转90°、180°、270°而形成的。
由全等图形可以拼成美丽的图案
3.旋转三要点: 旋转的①方向 ②距离③角度
演练3:如图△ABC是等腰直角三角形, 点D是斜边BC中 点, △ABD绕点A旋转到△ACE的位置, 恰与△ACD组成 正方形ADCE, 则△ABD所经过的旋转是( A. 顺时针旋转225° )
D
B. 逆时针旋转45°
C. 顺时针旋转315°
D. 逆时针旋转90°
作品展示
错位倒置
等价交换
作品展示
两盏灯
笑脸
作品展示
一个外星人
两支棒棒糖
作品展示
一辆车
企鹅
作品展示
穿越云霞的山
鱼翔浅水
你能运用所学知识、 设计一幅班徽并阐 述你的设计意图吗?
请同学们分组讨论: 怎样用圆规画出这个六花瓣图?
这 样 的 作 图 对 你 有 所 启 发 吗 ?
注意! 半径能不能变?
A、100
A E
B、150
D
C、200
D、250
B
C
F
1.轴对称 把一个图形沿一条直线折叠,如果它能够与 的定义: 另一个图形重合,那么就说这两个图形成轴
对称,这条直线就是对称轴。
2.轴对称 如果一个图形沿一条直线折叠,直线两旁能 图形的定 够互相重合,这个图形叫做轴对称图形,这 义: 条直线是它的对称轴。
(1) 按上述步骤,你得到了一个“箭头”了吗? (2) 剪出若干个同样的“箭头”,拼出一个美丽的图案。
图形的旋转 对称和平移课件
图形的旋转对称和平移1、旋转就是物体绕着某一个点O转动一个角度的图形变换就叫旋转。
2、平移就是物体沿一个方向平行移动一定的距离,这样的图形运动称为平移。
3、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对,这条直线叫对称轴,折叠后重合的点是对应点,也叫做对称点。
旋转的要素:旋转点旋转角度旋转方向旋转的特征1、对应线段和对应角相等。
2、对应点到旋转中心的距离相等。
3、每一个点到绕旋转中心按同一方向转过相等的角度。
4、旋转不改变图形的武装和大小。
平移的特征1、平移不能改变图形的形状和大小。
2、经过平所移,对应点所连的线段平等且相等。
(或在一条直线上)3、对应线段平行且相等,对应角相等。
轴对称的特征:对应点到对称轴的距离相等。
一、下列现象哪些是平移,画“-”;哪些是旋转,画“○”。
二、仔细观察,填一填。
小鱼先向()平移了()格,再向()平移了()格,又向()平移了()格,最后向()平移了()格。
三、先画练习1、将图向平移3格得到图形B2、图形B沿着最右边的一条边做轴对称图形得到图形C3、交图形C向右移动4格再向下移动4得到图形D四、判断。
1、拉抽屉是旋转现象。
( )2、所有的锐角都比直角小。
( )3、开着的电风扇叶片属于旋转现象。
( )4、放大镜下的直角比三角尺上的直角大。
( )五、看图填一填1、小帆船先向()平移了()格,再向()平移()格。
2、三角形先向()平移了()格,再向()平移()格。
《图形的平移》平移旋转和轴对称PPT课件
返回
平移、旋转和轴对称 认识图形的平移
课后作业 补充习题: 第1页
返回
平苏移教、版旋转数和学轴对四称年认级识图下形册的平移
1 平移、旋转和轴对称
图形的平移
情境导入
探究新知
课堂练习
课堂小结
课后作业
-.
平移、旋转和轴对称 认识图形的平移
情境导入
下面的小船图和金鱼图分别是怎样运动的?它们 的运动有什么相同点和不同点?
返回
平移、旋转和轴对称 认识图形的平移
探究新知
下面的小船图和金鱼图分别是怎样运动的?它 们的运动有什么相同点和不同点?
返回
平移、旋转和轴对称 认识图形的平移
金鱼图向右平移了几格?先数一数,再与同学交流。
金鱼图向右平移了7格。
返回
平移、旋转和轴对称 认识图形的平移
画出平行四边形向下平移3格后的图形。
你是怎么画的?
3格
与同学交流。
画图时,找到关键点,画出关键点平移后的 对应点,再将对应点连线画出平移后的图形。
返回
平移、旋转和轴对称 认识图形的平移
返回
平移、旋转和轴对称 认识图形的平移
蜡烛向右平移了 4 格。
小鱼向 左 平移了 5 格。
返回
平移、旋转和轴对称 认识图形的平移
课堂小结
这节课你们都学会了哪些知识?
1.平移的两要素:方向和距离 2.先找到对应边(点),然后数出它们之间
的距离,就是图形平移的距离 3.画图时,找到对应点,画出点平移后的对
课堂练习 1.下面的图案中,哪些包含平移现象?
X
返回
平移、旋转和轴对称 认识图形的平移
2.哪个三角形向右平移10格得到红色三角形? 另一个三角形平移多少格得到红色三角形?
平移_旋转_轴对称_知识点总结
线找其中点
分线。找两组
两组对应点连
对应点连线,过
线的交点
两条中点的直线
找关键点
找关键点
找关键点
找关犍点
过每个关键点
过每个关犍点做
连接关键点与旋
连接关键点与
做对称轴的垂线
平移方向的平行线
转中心,将这条线
对称中心,延长
法
截取与之相等的
截取与之相等的距
段按方向和角度旋
并截取相等的长
距离,标出对应
旋转.平移.轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
一个(两个)平
平面图形在它所在
一个平面图形绕一
一个图形旋转
能够完全重合的
面图形沿某条直
平面上的平行移动。
定点按一定的方向
180°能与自身
两个图形
线对折能够完全
决定要素:平移的方
旋转一定的角度的
重合
表示方法:
定
重合
向.平移的距离
运动。
AABC^ADEF
离,标出对应点
转.标出对应点
度.标出对应点
点
连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称
多次平移相当于
线段旋转90°
中心对称一定
一个图形经过
图形,对称轴是
一次平移
后与原來的位置垂
是旋转对称.旋
轴对称、平移或选
它的垂直平分
两条对称轴平行
直
转对称不一定是
转等变换得到的
线。
时,两次轴对称相当
义
轴对称
成轴对
中心对
平移_旋转_轴对称_知识点总结
旋转、平移、轴对称、中心对称知识点总结对应点间的连线平行且相等(或在同一条直线上)对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。
图形上每一点都绕同一点按相同的方向和角度旋转对应点到旋转中心的距离相等对应边相等,对应角相等,图形的性状大小不改变旋转180°能否与自身重合对应点间的连线是否经过同一点,并被这一点平分找对称轴:找一组对应点连线,做其垂直平分线。
找两组对应点连线,过两条中点的直线找对称中心:找一组对应点连线找其中点两组对应点连线的交点找关键点过每个关键点做对称轴的垂线截取与之相等的距离,标出对应找关键点过每个关键点做平移方向的平行线截取与之相等的距离,标出对应点找关键点连接关键点与旋转中心,将这条线段按方向和角度旋转,标出对应点找关键点连接关键点与对称中心,延长并截取相等的长度,标出对应点点连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称图形,对称轴是它的垂直平分线。
角是轴对称图形,对称轴是它的角平分线。
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。
④角平分线的性质:角平分线上任意一点到叫两边的距离相等。
⑤对称轴垂直平分对称点间的连线。
多次平移相当于一次平移两条对称轴平行时,两次轴对称相当于一次平移线段旋转90°后与原来的位置垂直两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。
两条对称轴互相垂直时,两次轴对称相当于一次中心对称一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等两个全等的图形总能经过轴对称、平移或旋转等变换后重合。
初中数学知识归纳平移旋转对称
初中数学知识归纳平移旋转对称平移、旋转和对称是初中数学中常见的几何变换,它们在解决几何问题和实际应用中起着重要的作用。
本文将对平移、旋转和对称进行归纳总结。
1. 平移:平移是指将图形沿着直线方向上的某个距离移动。
在平移过程中,图形的形状和大小保持不变,只是位置发生变化。
平移可以表示为向量形式,其中平移向量表示了图形沿着横坐标和纵坐标方向上的移动距离。
平移的性质:(1)平移不改变图形的大小和形状。
(2)平移保持图形的所有内角大小和相对位置不变。
(3)平移是可逆的,即可以通过相反方向的平移将图形还原到原来的位置。
2. 旋转:旋转是指将图形绕一个点或一个轴进行转动,旋转的中心点称为旋转中心。
旋转可以是顺时针或逆时针方向,旋转的角度可以为正数或负数。
旋转的性质:(1)旋转不改变图形的大小。
(2)旋转保持图形的所有内角大小和相对位置不变。
(3)旋转是可逆的,即可以通过逆向旋转将图形还原到原来的位置。
3. 对称:对称是指图形相对于某个轴、点或中心呈现镜像关系。
对称分为对称轴对称和中心对称两种类型。
对称的性质:(1)轴对称:图形相对于对称轴对称,对称轴上的任意一点与其相对称点距离对称轴的距离相等。
(2)中心对称:图形相对于中心对称,中心对称点是图形的中心,对称图形的任意一点与其相对称点之间的距离相等。
4. 平移、旋转和对称的应用:(1)平移:平移常用于几何问题的解决和图形的构造,如将一个图形精确移动到另一个位置。
(2)旋转:旋转常用于解决图形的排列、对称和判断两个图形是否相似等问题。
(3)对称:对称广泛应用于图案的设计、建筑设计等领域,通过对称可以使图案更具美感和平衡感。
在初中数学学习中,平移、旋转和对称是重要的数学概念和技巧。
通过学习和掌握这些几何变换的性质和应用,可以提高图形思维能力,解决几何问题,并在日常生活中运用数学的知识。
因此,初中数学学习中的平移、旋转和对称对培养学生的几何直观和创造力起着重要的作用。
平移_旋转_轴对称_知识点总结
两条对称轴互相垂直时,两次轴对称相当于一次中心对称
一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等
两个全等的图形总能经过轴对称、平移或旋转等变换后重合.
轴对称图形
成轴对称
中心对称图形
成中心对称
全等多边形
全等三角形
对应边
对应角
一个图形;
不止一条对称轴
两个图形;
只有一条对称轴
旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合。
一个图形
两个图形
图
形
特
征
对应角相等,对应边相等
对应点间的连线平行且相等(或在同一条直线上)
对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变.
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线.
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
旋转、平移、轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
定
义
一个(两个)平面图形沿某条直线对折能够完全重合
平面图形在它所在平面上的平行移动.
决定要素:平移的方向、平移的距离
一个平面图形绕一定点按一定的方向旋转一定的角度的运动.
一个图形旋转180°能与自身重合
能够完全重合的两个图形
第24讲 平移、对称、旋转与位似
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
第七单元图形与变换
第24讲平移、对称、旋转与位似
一、知识清单梳理
知识点一:图形变换
关键点拨与对应举例
1.图形的轴对称
(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.
②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.
图形关于坐标轴成对称变换
在平面直角坐标系内,如果两个图形关于x轴对称,那么这两个图形上的对应点的横坐标相等,纵坐标互为相反数;
在平面直角坐标系内,如果两个图形关于y轴对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标相等.
图形关于原点成中心对称
在平面直角坐标系内,如果两个图形关于原点成中心对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标互为相反数.
(2)性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.
常见的轴对称图形:等腰三角形、菱形、矩形、正方形、正六边形、圆等.
2.图形的平移
(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运ቤተ መጻሕፍቲ ባይዱ称为平移.
(2)性质:①平移后,对应线段相等且平行,对应点所连的线段相等且平行;②平移后,对应角相等且对应角的两边分别平行、方向相同;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∠EAF=∠BAC,即∠EAB+∠BAF=∠BAF+∠FAC,
∴∠EAB=∠FAC,④正确,②错误,
综上所述,①③④正确.
故选B.
【点睛】
本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.
8.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B .将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为( )
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
11.在下列图形中是轴对称图形的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据轴对称图形的概念求解.
【详解】
A.不是轴对称图形,故本选项不符合题意,
人教版初中数学图形的平移,对称与旋转的图文解析
一、选择题
1.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
【详解】
A、是中心对称图形,又是轴对称图形,故此选项正确;
【答案】D
【解析】
【分析】
如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.
【详解】
A.是轴对称图形;
B.是轴对称图形;
C.是轴对称图形;
D.不是轴对称图形;
故选D.
【点睛】
本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.
13.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()
14.如图所示,把一张矩形纸片对折折痕为AB,再把以AB的中点O为顶点的平角 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是
A.正三角形B.正方形C.正五边形D.正六边形
【答案】D
【解析】
【分析】
对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
17.下列所给图形是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
选项D是轴对称图形,但不是中心对称图形,故该选项错误.
故选C.
【详解】
请在此输入详解!
6.下列所述图形中,是轴对称图形但不是中心对称图形的是
A.圆B.菱形C.平行四边形D.等腰三角形
【答案】D
【解析】
【分析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A、是轴对称图形,也是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项错误;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、是轴对称图形,不是中心对称图形,故此选项正确,
故选D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.
故选:C.
【点睛】
正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.
10.下列图形中,不是中心对称图形的是( )
A.平行四边形B.圆C.等边三角形D.正六边形
【答案】C
【解析】
【分析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
∴OB'= =1= AB',
∴∠OAB'=30°,
∴∠C'AD=∠AB'O=60°,
在△AC'D和△AB'O中, ,
∴△AC'D≌△B'AO(AAS),
∴AD=OB'=1,C'D=AO= ,
∴OD=AO﹣AD= ﹣1,
∴点C′的坐标为(﹣ , ﹣1);
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.
故选D.
18.下列图形中,是轴对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一判断即可.
【详解】
A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;
【详解】
解:作C'D⊥OA于D,设AO交BC于E,如图所示:
则∠C'DA=90°,
∵∠CAB=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠B=45°,
∵BC∥x轴,点B( , ﹣ ),
∴AE= BC= ,BC=2 = AB,
∴AB=2,OA= ,
由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,
【详解】
由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选D.
【点睛】
本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.
15.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
由勾股定理得:AD1=5.故选B.
16.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
B、是中心对称图形,不是轴对称图形,故此选项错误;
C、不是中心对称图形,是轴对称图形,故此选项错误;
D、不是中心对称图形,是轴对称图形,故此选项错误;
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
【详解】
解:平行四边形不是轴对称图形,
菱形、矩形、正方形都是轴对称图形.
故选:C.
【点睛】
本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.
4.如图,在 中, , ,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()
【详解】
①勒洛三角形不是中心对称图形,故①错误;
②图 中,点 到 上任意一点的距离都相等,故②正确;
③图 中,设圆的半径为r
∴勒洛三角形的周长=
圆的周长为
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误