2019-2020河南省实验中学中考数学试卷及答案
2019-2020年河南省实验中学九年级(下)第一次月考数学试卷 解析版
2019-2020学年九年级(下)第一次月考数学试卷一.选择题(共10小题)1.下列各数中,最小的数是()A.﹣2020B.2020C.D.2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣73.如图,∠CED=60°,DF⊥AB于点F,DM∥AC交AB于点M,DE∥AB交AC于点E,则∠MDF的度数是()A.60°B.40°C.30°D.20°4.如图所示几何体的左视图正确的是()A.B.C.D.5.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4abC.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣16.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣27.商家常将单价不同的两种糖混合成“什锦糖”出售,“什锦糖”的单价为:两种糖的总价与两种糖的总质量的比.A种糖的单价为40元/千克,B种糖的单价为30元/千克;现将2千克A种糖和3千克B种糖混合,则“什锦糖”的单价为()A.40元/千克B.34元/千克C.30元/千克D.45元/千克8.如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数y=(x>0)与AB、BC分别交于点D、E,若AD=2BD,则k的值为()A.B.C.D.9.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm10.如图,在Rt△ABC中,点D为AC边中点,动点P从点D出发,沿着D→A→B的路径以每秒1个单位长度的速度运动到B点,在此过程中线段CP的长度y随着运动时间x 的函数关系如图2所示,则BC的长为()A.B.C.D.二.填空题(共5小题)11.(﹣2019)0﹣sin30°++2﹣1=.12.不等式组的解集是.13.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球号之和大于5的概率为.14.如图,将矩形ABCD绕点B顺时针旋转90°得矩形BEFG,若AB=3,BC=2,则图中阴影部分的面积为.15.如图,已知△ABC中,CA=CB=4,∠C=45°,D是线段AC上一点(不与A,C重合),连接BD,将△ABD沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F.若△BEF是直角三角形,则AF的长为.三.解答题(共8小题)16.化简求值:,其中,x=2+.17.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A,B,C,D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?18.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB 长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.19.如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF =70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)20.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?21.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c<x﹣3的解集:.22.背景知识:如图,在Rt△ABC中,∠ACB=90°,若AC=BC,则:AB=AC=BC.(1)解决问题:如图(1),∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB,现尝试探究线段BA、BC、BD之间的数量关系:过点C作CE⊥CB,与MN 交于点E,易发现图中出现了一对全等三角形,即≌,由此可得线段BA、BC、BD之间的数量关系是:;(2)类比探究:将图(1)中的MN绕点A旋转到图(2)的位置,其它条件不变,试探究线段BA、BC、BD之间的数量关系,并证明;(3)拓展应用:将图(1)中的MN绕点A旋转到图(3)的位置,其它条件不变,若BD=2,BC=,则AB的长为(直接写结果).23.如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.参考答案与试题解析一.选择题(共10小题)1.下列各数中,最小的数是()A.﹣2020B.2020C.D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣2020<﹣<<2020,∴所给的各数中,最小的数是﹣2020.故选:A.2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000065=6.5×10﹣7.故选:D.3.如图,∠CED=60°,DF⊥AB于点F,DM∥AC交AB于点M,DE∥AB交AC于点E,则∠MDF的度数是()A.60°B.40°C.30°D.20°【分析】根据两条直线平行,同位角相等可得∠DMF=60°,再根据三角形内角和即可求解.【解答】解:∵DE∥AB∴∠A=∠CED=60°,∵DM∥AC∴∠DMF=∠A=60°,∵DF⊥AB∠DFM=90°,∴∠MDF=90°﹣60°=30°.故选:C.4.如图所示几何体的左视图正确的是()A.B.C.D.【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从几何体的左面看所得到的图形是:故选:A.5.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4abC.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D、原式变形后,利用完全平方公式化简得到结果,即可作出判断.【解答】解:A、原式=﹣a2+ab,错误;B、原式=4a2b2÷a2b=4b,错误;C、原式=6a2b,正确;D、原式=﹣(a﹣1)2=﹣a2+2a﹣1,错误,故选:C.6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.7.商家常将单价不同的两种糖混合成“什锦糖”出售,“什锦糖”的单价为:两种糖的总价与两种糖的总质量的比.A种糖的单价为40元/千克,B种糖的单价为30元/千克;现将2千克A种糖和3千克B种糖混合,则“什锦糖”的单价为()A.40元/千克B.34元/千克C.30元/千克D.45元/千克【分析】先求出A种糖和B种糖的总价,再根据“什锦糖”的单价=总价÷数量,即可得出答案.【解答】解:根据题意得:=34(元/千克),答:“什锦糖”的单价为34元/千克;故选:B.8.如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数y=(x>0)与AB、BC分别交于点D、E,若AD=2BD,则k的值为()A.B.C.D.【分析】根据矩形的面积为10,设OA=a,根据AD=2BD,表示出点D的坐标,代入即可求出k的值.【解答】解:设OA=a,矩形OABC的面积为10,所以AB=,∵AD=2BD,∴AD=AB=,因此点D(,a),代入反比例函数关系式得,k=,故选:C.9.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm【分析】根据线段垂直平分线的性质即可求解.【解答】解:由画图可知:DE是AB的垂直平分线,∴AF=BF,AG=BG,∵△GBC的周长为14cm,即BC+BG+CG=14cm,∴BC+AC=14cm,∵△ABC的周长为26cm,即AB+BC+AC=26cm,∴AB=12cm,∴BF=6cm.故选:A.10.如图,在Rt△ABC中,点D为AC边中点,动点P从点D出发,沿着D→A→B的路径以每秒1个单位长度的速度运动到B点,在此过程中线段CP的长度y随着运动时间x 的函数关系如图2所示,则BC的长为()A.B.C.D.【分析】当x=0时,y=PC=PD=2,则AC=4,当x=2+,则AP=x﹣AD=2﹣2=,cos A==,则tan A=,BC=AC•tan A,即可求解.【解答】解:当x=0时,y=PC=PD=2,则AC=4,当x=2+,PC⊥AB,则AP=x﹣AD=2﹣2=,cos A==,则tan A=,∴BC=AC•tan A=4×=,故选:C.二.填空题(共5小题)11.(﹣2019)0﹣sin30°++2﹣1=1+2.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2019)0﹣sin30°++2﹣1=1﹣+2+=1+2,故答案为:1+2.12.不等式组的解集是x<﹣7.【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【解答】解:,由①得x≤1,由②得x<﹣7,故此不等式组的解集为x<﹣7.故答案为:x<﹣7.13.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球号之和大于5的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答】解:根据题意画图如下:∵共有20种等可能的结果,两次摸出的小球的标号之和大于5的有12种结果,∴摸出的小球号之和大于5的概率为=.故答案为:.14.如图,将矩形ABCD绕点B顺时针旋转90°得矩形BEFG,若AB=3,BC=2,则图中阴影部分的面积为.【分析】如图,连接BD,BF.根据S阴=S扇形BDF+S△BEF﹣S△BDC﹣S扇形BCE=S扇形BDF ﹣S扇形BCE计算即可.【解答】解:如图,连接BD,BF.由题意S阴=S扇形BDF+S△BEF﹣S△BDC﹣S扇形BCE=S扇形BDF﹣S扇形BCE=﹣=π,故答案为π.15.如图,已知△ABC中,CA=CB=4,∠C=45°,D是线段AC上一点(不与A,C重合),连接BD,将△ABD沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F.若△BEF是直角三角形,则AF的长为4或4﹣4.【分析】如图1,当∠EBF=90°时,根据折叠的性质得到∠EBA=∠DBA=45°,推出点F在以C为圆心,AC为半径的圆上,连接CF,根据等腰直角三角形的性质得到结论;如图2,当∠BEF=90°,根据折叠的性质得到∠BDA=∠BEA=90°,∠EAB=∠DAB =67.5°,推出△ADF和△BDC是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:∵CA=CB=4,∠C=45°,∴∠CAB=∠CBA=67.5°,如图1,当∠EBF=90°时,∵将△ABD沿AB翻折,使点D落在点E处,∴∠EBA=∠DBA=45°,∴∠ADB=180°﹣45°﹣67.5°=67.5°,∴∠AFB=90°﹣∠E=90°﹣67.5°=22.5°,∴点F在以C为圆心,AC为半径的圆上,连接CF,∴∠ACF=2∠ABF=90°,∴AC=CF=4,∴AF=AC=4;如图2,当∠BEF=90°,∵将△ABD沿AB翻折,使点D落在点E处,∴∠BDA=∠BEA=90°,∠EAB=∠DAB=67.5°,∴∠F AD=45°,∴∠F AD=∠C=45°,∴AF∥BC,△ADF和△BDC是等腰直角三角形,∴CD=BC=2,∴AD=AC﹣CD=4﹣2,∴AF=AD=4﹣4,综上所述,若△BEF是直角三角形,则AF的长为4或4﹣4,故答案为:4或4﹣4.三.解答题(共8小题)16.化简求值:,其中,x=2+.【分析】直接利用分式的性质分别化简进而把已知数据代入求出答案.【解答】解:原式=•﹣=﹣==,当x=2+时,原式==.17.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A,B,C,D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了50名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是36°;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?【分析】(1)利用A组人数除以所占百分比进而得出答案;(2)先求出样本中D等级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%,进而得出D组所占圆心角度数;(3)根据(1)中所求得出测试全体人数,以及D级所在的扇形的圆心角度数得出答案;(4)根据A级的学生人数所占比例求出该县九年级有500名学生所占人数.【解答】解:(1)由题意可得,七年级各班共随机调查了:10÷20%=50(人),故答案为:50;(2)D级所在的扇形圆心角的度数是:(1﹣46%﹣24%﹣20%)×360°=36°;故答案为:36°;(3)补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A级学生人数约为100名.18.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB 长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB =60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.19.如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF =70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)【分析】过点C作CE∥AD,交AB于点E,则四边形AECD是平行四边形,利用平行四边形的性质可得出AE、EB及∠CEF的值,通过解直角三角形可得出EF,BF的长,结合EF﹣BF=50,即可求出CF的长,此题得解.【解答】解:过点C作CE∥AD,交AB于点E,如图所示.∵CD∥AE,CE∥AD,∴四边形AECD是平行四边形,∴AE=CD=50m,EB=AB﹣AE=50m,∠CEF=∠DAB=30°.在Rt△ECF中,EF==CF,在Rt△BCF中,BF=.∵EF﹣BF=50,∴CF﹣=50,∴CF≈37m.答:河流的宽度CF的值约为37m.20.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?【分析】(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,根据“2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型汽车m辆,购进B型汽车n辆,根据总价=单价×数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出结论;(3)利用总价=单价×数量,即可求出三种购车方案获得的利润,比较后即可得出结论.【解答】解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:.答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,依题意,得:25m+10n=200,解得:m=8﹣n.∵m,n均为正整数,∴,,,∴共3种购买方案,方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆.(3)方案一获得利润:8000×6+5000×5=73000(元);方案二获得利润:8000×4+5000×10=82000(元);方案三获得利润:8000×2+5000×15=91000(元).∵73000<82000<91000,∴购进A型车2辆,B型车15辆获利最大,最大利润是91000元.21.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为y=|x2﹣4x|﹣3;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:函数关于直线x=2对称;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=1;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c <x﹣3的解集:3<x<5.【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3<x﹣3的解集为3<x<5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a ≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为y=|x2﹣4x|﹣3.(2)如图:函数关于直线x=2对称,故答案为函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3<x﹣3的解集为3<x<5,故答案为3<x<5.22.背景知识:如图,在Rt△ABC中,∠ACB=90°,若AC=BC,则:AB=AC=BC.(1)解决问题:如图(1),∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB,现尝试探究线段BA、BC、BD之间的数量关系:过点C作CE⊥CB,与MN 交于点E,易发现图中出现了一对全等三角形,即△ACE≌△DCB,由此可得线段BA、BC、BD之间的数量关系是:AB+BD=BC;(2)类比探究:将图(1)中的MN绕点A旋转到图(2)的位置,其它条件不变,试探究线段BA、BC、BD之间的数量关系,并证明;(3)拓展应用:将图(1)中的MN绕点A旋转到图(3)的位置,其它条件不变,若BD=2,BC=,则AB的长为4(直接写结果).【分析】(1)过点C作CE⊥CB,得到∠BCD=∠ACE,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形即可.(2)过点C作CE⊥CB于点C,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形,即可得出结论;(3)先判断出△ACE≌△BCD,CE=BC,得到△BCE为等腰直角三角形,得到AB=BD+BC,即可得出结论.【解答】解:(1)如图1,过点C作CE⊥CB,与MN交于点E,∴∠BCE=90°=∠ACD,∴∠ACE=∠DCB,∠CEB+∠CBE=90°,∵BD⊥MN,∴∠ABD=90°,∴∠CBE+∠CBD=90°,∴∠CEB=∠CBD,∵AC=DC,∴△ACE≌△DCB(AAS),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AE+AB=BD+AB,∴AB+BD=BC,故答案为:△ACE,△DCB,AB+BD=BC;(2)BD﹣AB=BC,理由:如图(2),过点C作CE⊥CB,与MN交于点E,同(1)的方法得,△ACE≌△DCB(AAS),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AE﹣AB=BD﹣AB,∴BD﹣AB=BC;(3)如图(3),过点C作CE⊥CB,与MN交于点E,∴∠BCE=90°=∠ACD,∵BD⊥MN,∴∠ABD=90°=∠ACD,∵∠AOC=∠DOB,∴∠BAC=∠CDB,∵AC=DC,∴△ACE≌△DCB(ASA),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AB﹣AE=AB﹣BD,∴AB﹣BD=BC,∵BD=2,BC=,∴AB=BD+BC=4,故答案为4.23.如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.【分析】(1)将点A,C的坐标代入y=ax2+2x+c即可;(2)求出点E坐标,如图1,当点Q在x轴上时,设Q(m,0),由QA=QE可列出关于m的方程,解方程即可;当点Q在y轴上时,设Q(0,n),则QA=QE可列出关于n的方程,解方程即可;(3)如图2,过点E作EH⊥x轴于点H,求出∠BAE=45°,所以可能存在△PBC∽△BAE和△PBC∽△EAB两种情况,设P(t,0),分别利用相似三角形的性质可求出t的值,即可写出点P的坐标.【解答】解:(1)将A(﹣1,0),C(0,3)代入y=ax2+2x+c,得,解得,,∴抛物线的解析式为:y=﹣x2+2x+3;(2)联立,解得,或,∴E(4,﹣5),如图1,当点Q在x轴上时,设Q(m,0),∵AE为底边,∴QA=QE,∴QA2=QE2,即(m+1)2=52+(m﹣4)2,解得,m=4,∴Q1(4,0);当点Q在y轴上时,设Q(0,n),∵AE为底边,∴QA=QE,∴QA2=QE2,即n2+12=42+(n+5)2,解得,n=﹣4,∴Q2(0,﹣4);综上所述,Q1(4,0),Q2(0,﹣4);(3)如图2,过点E作EH⊥x轴于点H,∵A(﹣1,0),E(4,﹣5),∴AH=EH=5,AE==5,∠BAE=45°,又OB=OC=3,∴∠ABC=45°,AB=4,BC==3,设P(t,0),则BP=3﹣t,∵∠BAE=∠ABC=45°,∴只可能存在△PBC∽△BAE和△PBC∽△EAB两种情况,当△PBC∽△BAE时,,∴=,∴t=,∴P1(,0);当△PBC∽△EAB时,,∴=,∴t=﹣,∴P2(﹣,0),综上所述,点P的坐标为(,0)或(﹣,0).。
2019年河南省中考数学试卷含答案解析
2019年河南省中考数学试卷含答案解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2D.﹣22.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5 3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=25.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.49.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)二、填空题(每小题3分,共15分。
2020年河南省中考数学试卷(含答案解析)
2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.−12C.12D.22.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y17.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7,则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A .5000(1+2x )=7500B .5000×2(1+x )=7500C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009. 如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10. 如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数 .12. 已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 .14.如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515机器甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.平均数中位数方差不合格率统计量机器甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.Array某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G 为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延如图,点D是BC长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几(1)根据点D在BC组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:̂的中点时,BD=5.0cm”.则上表中a的值是;①“当点D为BC②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 ,连接BD ,可求出BB′CE的值为 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.−12C.12D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.【点评】此题主要考查了相反数的概念,正确把握定义是解题关键.2.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是可能是正方形,也可能是长方形,故本选项符合题意;故选:D.【点评】本题考查了简单几何体的三视图,确定三视图是关键.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【分析】列出算式,进行计算即可.【解答】解:由题意得:1GB=210×210×210B=210+10+10B=230B,故选:A.【点评】本题考查同底数幂的乘法,底数不变,指数相加是计算法则.6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.7.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7,则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】根据新定义运算法则以及即可求出答案.【解答】解:由题意可知:1☆x=x2﹣x﹣1=0,∴Δ=1﹣4×1×(﹣1)=5>0,∴有两个不相等的实数根故选:A.【点评】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=7500【分析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 9. 如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【分析】根据已知条件得到AC =6,OC =2,OB =7,求得BC =9,根据正方形的性质得到DE =OC =OE =2,求得O ′E ′=O ′C ′=2,根据相似三角形的性质得到BO ′=3,于是得到结论. 【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形, ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2, ∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 方法二:设直线AB 的解析式为y =kx +b , ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0). ∴{−2k +b =67k +b =0,∴{k=−32b=143,∴y=−23x+143,∵∠ACB=90°,边BC在x轴上,∴C点的坐标为(﹣2,0),∴正方形OCDE的边长为2,∴E(0,2),设点E沿x轴平移后落在AB边上的坐标为(a,2),由y=−23x+143得,2=−23a+143,∴a=4,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形性质,相似三角形的判定和性质,正确的识别图形是解题的关键.10.如图,在△ABC中,AB=BC=√3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6√3B.9C.6D.3√3【分析】连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=√3AB=3,于是得到结论.【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB =BC ,∴∠ACB =∠BAC =30°, ∵AC =AD =CD , ∴△ACD 是等边三角形, ∴∠DAC =∠DCA =60°,∴∠BAD =∠BCD =90°,∠ADB =∠CDB =30°, ∵AB =BC =√3, ∴AD =CD =√3AB =3,∴四边形ABCD 的面积=2×12×3×√3=3√3, 故选:D .【点评】本题考查了含30°角的直角三角形,等腰三角形的性质,等边三角形的判定和性质,熟练掌握直角三角形的性质是解题的关键. 二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数 √3 .【分析】由于所求无理数大于1且小于2,则该数的平方大于1小于4,所以可选其中的任意一个数开平方即可.【解答】解:大于1且小于2的无理数是√3,答案不唯一. 故答案为:√3.【点评】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12. 已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 x>a .【分析】根据关于x 的不等式组的解集表示在数轴上表示方法求出x 的取值范围即可. 【解答】解:∵b <0<a ,∴关于x 的不等式组{x >a ,x >b ,的解集为:x >a ,故答案为:x >a .【点评】本题考查的是在数轴上表示不等式组的解集和一元一次不等式组求解,先根据题意得出不等式组的解集是解答此题的关键.13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【分析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率. 【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种等可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.【点评】考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键. 14. 如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【分析】方法一:连接CH 并延长交AD 于P ,连接PE ,根据正方形的性质得到∠A =90°,AD ∥BC ,AB =AD =BC =2√2,根据全等三角形的性质得到PD =CF =√2,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF=√(2√2)2+(√2)2=√10,点G,H分别是EC,PC的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2√2,∵E,F分别是边AB,BC的中点,∴AE=CF=12×2√2=√2,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),∴PD=CF=√2,∴AP=AD﹣PD=√2,∴PE=√AP2+AE2=√(√2)2+(√2)2=2,∵点G,H分别是EC,CP的中点,∴GH=12EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°, ∴DF ⊥CE ,∴CE =DF =√(2√2)2+(√2)2=√10, ∵点G ,H 分别是EC ,PC 的中点, ∴CG =FH =√102,∵∠DCF =90°,CO ⊥DF ,∴∠DCO +∠FCO =∠DCO +∠CDO =90°, ∴∠FCO =∠CDO , ∵∠DCF =∠COF =90°, ∴△COF ∽△DOC , ∴CF DF=OF CF,∴CF 2=OF •DF ,∴OF =CF 2DF =(√2)2√10=√105,∴OH =3√1010,OD =4√105, ∵∠COF =∠COD =90°, ∴△COF ∽△DCF , ∴OF OC=OC OD,∴OC 2=OF •OD , ∴OC =√√105×4√105=2√105, ∴OG =CG ﹣OC =√102−2√105=√1010,∴HG =√OG 2+OH 2=√110+910=1, 故答案为:1.【点评】本题考查了勾股定理,正方形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.15. 如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC ̂于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为6√2+π3.【分析】利用轴对称的性质,得出当点E 移动到点E ′时,阴影部分的周长最小,此时的最小值为弧CD 的长与CD ′的长度和,分别进行计算即可.【解答】解:如图,作点D 关于OB 的对称点D ′,连接D ′C 交OB 于点E ′,连接E ′D 、OD ′, 此时E ′C +E ′D 最小,即:E ′C +E ′D =CD ′, 由题意得,∠COD =∠DOB =∠BOD ′=30°, ∴∠COD ′=90°,∴CD ′=√OC 2+OD′2=√22+22=2√2, CD̂的长l =30π×2180=π3, ∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.【点评】本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:(1−1a+1)÷aa2−1=a+1−1a+1×(a−1)(a+1)a=a﹣1,把a=√5+1代入a﹣1=√5+1﹣1=√5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=501,b=15%;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.【分析】(1)根据中位数的计算方法,求出乙机器分装实际质量的中位数;乙机器的不合格的有2个,调查总数为20,可求出不合格率,从而确定a、b的值;(2)从平均数、中位数、方差几个方面综合来说明并进行判断.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=3÷20=15%,故答案为:501,15%;(2)选择乙机器,理由:甲与乙的平均数相同,中位数相差不大,乙的方差较小且不合格率较小,所以乙机器的分装合格率更高,且稳定性更好,【点评】本题考查中位数、众数、平均数的意义和计算方法,理解中位数、众数、平均数的意义是正确解答的关键.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【分析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;(2)建议为:为了减小误差可以通过多次测量取平均值的方法.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AEC=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴AE=BE•tan22°,即x=(16+x)×0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3(m),减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【分析】(1)把点(0,30),(10,180)代入y 1=k 1x +b ,得到关于k 1和b 的二元一次方程组,求解即可;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k 2的值;(3)将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可. 【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.【点评】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分.【分析】根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.M、A、E三点共线.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙O的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.【点评】本题考查了切线的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G 为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延如图,点D是BC长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几(1)根据点D在BC组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:̂的中点时,BD=5.0cm”.则上表中a的值是 5.0;①“当点D为BC②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).。
2020年河南省中考数学试卷及答案
2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.22.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.(3分)电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1 7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C .无实数根D .只有一个实数根8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500 B .5000×2(1+x )=7500 C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数 . 12.(3分)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.(3分)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN 的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO 就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,如图,点D是BC交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,(1)根据点D在BC得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出BB′CE的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.2020年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.2【解答】解:2的相反数是﹣2.故选:A.2.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【解答】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.(3分)电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【解答】解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根【解答】解:由题意可知:1☆x =x 2﹣x ﹣1=0, ∴△=1﹣4×1×(﹣1)=5>0, 故选:A .8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500 B .5000×2(1+x )=7500 C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=7500【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x , 由题意得:5000(1+x )2=7500, 故选:C .9.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形,∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2, ∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 故选:B .10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3【解答】解:连接BD 交AC 于O , ∵AD =CD ,AB =BC , ∴BD 垂直平分AC , ∴BD ⊥AC ,AO =CO ,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=√3,∴AD=CD=√3AB=3,∴四边形ABCD的面积=2×12×3×√3=3√3,故选:D.二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数√3.【解答】解:大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.12.(3分)已知关于x的不等式组{x>a,x>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【解答】解:∵b<0<a,∴关于x的不等式组{x>a,x>b,的解集为:x>a,故答案为:x>a.13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.14.(3分)如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【解答】解:设DF ,CE 交于O , ∵四边形ABCD 是正方形,∴∠B =∠DCF =90°,BC =CD =AB , ∵点E ,F 分别是边AB ,BC 的中点, ∴BE =CF ,∴△CBE ≌△DCF (SAS ), ∴CE =DF ,∠BCE =∠CDF , ∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°,∴DF⊥CE,∴CE=DF=√(2√2)2+(√2)2=√10,∵点G,H分别是EC,FD的中点,∴CG=FH=√10 2,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF=CF2DF=√2)2√10=√105,∴OH=3√1010,OD=4√105,∵OC2=OF•OD,∴OC=√√105×4√105=2√105,∴OG=CG﹣OC=√102−2√105=√1010,∴HG=√OG2+OH2=√110+910=1,故答案为:1.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+π3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√OC2+OD′2=√22+22=2√2,CD̂的长l =30π×2180=π3, ∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:(1−1a+1)÷aa 2−1,其中a =√5+1. 【解答】解:(1−1a+1)÷aa 2−1=a+1−1a+1×(a−1)(a+1)a=a ﹣1,把a =√5+1代入a ﹣1=√5+1﹣1=√5.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x (g )的频数分布表.质量485≤x <490≤x <495≤x <500≤x <505≤x <510≤x <频数 机器 490 495 500 505 510 515甲 2 2 4 7 4 1 乙135731[分析数据]根据以上数据,得到以下统计量. 统计量 机器 平均数中位数方差不合格率甲 499.7 501.5 42.01 b 乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a = 501 ,b = 15% ;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501, b =3➗20=15%, 故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m . (1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE=x16+x=0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN 的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO 就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN 切半圆O于F.求证:EB,EO就把∠MEN三等分.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB =OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4或﹣21≤y Q≤﹣5.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,如图,点D是BC交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,(1)根据点D在BC得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).̂的中点,【解答】解:(1)∵点D为BĈ=CD̂,∴BD∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 等腰直角三角形 ,连接BD ,可求出BB′CE的值为 √2 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.【解答】解:(1)∵AB 绕点A 逆时针旋转至AB ′, ∴AB =AB ',∠BAB '=60°, ∴△ABB '是等边三角形, ∴∠BB 'A =60°,∴∠DAB '=∠BAD ﹣∠BAB '=90°﹣60°=30°, ∵AB '=AB =AD , ∴∠AB 'D =∠ADB ', ∴∠AB 'D =180°−30°2=75°, ∴∠DB 'E =180°﹣60°﹣75°=45°, ∵DE ⊥B 'E ,∴∠B 'DE =90°﹣45°=45°, ∴△DEB '是等腰直角三角形. ∵四边形ABCD 是正方形, ∴∠BDC =45°, ∴BD DC=√2,同理B′D DE=√2,∴BD DC=B′D DE,∵∠BDB '+∠B 'DC =45°,∠EDC +∠B 'DC =45°, ∴BDB '=∠EDC , ∴△BDB '∽△CDE , ∴BB′CE=BD DC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)①两结论仍然成立. 证明:连接BD ,∵AB =AB ',∠BAB '=α, ∴∠AB 'B =90°−α2,∵∠B 'AD =α﹣90°,AD =AB ', ∴∠AB 'D =135°−α2,∴∠EB 'D =∠AB 'D ﹣∠AB 'B =135°−α2−(90°−α2)=45°, ∵DE ⊥BB ',∴∠EDB '=∠EB 'D =45°, ∴△DEB '是等腰直角三角形, ∴DB′DE=√2,∵四边形ABCD 是正方形, ∴BD CD =√2,∠BDC =45°,∴BD CD=DB′DE,∵∠EDB '=∠BDC ,∴∠EDB '+∠EDB =∠BDC +∠EDB , 即∠B 'DB =∠EDC , ∴△B 'DB ∽△EDC , ∴BB′CE =BD CD=√2.②BE B′E=3或1.若CD 为平行四边形的对角线,点B '在以A 为圆心,AB 为半径的圆上,取CD 的中点.连接BO 交⊙A 于点B ', 过点D 作DE ⊥BB '交BB '的延长线于点E ,由(1)可知△B 'ED 是等腰直角三角形, ∴B 'D =√2B 'E ,由(2)①可知△BDB '∽△CDE ,且BB '=√2CE . ∴BE B′E=B′B+B′E B′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD 为平行四边形的一边,如图3,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E =3或1.。
2019年河南省中考数学试卷及答案(Word解析版)
2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
2020年河南省中考数学试卷(含详细解析)
7.定义运算: .例如 .则方程 的根的情况为()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.只有一个实数根
8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由 亿元增加到 亿元.设我国2017年至2019年快递业务收入的年平均增长率为 .则可列方程为( )
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道 上架设测角仪,先在点 处测得观星台最高点 的仰角为 ,然后沿 方向前进 到达点 处,测得点 的仰角为 .测角仪的高度为 ,
求观星台最高点 距离地面的高度(结果精确到 .参考数据: );
“景点简介”显示,观星台的高度为 ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
保密★启用前
2020年河南省中考数学试卷
题号
一பைடு நூலகம்
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.2的相反数是()
A. B. C. D.
2.如下摆放的几何体中,主视图与左视图有可能不同的是()
A. B.
C. D.
3.要调查下列问题,适合采用全面调查(普查)的是()
A.
B.
C.
D.
9.如图,在 中, .边 在 轴上,顶点 的坐标分别为 和 .将正方形 沿 轴向右平移当点 落在 边上时,点 的坐标为()
A. B. C. D.
10.如图,在 中, ,分别以点 为圆心, 的长为半径作弧,两弧交于点 ,连接 则四边形 的面积为()
精品解析:河南省实验中学2019-2020学年八年级上学期期中考试数学试题(解析版)
2019-2020学年八年级上学期期中考试数学试题一、选择题(每小题3分,共30分)1.下列图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,因此是轴对称图形的有2个,故选B.2.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【答案】D【解析】∵5<AB<25,∴A、B间的距离不可能是5,故选D.3.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120°C.135°D.150°【答案】C【解析】因为∠ADE是△DEB的外角,所以∠ADE=∠DEB+∠EBD=45°+90°=135°,故选C.4.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SASB.ASAC.AASD.SSS【答案】D【解析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.5.已知点P(-6,3)关于x轴的对称点Q的坐标(a,b),则M(-a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】∵点P(-6,3)关于x轴的对称点Q的坐标(a,b),∴a=-6,b=-3,∴M(-a,b)为M(6,-3),在第四象限,故选D.6.如图,在△ABC与△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F,以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.①②⑤B.①②③C.①④⑥D.②③④【答案】D【解析】在A选项中,根据SAS可证明△ABC≌△DEF;在B选项中,根据SSS可证明△ABC≌△DEF;在C选项中,根据AAS可证明△ABC≌△DEF;在D选项中,只满足SSA,而SSA不能判定两个三角形全等,所以以D选项中的三个已知条件,不能判定△ABC和△DEF全等,故选D.7.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=ECC.BF=DF=CDD.FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.8.已知等腰三角形的周长为24,其中两边之差为6,则这个等腰三角形的腰长为()A.10B.6C.4或6D.6或10【答案】A【解析】设腰长为a,则底边长为a+6或a-6,若底边长为a+6,则有2a+a+6=24,a=6,此时底边长为12,6+6=12,构不成三角形;若底边长为a-6,则有2a+a-6=24,a=10,综上,所以三角形的腰长为10,故选A.9.如图,在正方形网格中,网格线的交点称为格点.已知A,B是两格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合题意的点C有()A.6个B.7个C.8个D.9个【答案】C【解析】试题分析:如图:分情况讨论①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选A.考点:1.等腰直角三角形;2.勾股定理.【此处有视频,请去附件查看】10.如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是()A.5B.4C.3D.2【答案】B【解析】考点:全等三角形的判定。
2020年河南省中考数学试题(含答案)
2020年河南省中考数学试卷(含答案)(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1. 2的相反数是( ) A .-2B .12C .12D .22. 如下摆放的几何体中,主视图与左视图有可能不同的是( )ABD .3. 要调查下列问题,适合采用全面调查(普查)的是( ) A .中央电视台《开学第一课》的收视率 B .某城市居民6月份人均网上购物的次数 C .即将发射的气象卫星的零部件质量 D .某品牌新能源汽车的最大续航里程4. 如图,l 1∥l 2,l 3∥l 4,若∠1=70°,则∠2的度数为( ) A .100°B .110°C .120°D .130°5. 电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1 GB=210 MB ,1MB=210 KB ,1 KB=210 B .某视频文件的大小约为1 GB ,1 GB 等于( )2l 1l 2l 3l 41A.230 B B.830 B C.8×1010 B D.2×1030 B 6.若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数6yx=-的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2 D.y3>y2>y17.定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5 000亿元增加到7 500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5 000(1+2x)=7 500 B.5 000×2(1+x)=7 500C.5 000(1+x)2=7 500 D.5 000+5 000(1+x)+5000(1+x)2=7 5009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(32,2)B.(2,2)C.(114,2)D.(4,2)10. 如图,在△ABC 中,AB =BC,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( ) A.B .9C .6D.二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数___________. 12. 已知关于x的不等式组x ax b >⎧⎨>⎩,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为___________.13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是_____.A BCDa14.如图,在边长为ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为____________.15. 如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC ︵于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为_________.三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:21(1)11aa a -÷+-,其中1a =.ABCDEFGH17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500 g,与之相差大于10 g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:【收集数据】从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501【整理数据】整理以上数据,得到每袋质量x(g)的频数分布表.根据以上信息,回答下列问题:(1)表格中的a=_________,b=_________;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16 m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6 m.(1)求观星台最高点A 距离地面的高度(结果精确到0.1 m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40≈1.41);(2)“景点简介”显示,观星台的高度为12.6 m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19. (9分)暑假将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下:方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑假专享卡,每次健身费用按八折优惠. 设某学生暑期健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x+b ;按照方案二所需费用为y 2(元),且y 2=k 2x .其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义; (2)求打折前的每次健身费用和k 2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.NAB C 22°45°20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB和AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN 三等分,只需适当放置三分角器,使DB 经过∠MEN 的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则EB ,EO 就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A ,B ,O ,C 在同一直线上,EB ⊥AC ,垂足为点B ,______. 求证:___________.图1NM21.(10分)如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q 的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1) 根据点D 在BC ︵上的不同位置,画出相应的图形,测量线段BD ,CD ,FD 的长度,得到下表的几组对应值.操作中发现:①“当点D 为BC ︵的中点时,BD =5.0 cm ”,则上表中a 的值是_________;②“线段CF 的长度无需测量即可得到”,请简要说明理由. (2)将线段BD 的长度作为自变量x ,CD 和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF 为等腰三角形时,线段BD 长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为__________,连的值为________;接BD,可求出BBCE(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B E的值.ABCDE B'图1ABCDEB'图2。
2019年河南省中考数学试卷含答案
18.(本小题满分 9 分) 某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机 抽取 50 名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下: a.七年级成绩频数分布直方图:
三、解答题(本大题共 8 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤)
点 O 是 AC 的中点,则 CD 的长为
()
A. 2 2
B. 4
C. 3
D. 10 10.如图,在 △OAB 中,顶点 O(0,0) , A(3,4) , B(3,4) .将 △OAB
与正方形 ABCD 组成的图形绕点 O 顺时针旋转,每次旋转 90 ,则第 70 次旋转结束时,
点 D 的坐标为 A. (10,3)
OA 2 3 ,则阴影部分的面积为
.
15.如图,在矩形 ABCD 中, AB 1 , BC a ,点 E 在边 BC 上,且 BE 3 .连接 AE,将 5
△ABE 沿 AE 折叠,若点 B 的对应点 B 落在矩形 ABCD 的边上,则 a 的值为
.
17.(本小题满分 9 分)
如图,在△ABC 中, BA BC , ABC 90 .以 AB 为直径的半圆 O 交 AC 于点 D,点
.
x 7>4
13.现有两个不透明的袋子,一个装有 2 个红球、1 个白球,另一个装有 1 个黄球、2 个红
球,这些球除颜色外完全相同.从两个袋子中各随机摸出 1 个球,摸出的两个球颜色相
同的概率是
.
14.如图,在扇形 AOB 中, AOB 120 ,半径 OC 交弦 AB 于点 D,且 OC OA .若
C. 2
D. 2
2
2019年河南省中招考试数学试卷及答案(解析版)
2019年河南省中招考试数学试卷及答案(解析版)2019年河南省中招考试数学试卷及答案解析⼀、选择题(每⼩题3分,共24分)1.下列各数中,最⼩的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的⼤⼩⽐较法则(正数都⼤于0,负数都⼩于0,正数都⼤于负数,两个负数,其绝对值⼤的反⽽⼩)⽐较即可.解:∵﹣3<-13<0<13,∴最⼩的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收⼊达到3875.5亿元.若将3875.5亿⽤科学计数法表⽰为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据⾓的平分线的性质及直⾓的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘⽅;完全平⽅公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节⽬”是必然事件(B)某种彩票中奖概率为10%是指买⼗张⼀定有⼀张中奖(C)神州飞船发射前需要对零部件进⾏抽样检查(D)了解某种节能灯的使⽤寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节⽬”是随机事件,(A)错误。
2019-2020学年河南省实验中学九年级数学第一次月考试卷答案
河南省实验中学2019——2020 学年上期月考试卷九年级 数学(时间: 100 分钟,满分: 120 分)一、选择题(每小题 3分,共 10个小题,共 30 分)1. 下列各组中的四条线段成比例的是( ) A . 1cm ,3cm ,4cm ,6cm B .2cm ,3cm ,4cm ,6cm C . 3cm , 5cm , 9cm , 13cmD . 3cm ,5cm , 9cm , 12cm2. 用配方法解方程 x 2 2 4x ,下列配方正确的是( )22A . (x 2)2 6B . (x 2)2 2 22C . (x 2)2 2D . (x 2)2 2ac3. 若四条不相等的线段 a , b , c , d 满足,则下列式子中,成立的是( )bdb c a c m a b d c a c cA .B . (m 0)C .D .a db d m b d b d d4. 四边形 ABCD 的对角线 AC 、BD 互相平分,要使它成为矩形,需要添加的条件是()A . AB =CDB .AC =BD C . AB =BC D .AC ⊥BD25.一元二次方程 2x 2 x 1 0 的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断y ,那么,他们各掷一次所确定的点落在已知直线 y 2x 6 上的概率为 ( )6111A .B .C .D .36 18 12 92x 1.1 A 0.11B 1.19C 1.73D . 1.676. 小兰和明明用掷 A 、B 两枚骰子的方法来确定P (x, y ) 的位置,规定:小兰掷得的点数为x ,明明掷得的点数为8. 如图,某小区规划在一个长 30m 、宽 20m 的长方形土地 ABCD 上修建三条同样宽的通道,使其中两条与 行,另一条与 AD 平行,其余部分种花草,要使每一块花草的面积都为道宽为 xm ,则由题意列得方程为()9.如图,在平行四边形 ABCD 中,用直尺和圆规作∠ BAD 的平分线 AG 交 BC 于点 E ,以 A 为圆心, AB 长为半径画弧交 AD 于 F ,若 BF =12,AB =10,则 AE 的长为( )A . 16B .15C .14D .1310.如图,已知正方形 ABCD ,顶点 A (1,3)、B (1,1)、C (3,1),规定“把正方形 ABCD 先沿 x 轴翻折,再向左平移 1个单位”为一次变换.如此这样,连续经过 2019次变换后,正方形 ABCD 的对角线交点 M 的坐标变 为( ).A .(-2018 ,-2)B .( -2019 , -2 )C .( -2017 , -2 )D .( -2017 ,2)二、填空题(每小题 3 分,共 5个小题,共 15分)11. 方程 x 24x 的根是_.EB 4AC12. 如图,在三角形 ABC 中,点 E ,F 分别是 AB ,AC 边上的点,且有 EF ∥BC ,如果,则 = ___________ .AB 5 FC13. 为庆祝新中国成立 70 周年,河南省实验中学开展了以“我和我亲爱的祖国”为主题的“快闪”活动,九年级 准备从两名男生和两名女生中选出两名同学领唱, 如果每一位同学被选中的机会均等, 则选出的恰为一位男生一位 女生的概率是 .14. 如图,正方形 ABCD 和正方形 BEFG 的边长分别为 1 和 3,点 C 在边 BG 上,连接 DE ,DG ,EG ,则△DEG 的面积为 .15.如图,在矩形 ABCD 中, AB=6, BC=8,点 E 是 BC 边上一点,连接 AE ,将 ABE 沿 AE 折叠,使点 B落在点 B ′处.当 CEB 为直角三角形时, BE 三、解答题(本答题共 8 个小题,满分 75分)16.(7 分)先化简,再求值: ( x 2 3 2 x 1 ) x 9,其中 x 满足 x 2 2x 3 0. x 2 3x x 2 6x 9 xAB 平 78m 2,那么通道宽应设计成多少 m ?设通A .(30﹣x )( 20﹣ x )= 78B .(30﹣2x )(20﹣2x )= 78C .(30﹣2x )(20﹣x )= 6×78D .(30﹣2x )(20﹣2x )= 6×7817. (每题4分,共16 分)用合适的方法解方程:2 2 2(1)(2t 3)23(2t 3)(2)2x 1 29 x 2 2(3)2x2 5x 1 (4)x24x 5 018.(8 分)河南省实验中学九年级(一)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说” “戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)九年级(一)班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所对应的圆心角;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧” 类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2 人恰好是乙和丙的概率.219.(8分)已知关于x的一元二次方程x ﹣2(m﹣1)x﹣m(m+2)=0.(1)求证:方程总有两个不相等的实数根;(2)若x=﹣2 是此方程的一个根,求方程的另一个根.20. (8分)如图,△ ABC 中,AB=AC ,D是BC 中点, F 是AC 中点,AN 是△ ABC的外角∠ MAC 的角平分线,延长DF 交AN 于点E,连接CE .(1)求证:四边形ADCE 是矩形;(2)填空:①若BC=AB =4,则四边形ABDE 的面积为;②当△ ABC 满足时,四边形ADCE 是正方形.21. (8 分)香香蛋糕店开业在即,老板香香要求员工通过微信转发进行宣传,于是蛋糕店开业的消息朋友圈快速流转起来.(1)开始只有香香和员工共9 个人知道开业消息,两天后知道此店开业消息的人数达到1089人,如果每个人每天转发的人数相同,那么每个人每天把消息传递了几个人?(2)老板香香根据经验估计:该店将进货价格为8元的蛋糕按每个10 元售出,每天可销售200个,如果这种蛋糕每涨价 1 元,其销售量就减少20 个,香香想通过卖这种蛋糕每天获得800 元利润,她能梦想成真吗?为什么?22. (9 分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图,点P 是四边形ABCD 内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H 分别为边AB,BC,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(2)若改变(1)中的条件,使∠APB=∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)23. (11 分)(1)操作发现如图1,在五边形ABCDE 中,AB=AE,∠B=∠BAE=∠AED=90°,∠ CAD =45°,试猜想BC,CD,DE 之间的数量关系.小明经过仔细思考,得到如下解题思路:将△ ABC 绕点 A 逆时针旋转90°至△ AEF ,由∠ B=∠ AED =90°,得∠ DEF =180°,即点D,E,F 三点共线,易证△ ACD ≌,故BC,CD ,DE 之间的数量关系是;(2)类比探究如图2,在四边形ABCD 中,AB=AD,∠ ABC+∠ D=180°,点E,F 分别在边CB,DC 的延长线上,∠EAF=1∠BAD,连接EF ,试猜想EF ,BE,DF 之间的数量关系,并给出证明.2(3)拓展延伸如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠ DAE =45°,若BD=2,CE=3,则DE 的长为.河南省实验中学2019-2020学年上学期第一次月考试卷答案一、选择题(每小题 3 分,共10 个小题,共 30 分)1. B2.A3.D4.B5.A6. B 7.D 8.C9.A 10.C二、填空题(每小题 3 分,共5 个小题,共 15 分)52 911. x 1 4,x 2 012. 13.14.15. 6 或 3432三、解答题(本答题共 8 个小题,满分 75分)x316.(7 分)解:原式= x 3 x(x 3)(x 3)(x 3) x(x 1) xx(x 3)2 x 91 (x 3)22∵x 2﹣2x ﹣3=0,∴x 11,x 23∵原式有意义, x 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 ∴ x 11 1 1则原式 = 1 2 1 2 1 .⋯⋯⋯⋯⋯⋯⋯⋯ 7 分 (x 3)2 ( 1 3)2 1617. (每小题 4 分,共 16 分)解:( 1): ,∴,x 1 x (x 3)2 x 9x9 x(x 3)2x x94分3∴ t 1,t 2 0 ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分 2( 2) 2x 1 2 3 x 2 2 02x 1 3x 6 2x 1 3x 6 0222x 2 5x 1 可化为 2x 2 5x 1 022b 2-4ac ( 5)2 4 2 1 17>0 bb 2 4ac 5 17 ∴x2a18. (8 分)解:(1)∵喜欢散文的有 10 人,频率为 0.25 ,∴总人数 =10÷0.25=40 (人);⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 (2)在扇形统计图中, “其他”类所对应的圆心角:6× 360o=54o , ⋯⋯⋯⋯⋯⋯40⋯⋯⋯ 5 分(3)画树状图,如图所示:开始x115,x 2 5 ⋯⋯⋯⋯⋯⋯⋯⋯8分3)a=2, b =-5, c=1,∴ x 15 17x 25 1712 分4) 2x 24x 5 0解: x+5 ) (x-1)=0∴ x15,x 2116 分所有等可能的情况有12 种,其中恰好是丙与乙的情况有 2 种,∴P(丙和乙)= 2 1.分12 6 82219.(8 分)(1)证明:△=[﹣2(m﹣1)]2﹣4×1×[﹣m(m+2)]=8m2+4.2∵m2≥0,2∴8m +4> 0,即△> 0,∴方程总有两个不相等的实数根.⋯⋯⋯⋯⋯⋯⋯ 3 分2)当x=﹣2 时,原方程为4+4(m﹣1)﹣m(m+2)=0,即m2﹣2m=0,解得:m1=0,m2=2.⋯⋯⋯⋯⋯⋯⋯⋯ 4 分设方程的另一根为x1,当m=0 时,有﹣2x1=0,解得:x1=0;当m= 2 时,有﹣2x1=﹣8,解得:x1=4.(将m 代入方程,解方程得到亦可)综上所述:当x=﹣ 2 是此方程的一个根时,方程的另一个根为0 或4.8分20. (8 分)解:(1)∵ AB=AC,D 是BC中点,F是AC中点,∴ DF∥ AB,BD=CD∵ AB=AC, D 是BC中点,∴∠ BAD=∠CAD,AD⊥ DC.∵ AN是△ ABC的外角∠ MAC 的角平分线,∴∠ MAE=∠ CAE,∴∠ NAD=90°,∴ AE∥ BD,∴四边形ABDE是平行四边形;∴ AE=BD,∵ BD=CD∴ AE∥CD 且AE=CD∴四边形ADCE是平行四边形;∵∠ NAD=90°,∴平行四边形ADCE是矩形.(此题用三角形全等也可证得)4分2) 4 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分3)答案不唯一,如当∠ BAC=90°时,或者,当∠ ABC=45°时,⋯⋯⋯⋯⋯⋯⋯⋯8 分21. (8 分)解:(1)设每个人每天把消息传递了x个人,根据题意得:9(1+x)2=1089,2(1+x)2=121,x1=﹣12(舍),x2=10,答:每个人每天把消息传递了10 个人;⋯⋯⋯⋯⋯⋯⋯⋯ 4 分2)设这种蛋糕涨价x 元,香香卖这种蛋糕每天获得800 元利润,根据题意得:(10﹣8+x)(200﹣20x)=800,2 x2﹣8x+20=0,△=82﹣4×1×20=﹣16<0,此方程无实数解,∴不能梦想成真,不能获得每天获得800元利润.⋯⋯⋯⋯⋯⋯⋯⋯8 分22. (9 分)(1)四边形EFGH 是菱形.证明:如图中,连接AC,BD .连接BD.∵点E,H 分别为边AB ,DA 的中点,1∴EH ∥BD,EH= BD,2∵点F,G 分别为边BC,CD 的中点,1∴FG ∥BD,FG= BD,2∴EH ∥FG,EH=GF,∴四边形EFGH 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∵∠ APB=∠ CPD ,∴∠ APB+ ∠ APD =∠ CPD+ ∠ APD即∠ APC=∠ BPD,在△ APC 和△ BPD 中,∴△ APC ≌△ BPD , ∴AC = BD∵点 E ,F ,G 分别为边 AB ,BC ,CD 的中点, 11 ∴EF= AC ,FG= BD ,22∴EF=FG ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 在平行四边形 EFGH 中, EF=FG ∴四边形 EFGH 是菱形.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分3)四边形 EFGH 是正方形.⋯⋯⋯⋯⋯⋯⋯⋯ 9 分23. ( 11分)解:( 1)△ AFD , CD = DE+BC ;2)如图 2,EF ,BE ,DF 之间的数量关系是 EF =DF ﹣BE .证明:将△ ABE 绕点 A 逆时针旋转,使 AB 与 AD 重合,得到△ 则△ ABE ≌△ ADE' ,∴∠ DAE' =∠BAE ,AE'=AE ,DE'=BE ,∠ADE' =∠ ABE , ∴∠ EAE' =∠ BAD ,∵∠ABC+∠ADC =180°,∠ ABC+∠ABE =180°, ∠ADE' =∠ ADC ,即 E',D ,F 三点共线,11又∠ EAF= ∠ BADF= ∠EAE'22∴∠ EAF =∠ E'AF , 在△ AEF 和△ AE'F 中,∴△ AFE ≌△ AFE' ( SAS ), ∴FE =FE',又∵ FE' = DF ﹣ DE' ,∴EF =DF ﹣BE ; 8分4分ADE'3) 11分11。
2019年河南省中考真题数学试题(解析版)(含考点分析)
{来源}2019年河南省中考数学试卷 {适用范围:3. 九年级}{标题}2019年河南省中考数学试卷考试时间:100分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 小题,每小题 分,合计分.{题目}1.(2019河南省,T1)12的绝对值是( ) 12(A )- 12(B ) 2(C ) 2(D ) - {答案} B{解析}本题考查了绝对值的概念,解题的关键是理解绝对值的意义.此类问题容易出错的地方是容易与倒数或相反数混淆.根据绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,从而可得12的绝对值是12,即1122. 故答案选B{分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019河南省,T2) 成人每天维生素D 的摄入量约为0.0000046克 .数据“0.0000046”用科学记数法表示为(A ) 46×10-7 (B ) 4.6×10-7 (C )4.6×10-6 (D )0.46×10-5{答案} C{解析}本题考查了科学记数法,解题的关键是正确确定a 的值以及n 的值.0.0000046是绝对值小于1的数,这类数用科学计数法表示的方法是写成a×10-n (1≤a <10,n>0 )的形式,关键是确定-n,确定了n的值,-n的值就确定了.确定方法是:n 的值等于原数中左起第一个非零数前零的个数(含整数位数上的零).故0.0000046中左起第一个非零数为4,其左边六个零,即0.0000046=4.6×10-6.答案选C.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较小的数科学计数法}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}3.(2019河南省,T3)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为(A)45° (B)48° (C)50° (D)58°{答案} B{解析}如图,设CD和BE的交点为F,∵AB∥CD,∠B=75°,∴∠B=∠CFE=75°,∵∠CFE=∠D+∠E,∠E=27°,∴∠D=∠CFE-∠E=75°-27°=48°.故选B.{分值}3{章节:[1-5-3]平行线的性质}{考点:两直线平行同位角相等}{难度:2-简单}{题目}4.(2019河南卷,T4)下列计算正确的是( )A.236a a a +=B.22(3)6a a -=C.222()x y x y -=- D.={答案} D{解析}本题考查了合并同类项、积的乘方、乘法公式、合并同类二次根式,A 合并同类项系数2+3=5,,不是2×3=6,B 错-3的平方等于9,C 中乘法公式用错,D 正确,选D{分值}3{章节:[1-14-1]整式的乘法} {考点:多项式乘以多项式} {类别:常考题} {难度:2-简单}{题目}5.(2019河南,T5)如图(1)是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图(2),关于平移前后几何体的三视图,下列说法正确的是( )A.主视图相同B.左视图相同C. 俯视图相同D.三种视图都不相同{答案} c{解析}本题考查了三视图,对比平移前后结果A 主视图不同,B 左视图不同,AB 选项不对,C 俯视图相同,C 正确.故选C.{分值}3{章节:[1-4-1-1]立体图形与平面图形} {考点:简单组合体的三视图}{难度:3-中等难度}{题目}6.(2019河南,T6)一元二次方程(1)(1)23x x x +-=+的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根{答案} A{解析}本题考查了一元二次方程根的判别式,先化简,∵2123x x -=+,∴2240x x --=,△=2-+16=20(2)>0,故选A {分值}3{章节:[1-21-2-2]公式法} {考点:根的判别式}{类别:常考题}{类别:易错题} {难度:3-中等难度}{题目}7.(2019河南,T7).某超市销售 A ,B ,C ,D 四种矿泉水,它们的单价依次是 5 元、3 元、2 元、1 元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( ) A .1.95 元 B .2.15 元 C .2.25 元 D .2.75 元{答案}C{解析}本题考查了加权平均数的概念和意义,由题意可知各种不同价格的百分比就是权重,最终的平均数就等于每个价格乘以权重,所以平均单价为:5×10%+3×15%+2×55%+1×10%=2.25,所以最后的平均单价为2.25元.因此本题选C .{分值}3{章节:[1-20-1-1]平均数}{考点:加权平均数(权重为百分比)}{类别:常考题} {难度:3-中等难度}{题目}8.(2019年河南,T8)已知抛物线 y = x 2+bx + 4 经过(-2 ,n)和)(4 ,n)两点,则 n 的值为( )A . 2B . 4C .2D .4{答案}B{解析}本题考查了二次函数的对称性;中点坐标公式;求对称轴的公式及二次函数解析式,由题意知抛物线过(-2,n )和(4,n ),说明这两个点关于对称轴对称,即对称轴为直线x=1,所以-ab2=1,又因为a=-1,所以可得b=2,即抛物线的解析式为y=-x 2+2x+4,把x=-2代入解得n=-4.因此本题选B .{分值}3{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数y =ax2+bx+c 的性质} {类别:常考题} {难度:4-较高难度}{题目}9.如图,在四边形ABCD 中,AD ∥BC ,∠D=90°,AD=4,BC=3,分别以点A ,C 为圆心,大于21AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O.若点O 是AC 的中点,则CD 的长为( )A.22B.4C.3D.10{答案}A{解析}本题考查了尺规作图 ,矩形的判定及性质,等腰三角形的性质,垂直平分线的性质 ,勾股定理,如图,过点B 做BM ⊥AD 于点M,连结AE 、CE ,∵AD ∥BC ,∴∠BCD+∠D=180°,又∵∠D=90°∴∠BCD=90°,∴∠BCD=∠D=∠BMD=90°, ∴四边形BCDM 为矩形 ,∴MD=BC=3 , BM=CD ,由作图可知AE=CE 又∵O 是AC 的中点, ∴EO ⊥AC ,∴EB 是AC 的垂直平分线,∴AB=BC=3. 在Rt △ABM 中,∠AMB=90°,AM=AD-MD=1,∴BM=22132222=-=-AM AB ,∴CD= 22.故选A.{分值}3{章节:[1-18-2-1]矩形} {考点:矩形的性质} {考点:矩形的判定} {类别:常考题} {难度:4-较高难度}10.(2019河南,T10)如图,在△OAB 中,顶点O(0,0),A(-3,4),B(3,4).将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A.(10,3)B.(-3,10)MFEOBDACC.(10,-3)D.(3,-10)【答案】D【解析】由A、B两点的坐标可知线段AB的长度和它与x轴的关系,由正方形的性质可知AD=AB,延长DA交x轴于点M,则DA⊥x轴,Rt△DMO中,MO=3,DM=10,将△OAB和正方形ABCD绕点O每次顺时针旋转90°,Rt△DMO也同步绕点O每次顺时针旋转90°,点D的落点坐标可由Rt△DMO的旋转得到。
2020年河南省中考数学试卷及答案解析
2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.22.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.(3分)电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1 7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C .无实数根D .只有一个实数根8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500 B .5000×2(1+x )=7500 C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数 . 12.(3分)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.(3分)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN 的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO 就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,如图,点D是BC交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,(1)根据点D在BC得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出BB′CE的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.2020年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.2【解答】解:2的相反数是﹣2.故选:A.2.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【解答】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.(3分)电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【解答】解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根【解答】解:由题意可知:1☆x =x 2﹣x ﹣1=0, ∴△=1﹣4×1×(﹣1)=5>0, 故选:A .8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500 B .5000×2(1+x )=7500 C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=7500【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x , 由题意得:5000(1+x )2=7500, 故选:C .9.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形,∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2, ∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 故选:B .10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3【解答】解:连接BD 交AC 于O , ∵AD =CD ,AB =BC , ∴BD 垂直平分AC , ∴BD ⊥AC ,AO =CO ,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=√3,∴AD=CD=√3AB=3,∴四边形ABCD的面积=2×12×3×√3=3√3,故选:D.二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数√3.【解答】解:大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.12.(3分)已知关于x的不等式组{x>a,x>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【解答】解:∵b<0<a,∴关于x的不等式组{x>a,x>b,的解集为:x>a,故答案为:x>a.13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.14.(3分)如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【解答】解:设DF ,CE 交于O , ∵四边形ABCD 是正方形,∴∠B =∠DCF =90°,BC =CD =AB , ∵点E ,F 分别是边AB ,BC 的中点, ∴BE =CF ,∴△CBE ≌△DCF (SAS ), ∴CE =DF ,∠BCE =∠CDF , ∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°,∴DF⊥CE,∴CE=DF=√(2√2)2+(√2)2=√10,∵点G,H分别是EC,FD的中点,∴CG=FH=√10 2,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF=CF2DF=√2)210=√105,∴OH=3√1010,OD=4√105,∵OC2=OF•OD,∴OC=√105×4105=2√105,∴OG=CG﹣OC=√102−2√105=√1010,∴HG=√OG2+OH2=√110+910=1,故答案为:1.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+π3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√OC2+OD′2=√22+22=2√2,CD̂的长l =30π×2180=π3, ∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:(1−1a+1)÷aa 2−1,其中a =√5+1. 【解答】解:(1−1a+1)÷aa 2−1=a+1−1a+1×(a−1)(a+1)a=a ﹣1,把a =√5+1代入a ﹣1=√5+1﹣1=√5.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x (g )的频数分布表.质量485≤x <490≤x <495≤x <500≤x <505≤x <510≤x <频数 机器 490 495 500 505 510 515甲 2 2 4 7 4 1 乙135731[分析数据]根据以上数据,得到以下统计量. 统计量 机器 平均数中位数方差不合格率甲 499.7 501.5 42.01 b 乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a = 501 ,b = 15% ;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501, b =3➗20=15%, 故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m . (1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE=x16+x=0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN 的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO 就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN 切半圆O于F.求证:EB,EO就把∠MEN三等分.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB =OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4或﹣21≤y Q≤﹣5.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,如图,点D是BC交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,(1)根据点D在BC得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).̂的中点,【解答】解:(1)∵点D为BĈ=CD̂,∴BD∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 等腰直角三角形 ,连接BD ,可求出BB′CE的值为 √2 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.【解答】解:(1)∵AB 绕点A 逆时针旋转至AB ′, ∴AB =AB ',∠BAB '=60°, ∴△ABB '是等边三角形, ∴∠BB 'A =60°,∴∠DAB '=∠BAD ﹣∠BAB '=90°﹣60°=30°, ∵AB '=AB =AD , ∴∠AB 'D =∠ADB ', ∴∠AB 'D =180°−30°2=75°, ∴∠DB 'E =180°﹣60°﹣75°=45°, ∵DE ⊥B 'E ,∴∠B 'DE =90°﹣45°=45°, ∴△DEB '是等腰直角三角形. ∵四边形ABCD 是正方形, ∴∠BDC =45°, ∴BD DC=√2,同理B′D DE=√2,∴BD DC=B′D DE,∵∠BDB '+∠B 'DC =45°,∠EDC +∠B 'DC =45°, ∴BDB '=∠EDC , ∴△BDB '∽△CDE , ∴BB′CE=BD DC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)①两结论仍然成立. 证明:连接BD ,∵AB =AB ',∠BAB '=α, ∴∠AB 'B =90°−α2,∵∠B 'AD =α﹣90°,AD =AB ', ∴∠AB 'D =135°−α2,∴∠EB 'D =∠AB 'D ﹣∠AB 'B =135°−α2−(90°−α2)=45°, ∵DE ⊥BB ',∴∠EDB '=∠EB 'D =45°, ∴△DEB '是等腰直角三角形, ∴DB′DE=√2,∵四边形ABCD 是正方形, ∴BD CD =√2,∠BDC =45°,∴BD CD=DB′DE,∵∠EDB '=∠BDC ,∴∠EDB '+∠EDB =∠BDC +∠EDB , 即∠B 'DB =∠EDC , ∴△B 'DB ∽△EDC , ∴BB′CE =BD CD=√2.②BE B′E=3或1.若CD 为平行四边形的对角线,点B '在以A 为圆心,AB 为半径的圆上,取CD 的中点.连接BO 交⊙A 于点B ', 过点D 作DE ⊥BB '交BB '的延长线于点E ,由(1)可知△B 'ED 是等腰直角三角形, ∴B 'D =√2B 'E ,由(2)①可知△BDB '∽△CDE ,且BB '=√2CE . ∴BE B′E=B′B+B′E B′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD 为平行四边形的一边,如图3,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E =3或1.。
2019-2020学年河南省实验中学九年级(上)第一次月考数学试卷-(含解析)
2019-2020学年河南省实验中学九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四组线段中,是成比例线段的是()A. 5cm,6cm,7cm,8cmB. 3cm,6cm,2cm,5cmC. 2cm,4cm,6cm,8cmD. 12cm,8cm,15cm,10cm2.用配方法解方程2x2−6x−1=0时,需要先将此方程化成形如(x+m)2=n(n≥0)的形式,则下列配方正确的是()A. (x−3)2=12B. (x−32)2=12C. (x−32)2=2 D. (x−32)2=1143.如果ab=cd,且abcd≠0,则下列比例式不正确的是()A. ab =cdB. ac=dbC. bd=caD. db=ac4.已知,在四边形ABCD中,∠A=∠B=90°,要使四边形ABCD为矩形,那么需要添加的一个条件是()A. AB=BCB. AD=BCC. AD=ABD. BC=CD5.一元二次方程x2+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能确定6.四张背面相同的扑克牌,分别为红桃1,2,3.4,背面朝上,先从中抽取一张,把抽到的点数记为a,再在剩余的扑克中抽取一张,点数记为b.则点(a,b)在直线y=x+1上方的概率是()A. 12B. 13C. 14D. 167.根据所给的表格,估计一元二次方程x2+12x−15=0的近似解x,则x的整数部分是()x0123x2+12x−15−15−21330A. 1B. 2C. 3D. 48.用一条长40cm的绳子围成一个面积为64cm2的长方形,设长方形的长为xcm,则可列方程为()A. x(20+x)=64B. x(20−x)=64C. x(40−x)=64D. x(40+x)=649.如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A. 10B. 12C. 16D. 1810.已知M(2,2).规定“把点M先作关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2018次变换后,点M的坐标变为()A. (−2016,2)B. (−2016,−2)C. (−2017,−2)D. (−2017,2)二、填空题(本大题共5小题,共15.0分)11.方程3x2=x的解为______.12.如图,在△ABC中,D、E分别是AB和AC上的点,且DE//BC,如果AB=12cm,AD=9cm,AC=8cm,那么AE的长是______ .13.为了准备学校艺术节展示活动,需要从3名男生和2名女生中随机抽取2名学生做主持人,抽取的学生恰好是一名男生和一名女生的概率为______.14.如图所示,四边形ABCD是一个长方形,内有两个相邻的正方形,大、小正方形的边长分别为a,b.则图中阴影部分的面积为__________.15.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为______ cm.三、计算题(本大题共3小题,共32.0分)16.解方程:(1)x2=3x(2)2x2−x−6=0.17.如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作平行四边形ABDE,连接AD、EC.若BD=CD,求证:四边形ADCE是矩形.18.某商场将每件进价为8元的商品按每件10元销售,一天可销售100件.该商场想通过降低售价,增加销售量的办法来提高利润,经市场调查发现:单价每降低0.1元,每天可多售10件.(1)若商场想每天盈利225元,每件商品应降价多少元?(2)商场能每天盈利300元吗?请说明理由.四、解答题(本大题共5小题,共43.0分)19.先化简、再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.20.某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.已知关于x的一元二次方程(a−5)x2−4x−1=0(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为−1,求方程的另一个根.22.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=______时,四边形MENF是正方形.23.四边形ABCD是由等边△ABC和顶角120°的等腰△ABD拼成.将一个60°角顶点放在D处.将60°绕D点旋转.该60°角两边分别交直线BC、AC于M、N交直线AB于点E、F两点.(1)当E、F分别在边AB上时,如图1.求证:BM+AN=MN;(2)当E在边BA的延长线上时,如图2.直接写出线段BM、AN、MN之间的等量关系;(3)在(1)的条件下,若AC=5,AE=1求BM的长-------- 答案与解析 --------1.答案:D解析:解:A 、56≠78,则不是成比例线段,选项错误; B 、36≠2536≠25,则不是成比例线段,选项错误; C 、24≠68,则不是成比例线段,选项错误; D 、128=1510,则是成比例线段,选项正确.故选D .根据成比例选段的定义,若a 、b 、c 、d 是成比例选段,则有ab =cd ,据此即可判断. 本题考查了成比例线段的定义,注意在定义中四条线段的顺序.2.答案:D解析:【分析】本题考查配方法,解题的关键是熟练运用配方法,本题属于基础题型. 根据配方法即可求出答案.【解答】解:方程两边同除以2,得x 2−3x −12=0, 配方,得x 2−3x +(−32)2=12+(−32)2, 即(x −32)2=114.故选D .3.答案:A解析: 【分析】本题考查了比例线段、比例的性质,关键是熟悉比例的性质:两外项的乘积等于两内项的乘积. 根据比例的性质,可得答案. 【解答】解:A 、ab =cd ,得ad =bc ,故A 符合题意; B 、ac =d b ,得ab =cd ,故B 不符合题意; C 、bd =c a ,得ab =cd ,故C 不符合题意; D 、db =ac ,得ab =cd ,故D 不符合题意. 故选:A .解析:【分析】本题考查了平行四边形的判定和矩形的判定的应用,能正确运用定理进行推理是解此题的关键,注意:有一个角是直角的平行四边形是矩形.已经得到四边形ABCD的一个内角为90°,然后得到该四边形为平行四边形即可.【解答】解:条件为AD=BC,理由是:∵∠A=∠B=90°,∴AD//BC,∵AD=BC,∴四边形ABCD为平行四边形,又∵∠A=∠B=90°,∴四边形ABCD为矩形.故选B.5.答案:A解析:解:∵a=1,b=3,c=1,∴△=b2−4ac=32−4×1×1=5>0,∴方程有两个不相等的实数根.故选A.判断上述方程的根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.答案:C解析:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.列表得出所有等可能的情况数,找出点(a,b)在直线y=x+1图象上的情况数,即可求出所求的概率.【解答】解:如图:得到所有等可能的情况有12种,其中点(a,b)在直线y=x+1图象上的只有(1,2),(2,3),(3,4)这3种情况,所以点(a,b)在直线y=x+1图象上的概率为312=14.故选C.7.答案:A解析:【分析】此题考查了估算一元二次方程的近似解,此类题要细心观察表格中的对应数据,即可找到x的取值范围.具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.观察表格确定出方程的一个解的范围即可.【解答】解:由x=1时,x2+12x−15=−2,x=2时,x2+12x−15=13,所以x2+12x−15=0的解满足1<x<2,则x的整数部分为1,故选A.8.答案:B解析:本题考查了由实际问题抽象出一元二次方程,根据等量关系列出方程即可.【解答】解:设长方形的长为xcm,则这个长方形的宽为(20−x)cm,根据长方形的面积公式可列方程x(20−x)=64,故选B.9.答案:C解析:【分析】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.先证明四边形ABEF是菱BF=6,由勾股定理求出OA,即可得出AE的长.形,得出AE⊥BF,OA=OE,OB=OF=12【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD//BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,BF=6,∴AE⊥BF,OA=OE,OB=OF=12∴OA=√AB2−OB2=√102−62=8,∴AE=2OA=16;故选C.10.答案:A解析:本题考查了坐标与图形变化−平移,读懂题目信息,确定出连续2018次这样的变换得到点在x轴上方是解题的关键.根据轴对称判断出点M变换后在x轴上方,然后求出点M纵坐标,再根据平移的距离求出点M变换后的横坐标,最后写出坐标即可.【解答】解:由题可得,第2018次变换后的点M在x轴上方,∴点M的纵坐标为2,横坐标为2−2018×1=−2016,∴点M的坐标变为(−2016,2),故选A.11.答案:x1=0,x2=13解析:【分析】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.可先移项,然后运用因式分解法求解.【解答】解:原方程可化为:3x2−x=0,x(3x−1)=0,x=0或3x−1=0,.解得:x1=0,x2=13.故答案为x1=0,x2=1312.答案:6cm解析:【分析】本题考查平行线分线段成比例,解题的关键是明确题意,找出所求问题需要的条件.根据平行线分线段成比例,可以求得AE的长.【解答】解:∵DE//BC,∴ADAB =AEAC,∵AB=12cm,AD=9cm,AC=8cm,∴912=AE8,解得:AE=6,故答案为6cm.13.答案:35解析:解:画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率=1220=35.故答案为35.画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.14.答案:ab−b2解析:【分析】本题主要考查了整式的混合运算,在解题时要根据运算顺序和运算法则分别进行计算是本题的关键.首先根据图形和正方形、长方形的面积公式列出式子,然后计算即可求出答案.【解答】解:根据题意得:a(a+b)−b2−a2=a2+ab−b2−a2=ab−b2.故答案为ab−b2.15.答案:6√2解析:解:如图所示:∵将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处,C′E⊥AD,∴四边形ABEG和四边形C′D′FG是矩形,∵∠FEC=∠FEG,∠FEC=∠EFG,∴∠FEG=∠EFG,∴EG=FG=AB=6cm,∴在Rt△EGF中,EF=√EG2+FG2=6√2cm.故答案为:6√2cm.根据矩形的性质和折叠的性质,由C′E⊥AD,可得四边形ABEG和四边形C′D′FG是矩形,根据矩形的性质可得EG和FG的长,再根据勾股定理可得EF的长.考查了翻折变换(折叠问题),矩形的判定和性质,勾股定理,根据关键是得到EG和FG的长.16.答案:解:(1)移项得,x(x−3)=0,∴x=0或x−3=0,即x1=0,x2=3;(2)因式分解得,(x−2)(2x+3)=0,∴x−2=0或2x+3=0,即x1=2,x2=−1.5.解析:(1)先移项,再提公因式,转化成两个一元一次方程求解即可;(2)因式分解得出两个一元一次方程求解即可.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.答案:证明:∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°,∵四边形ABDE是平行四边形,∴AE//BD,AE=BD,∴AE//CD,AE=CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴四边形ADCE是矩形.解析:本题考查了等腰三角形的性质、平行四边形的判定与性质、矩形的判定;熟练掌握等腰三角形的性质和平行四边形的判定与性质,并能进行推理论证是解决问题的关键.由等腰三角形的三线合一性质得出AD⊥BC,∠ADC=90°,由平行四边形的性质得出AE//BD,AE=BD,得出AE//CD,AE=CD,证出四边形ADCE是平行四边形,即可得出结论.18.答案:解:(1)设若商场想每天盈利225元,每件商品应降价x元,根据题意得(10−x−8)(100+100x)=225,解得:x1=x2=0.5.答:商场想每天盈利225元,每件商品应降价0.5元;(2)商场不能每天盈利300元,理由如下:设若商场想每天盈利225元,每件商品应降价y元,根据题意得(10−y−8)(100+100y)=300,整理得y2−y+1=0,∵△=1−4=−3<0,∴y无实数根.故商场不能每天盈利300元.解析:本题考查了一元二次方程的应用,根据题意列出方程是关键.(1)根据等量关系“利润=(售价−进价)×销量”列出方程,解方程即可;(2)设每件商品应降价y元,根据商场每天盈利300元列出方程,解方程即可.19.答案:解:(9x+3+x−3)÷(xx2−9)=9+(x−3)(x+3)x+3÷x(x+3)(x−3) =x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=−2×(−2−3)=10.解析:根据分式的加法和除法可以化简题目中的式子,然后将x=−2代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.答案:解:(1)m=40−2−10−12−7−4=5;(2)B组的圆心角=360°×540=45°,C组的圆心角=360°×1040=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为612=12.解析:(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.答案:解:(1)∵方程(a−5)x2−4x−1=0有实数根∴(−4)2−4×(a−5)×(−1)≥0,解得,a≥1∵a−5≠0,∴a≠5,∴a的范围是:a≥1且a≠5(2)∵方程一个根为−1,∴(a−5)×(−1)2−4×(−1)−1=a−2=0,解得:a=2.当a=2时,原方程为3x2+4x+1=0,设方程的另一个根为m,由根与系数的关系得:−m=1,3.解得:m=−13∴方程的另一个根为−1.3解析:(1)根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式,解之即可得出结论;(2)将x=−1代入原方程求出a的值,设方程的另一个根为m,将a代入原方程结合根与系数的关系即可得出关于m的一元一次方程,解之即可得出结论.本题考查了根的判别式以及根与系数的关系,根据一元二次方程的定义结合根的判别式得出关于a 的一元一次不等式组是解题的关键.22.答案:证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE//MF,NE=MF,∴四边形MENF是平行四边形,由(1),得BM=CM,∴ME=MF,∴四边形MENF是菱形.(3)2:1.理由如下:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90,∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°−45°−45°=90°,由(2)可知四边形MENF是菱形,所以,四边形MENF是正方形.解析:本题考查全等三角形的判定、矩形的性质、三角形中位线的性质、菱形的判定、正方形的判定.(1)求出AB=DC,∠A=∠D=90°,AM=DM,根据全等三角形的判定定理推出即可;(2)根据三角形中位线定理求出NE//MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可;(3)根据一个角是直角的菱形是正方形解答即可.23.答案:解:(1)如图1,把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD−∠MDN=120°−60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,{DM=DQ∠QDN=∠MDN DN=DN,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2)MN+AN=BM.理由如下:如图2,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB−∠ADM−∠BDP=120°−∠ADM−∠ADN=120°−∠MDN=120°−60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,{DP=DP∠MDP=∠MDN DM=DM,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图3,过点M作MH//AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH//AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH,∴GH=MH−MG=MN−BM=AN,即AN=GH,∵在△ANE和△GHE中,{∠QND=∠MHN ∠AEN=∠GEH AN=GH,∴△ANE≌△GHE(AAS),∴AE=EG=1,∵AC=5,∴AB=AC=5,∴BG=AB−AE−EG=5−1−1=3,∴BM=BG=3.解析:(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=QN,再根据AQ+AN=QN整理即可得证;(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND 和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;(3)过点M作MH//AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB−AE−GE代入数据进行计算即可求出BG,从而得到BM的长.本题考查了四边形的综合问题,掌握全等三角形的判定与性质及等腰三角形的性质、等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,作平行线并求出AN=GH是解题的关键,也是本题的难点.。
2020年河南省中考数学试卷解析版
2020年河南省中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.2的相反数是()A. -2B. -C.D. 22.如图摆放的几何体中,主视图与左视图有可能不同的是()A. B. C. D.3.要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第一课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A. 100°B. 110°C. 120°D. 130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A. 230BB. 830BC. 8×1010BD. 2×1030B6.若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-的图象上,则y1,y2,y3的大小关系是()A. y1>y2>y3B. y2>y3>y1C. y1>y3>y2D. y3>y2>y17.定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A. 500(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=75009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (,2)B. (2,2)C. (,2)D. (4,2)10.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A. 6B. 9C. 6D. 3二、填空题(本大题共5小题,共15.0分)11.写出一个大于1且小于2的无理数______.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为______.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是______.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为______.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为______.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值:(1-)÷,其中a=+1.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731[分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=______,b=______;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具--三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,______.求证:______.21.如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.小亮在学习中遇到这样一个问题:如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为的中点时,BD=5.0cm”.则上表中a的值是______;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF 为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为______,连接BD,可求出的值为______;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.答案和解析1.【答案】A【解析】解:2的相反数是-2.故选:A.利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】D【解析】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.分别确定每个几何体的主视图和左视图即可作出判断.本题考查了简单几何体的三视图,确定三视图是关键.3.【答案】C【解析】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【答案】B【解析】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°-∠3=180°-70°=110°,故选:B.根据平行线的性质即可得到结论.此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.5.【答案】A【解析】解:由题意得:210×210×210B=210+10+10=230B,故选:A.列出算式,进行计算即可.本题考查同底数幂的乘法,底数不变,指数相加是计算法则.6.【答案】C【解析】解:∵点A(-1,y1)、B(2,y2)、C(3,y3)在反比例函数y=-的图象上,∴y1=-=6,y2=-=-3,y3=-=-2,又∵-3<-2<6,∴y1>y3>y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.7.【答案】A【解析】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,故选:A.根据新定义运算法则以及即可求出答案.本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.【答案】C【解析】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.【答案】B【解析】解:如图,设正方形D′C′O′E′是正方形OCDE沿x轴向右平移后的正方形,∵顶点A,B的坐标分别为(-2,6)和(7,0),∴AC=6,OC=2,OB=7,∴BC=9,∵四边形OCDE是正方形,∴DE=OC=OE=2,∴O′E′=O′C′=2,∵E′O′⊥BC,∴∠BO′E′=∠BCA=90°,∴E′O′∥AC,∴△BO′E′∽△BCA,∴=,∴=,∴BO′=3,∴OC′=7-2-3=2,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.根据已知条件得到AC=6,OC=2,OB=7,求得BC=9,根据正方形的性质得到DE=OC=OE=2,求得O′E′=O′C′=2,根据相似三角形的性质得到BO′=3,于是得到结论.本题考查了正方形的性质,坐标与图形性质,相似三角形的判定和性质,正确的识别图形是解题的关键.10.【答案】D【解析】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=AB=3,于是得到结论.本题考查了含30°角的直角三角形,等腰三角形的性质,等边三角形的判定和性质,熟练掌握直角三角形的性质是解题的关键.11.【答案】【解析】解:大于1且小于2的无理数是,答案不唯一.故答案为:.由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.【答案】x>a【解析】解:∵b<0<a,∴关于x的不等式组的解集为:x>a,故答案为:x>a.根据关于x的不等式组的解集表示在数轴上表示方法求出x的取值范围即可.本题考查的是在数轴上表示不等式组的解集,先根据题意得出不等式组的解集是解答此题的关键.13.【答案】【解析】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种,∴P(两次颜色相同)==,故答案为:.用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键.14.【答案】1【解析】解:设DF,CE交于O,∵四边形ABCDA是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵OC2=OF•OD,∴OC==,∴HG===1,故答案为:1.设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据射影定理即可得到结论.本题考查了射影定理,勾股定理,正方形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.15.【答案】【解析】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l==,∴阴影部分周长的最小值为2+=.故答案为:.利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.16.【答案】解:==a-1,把a=+1代入a-1=+1-1=.【解析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【答案】501 5%【解析】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=1÷20=0.05=5%,故答案为:501,5%;(2)选择甲机器,理由:甲的不合格率较小,(1)根据中位数的计算方法,求出乙机器分装实际质量的中位数;乙机器的不合格的(2)根据合格率进行判断.本题考查中位数、众数、平均数的意义和计算方法,理解中位数、众数、平均数的意义是正确解答的关键.18.【答案】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°===0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6-12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.【解析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;(2)建议为:为了减小误差可以通过多次测量取平均值的方法.本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.【答案】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.【解析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;二每次健身费用按八折优惠,求出k2的值;(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y1、y2关于x 的函数解析式.20.【答案】AB=OB,EN切半圆O于F EB,EO就把∠MEN三等分【解析】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.本题考查了切线的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.【答案】解:(1)∵抛物线y=-x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=-c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点G为(1,4);(2)∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为-2或4,点N的横坐标为6,∴点M坐标为(-2,-5)或(4,-5),点N坐标(6,-21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴-21≤y Q≤4.【解析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.22.【答案】5【解析】解:(1)∵点D为的中点,∴=,∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.(1)①由=可求BD=CD=a=5cm;②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;(2)由题意可画出函数图象;(3)结合图象可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,动点问题的函数图象探究题,也考查了函数图象的画法,解题关键是数形结合.23.【答案】等腰直角三角形【解析】解:(1)∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD-∠BAB'=90°-60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°-60°-75°=45°,∵DE⊥B'E,∴∠B'DE=90°-45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°-,∵∠B'AD=α-90°,AD=AB',∴∠AB'D=135°-,∴∠EB'D=∠AB'D-∠AB'B=135°-=45°,∵DE⊥BB',∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D=B'E,由(2)①可知△BDB'∽△CDE,且BB'=CE.∴=+1=+1=+1=+1=3.若CD为平行四边形的一边,如图3,点E与点A重合,∴=1.综合以上可得=3或1.(1)由旋转的性质得出AB=AB',∠BAB'=60°,证得△ABB'是等边三角形,可得出△DEB'是等腰直角三角形.证明△BDB'∽△CDE,得出.(2)①得出∠EDB'=∠EB'D=45°,则△DEB'是等腰直角三角形,得出,证明△B'DB∽△EDC,由相似三角形的性质可得出.②分两种情况画出图形,由平行四边形的性质可得出答案.本题是四边形综合题,考查了正方形的性质,等腰直角三角形的判定与性质,旋转的性质,等边三角形的判定与性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.。
2020年河南省中考数学试题及答案
2020年河南省中考数学试题及答案考生须知:1. 本试卷满分120分,考题时间为120分钟.2. 答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3. 请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5. 保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(每小题3分 ,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.2的相反数是( ) A .2- B .12-C . 12D .2 2.如下摆放的几何体中,主视图与左视图有可能不同的是( )A .B .C .D .3.要调查下列问题,适合采用全面调查(普查)的是( ) A.中央电视台《开学第--课》 的收视率 B.某城市居民6月份人均网上购物的次数 C.即将发射的气象卫星的零部件质量 D.某品牌新能源汽车的最大续航里程4.如图,1234//,//l l l l ,若170︒∠=,则2∠的度数为( )A.100︒B.110︒C.120︒D.130︒5 .电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A .302B B .308B C. 10810B ⨯ D .30210B ⨯6.若点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图像上,则123,,y y y 的大小关系为( ) A .123y y y >> B .231y y y >> C. 132y y y >> D .321y y y >>7.定义运算:21m n mn mn =--☆.例如2:4242417x x =--=☆.则方程10x =☆的根的情况为( ) A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.只有一个实数根8国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由500亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( ) A.()500127500x += B.()500217500x ⨯+= C.()2500017500x +=D.()()250005001500017500x x ++++= 9.如图,在ABC ∆中,90ACB ︒∠=.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为( )A .3,22⎛⎫ ⎪⎝⎭B .()2,2 C. 11,24⎛⎫⎪⎝⎭D .()4,2 10.如图,在ABC ∆中, 3 ,30AB BC BAC ︒==∠= ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A . 63B .9 C. 6 D .33 二、填空题:(每题3分,共15分) 11.请写出一个大于1且小于2的无理数. 12.已知关于x 的不等式组x ax b>⎧⎨>⎩,其中,a b 在数轴上的对应点如图所示,则这个不等式组的解集为.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.如图,在边长为22的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,C H 分别是,EC FD 的中点,连接CH ,则CH 的长度为15.如图,在扇形BOC 中,60,BOC OD ︒∠=平分BOC ∠交狐BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为.三解答题(本大题共8个小题,满分75分) 16.先化简,再求值:21111aa a ⎛⎫-÷ ⎪+-⎝⎭,其中51a = 17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和解析,过程如下: [收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g ) 如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g的频数分布表.质量频数机器485490x≤<490495x≤<495500x≤<500505x≤<505510x≤<510515x≤<甲 2 2 4 7 4 1乙 1 3 5 7 3 1 [解析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:()1表格中的a=b=()2综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22︒,然后沿MP方向前进16m到达点N处,测得点A的仰角为45︒.测角仪的高度为1.6m()1求观星台最高点A 距离地面的高度(结果精确到0.1m .参照数据:220. 37,220. 93 , 220.40,2 1. 41sin cos tan ︒︒︒≈≈≈≈);()2“最点简介”显示,观星台的高度为12.6m ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠设某学生暑期健身x (次),按照方案一所需费用为1y ,(元),且11y k x b =+;按照方案二所需费用为2y (元) ,且22.y k x =其函数图象如图所示.()1求1k 和b 的值,并说明它们的实际意义; ()2求打折前的每次健身费用和2k 的值;()3八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由20. 我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 重直F 点,B DB 足够长.使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则,EB EO 就把MEN ∠三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B , 求证:21.如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点,A B ,且,OA OB =点G 为抛物线的顶点.()1求抛物线的解析式及点C 的坐标;()2点,M N 为抛物线上两点(点M 在点N 的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点,M N 之间(含点,M N )的一个动点,求点Q 的纵坐标Q y 的取值范围.22.小亮在学习中遇到这样一个问题:如图,点D 是狐BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮解析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在狐BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:
(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;
(2)根据手中剩余线的长度出风筝线BC的长度为70米;
A. B. C. D.
10.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
A.1个B.2个C.3个D.4个
11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
是( )
A. B.
C. D.
二、填空题
13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
14.已知关于x的方程 的解是负数,则n的取值范围为.
点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.
6.A
解析:A
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
11.B
解析:B
【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可.
详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形;
2019-2020河南省实验中学中考数学试卷及答案
一、选择题
1.在数轴上,与表示 的点距离最近的整数点所表示的数是
A.1B.2C.3D.4
2.定义一种新运算: ,例如: ,若 ,则 ()
A.-2B. C.2D.
3.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是中心对称图形,不是轴对称图形,故该选项不符合题意,
15.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.
16.不等式组 有3个整数解,则a的取值范围是_____.
17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
利用平方根定义估算 的大小,即可得到结果.
【详解】
,
,
则在数轴上,与表示 的点距离最近的整数点所表示的数是2,
2400
24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
(3)量出测倾器的高度AB=1.5米.
根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米, ≈1.73).
20.计算: _______________.
三、解答题
21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:
【详解】
A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;
B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;
C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;
A.7分B.8分C.9分D.10分
4.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是( )
A. B. C. D.
5.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是( )
C.是轴对称图形,不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
12.B
解析:B
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?
25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元
(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?
抽取的200名学生海选成绩分组表
组别
海选成绩x
A组
50≤x<60
B组
60≤x<70
C组
70≤x<80
D组
80≤x<90
E组
90≤x<100
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;
填写下表:
中位数
众数
随机抽取的50人的社会实践活动成绩 单位:分
估计光明中学全体学生社会实践活动成绩的总分.
22.已知:如图,在 中, , , 为 外角 的平分线, .
(1)求证:四边形 为矩形;
(2)当 与 满足什么数量关系时,四边形 是正方形?并给予证明
23.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0
6.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
9.D
解析:D
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个圆形,圆形内部是一个虚线的正方形.
故选:D.
【点睛】
本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
10.C
解析:C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A、B两种型号车的进货和销售价格如下表:
A型车
B型车
进货价格(元/辆)
1100
1400
销售价格(元/辆)
今年的销售价格
【分析】
根据平均数的定义进行求解即可得.
【详解】
根据折线图可知该球员4节的得分分别为:12、4、10、6,
所以该球员平均每节得分= =8,
故选B.
【点睛】
本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.
4.B
解析:B
【解析】
【分析】
若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.
A.①②④B.①②⑤C.②③④D.③④⑤
7.估计 +1的值应在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
8.下列计算错误的是( )