TL431及PC817在开关电源中的应用(最新整理)
开关电源PC817与TL431应用

TL431的应用1、介绍后备式电源的安全运行需要将输入和输出隔离,这种隔离需要保证控制芯片不能直接对输入和输出电压进行侦测。
由于输入控制输出,一个用于控制输出的误差信号必须从输出得到,这篇应用文章主要讨论了一种应用AS431 和光耦4N27 实现电压反馈的简单方法。
2、电源电路图一显示了一种简单的反激调整器,用电流型控制芯片AS3842 控制输出,AS431 被用来侦测输出电压的参考和反馈误差放大器,并产生相应得误差放大信号,然后误差电压信号转化成误差电流信号通过光耦4N27 送到原边。
3、光耦目前,光耦器件制造厂商在光耦元件的处理以及封装技术上得到了关键的提高,得到更好的传输比(current transfer ratio CTR )误差和更长时间的可靠性。
当设计光耦反馈电路的时候,设计人员应该注意到光耦正向二极管的电流,因为它直接关系到器件的电流传输比CTR 和器件长时间内的可靠性,就像灯丝一样,光耦二极管在遭受较高电流时将老化,损坏。
光耦的增益带宽随着二极管正向电流增加而相应增加,带宽的控制由输出晶体管参数的变化来调制。
值得一提的是,输出晶体管基极和集电极间的米勒电容将使光耦的带宽下降。
一个好的光耦反馈环不但需要提高整体可靠性,还需要保证系统的响应速度。
4、设计实例参考图二显示了反激电路电压反馈环,为了保证5V 电压的稳定输出,Vcomp 必须跟随输出电压,输出电压通过两个 2.5k 的电阻分压,结果送到AS431 误差反馈网络,误差反馈的输出电压Vcathode 被转化成与二极管成比例的电流信号,此处光耦起到隔离原边二次侧的作用,并产生与二极管电流成比例的集电极电流(即光耦的三极管的集电极),因为光耦连接到Vcomp 脚,光耦输出电流就是Icomp 电流,在一般运行状态下,更高的输出电流促使Vcathode 下降,导致流过光耦二极管电流增加,发光二极管发光增强,使得三极管接受到的信号增加,使得集电极电流增加,即Icomp 增加,从而使得Vcomp 下降,Vcomp 下降使得PWM 占空比减小,输出电压下降。
(完整版)TL431及PC817在开关电源中的应用

TL431及PC817在开关电源中的应用TL431功能简介本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。
由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。
其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。
其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。
TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。
其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。
此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。
TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。
图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。
TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接从电阻分压器上得到的取样电压,反相端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF通常状态下为2.5V,因此也称为基准端;②内部2.5CV基准电压源Uref ;③NPN型晶体管VT,它在电路中起到调节负载电流的作用;④保护二极管VD,可防止因K-A间电源极性接反而损坏芯片。
TL431的电路图形符号和基本接线如图4.27所示。
它相当于一只可调式齐纳稳压管,输出电压由外部精密分压电阻来设定,其公式为 (4-16) :R3是IKA的限流电阻。
其稳压原理为:当UO上升时,取样电压UREF也随之升高,使UREF>Uref,比较器输出高电平,使VT导通,UO开始下降。
TL431和PC817在开关电源反馈电路的设计及应用

TL431和PC817在开关电源反馈电路的设计及应用TL431和PC817在开关电源反馈电路的设计及应用有关精密并联稳压器TL431及通用光电耦合器PC871请参考本站相关介绍开关电源的稳压反馈通常都使用TL431 和PC817,如输出电压要求不高,也可以使用稳压二极管和PC817,下面我来通过以下典型应用电路来说明TL431,PC817 的配合问题。
电路图如下:R13 的取值R13 的值不是任意取的,要考虑两个因素:1)TL431 参考输入端的电流,一般此电流为2uA 左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13 的电流为参考段电流的100 倍以上,所以此电阻要小于2.5V/200uA=12.5K.2)待机功耗的要求,如有此要求,在满足《12.5K的情况下尽量取大值。
TL431 的死区电流为1mA,也就是R6 的电流接近于零时,也要保证431 有1mA,所以R3<=1.2V/1mA=1.2K 即可。
除此以外也是功耗方面的考虑,R17 是为了保证死区电流的大小,R17可要也可不要,当输出电压小于7.5v 时应该考虑必须使用,原因是这里的R17 既然是提供TL431死区电流的,那么在发光二极管导通电压不足时才有用,如果发光二极管能够导通,就可以提供TL431 足够的死区电流,如果Vo 很低的时候,计算方法就改为R17=(Vo-Vk)/1mA(这里Vk=Vr-0.7=1.8v);当Vo=3.3V 时R17 从死区电流的角度看临界最大值R17=(3.3-1.8)/1mA=1.5k,从TL431 限流保护的角度看临界最小值为R17=(3.3-1.8)/100mA=15Ω。
当Vo 较高的时候,也就是Vo 大于Vk+Vd 的时候,也就是差不多7.5v 以上时,TL431 所需的死区电流可以通过发光二极管的导通提供,所以这是可以不用R17。
R6 的取值要保证高压控制端取得所需要的电流,假设用PC817(U1-B),其CTR=0.8-1.6,取低限0.8,要求流过光二极管的最大电流=6/0.8=7.5mA,所以R6 的值<=(15-2.5-1.2)/7.5=1.5K,光二极管能承受的最大电流在50mA 左右,TL431 为100mA,所以我们取流过R6 的最大电流为50mA,R6>(15-2.5-1.3)/50=226 欧姆。
反激开关电源中基于PC817A与TL431配合的环路动态补偿设计_韩林华

反激开关电源中基于PC817A 与TL431配合的环路动态补偿设计韩林华,吴迺陵,史小军,朱 为,堵国梁(东南大学电子工程系,江苏省南京市210096)【摘 要】 开关电源市场中占很大份额的单端反激开关电源通常采用PC817A 与TL431配合来组成控制环路。
然而,目前设计这个环路的动态补偿参数,基本上采用试验方法。
文中利用开关电源的小信号传递函数,对此环路的动态补偿进行了定性分析和定量计算,通过设计合适的相位裕量来保证开关电源的稳定性。
其过程经实验证明具有较好的通用性,在实际应用中取得了很好的效果。
关键词:反激开关电源,环路设计,动态补偿,相位裕量中图分类号:TN86收稿日期:2005-07-010 引 言开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电流电压。
单端反激开关电源的环路设计中,很多都采用光耦PC817A 和精密宽电压稳压管TL431相配合,作为参考、隔离、取样和放大,组成负反馈环路。
然而在设计动态补偿参数时,目前通常采用试验方法,经过多次反复试验和测量,取得一组能使开关电源稳定工作的参数。
由于开关电源的环路参数设计与许多因素有关,比如电源的工作频率、输出滤波电容的ESR (等效串联电阻)等,而通过试验得出的结果没有通用性,往往不能运用于以后不同要求的设计。
本文以单端反激开关电源设计为例,在基于PC 817A 和TL431配合的环路设计中,将控制论运用于开关电源动态补偿设计中,利用开关电源的小信号传递函数,对此环路的动态补偿设计进行了定性分析和定量计算,通过设计合适的相位裕量来保证开关电源的稳定性。
其过程经实验证明具有较好的通用性,在实际运用中取得了很好的效果。
1 反馈环路设计开关电源的控制方式有电流控制方式和电压控制方式两种[1]。
电源的传递函数随控制方式的不同而有很大差异,在环路设计分析时,应独立分开。
本文着重介绍电流控制方式。
图1为电流控制方式的单端反激开关电源的反馈环路电路。
(完整版)TL431及PC817在开关电源中的应用

TL431及PC817在开关电源中的应用TL431功能简介本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。
由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。
其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。
其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。
TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。
其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。
此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。
TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。
图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。
TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接从电阻分压器上得到的取样电压,反相端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF通常状态下为2.5V,因此也称为基准端;②内部2.5CV基准电压源Uref ;③NPN型晶体管VT,它在电路中起到调节负载电流的作用;④保护二极管VD,可防止因K-A间电源极性接反而损坏芯片。
TL431的电路图形符号和基本接线如图4.27所示。
它相当于一只可调式齐纳稳压管,输出电压由外部精密分压电阻来设定,其公式为 (4-16) :R3是IKA的限流电阻。
其稳压原理为:当UO上升时,取样电压UREF也随之升高,使UREF>Uref,比较器输出高电平,使VT导通,UO开始下降。
基于PC817与TL431配合电流型反激开关电源环路补偿设计_陶坤元

0 引言电流型反激式开关电源通过负反馈环路来保证输出的稳定,而反馈环路补偿参数的确定如果由多次试验和测量取得,往往工作量大且缺乏效率,通用性不高,无法运用到其他要求的开关电源设计中。
本文以三肯6251芯片为例,基于PC817和TL431配合的环路设计,运用开关电源小信号传递函数,对环路进行定性分析和计算,设计合适的补偿环路来满足开关电源的稳定性并实验验证该方法的可行性和通用性。
1 反馈环路设计反激式开关电源的工作模式有两种:电压型和电流型。
电压行控制方式只有一路电压环,通过反馈电压和内部三角波比较产生占空比可变的驱动信号调节输出电压;电流型控制方式有电压和电流两个闭环控制,能够响应更快。
图1使用的是PC817和TL431组合精准反馈次级+15V 电压,TL431,C1,R2组成环路补偿电路。
2 回路稳定性准则第一准则:系统的总增益在穿越频率处的斜率应为-20dB/dec ;第二准则:截止频率的相位裕量大于45°;根据以上两条原则进行环路设计,可基于PC817与TL431配合电流型反激开关电源环路补偿设计陶坤元 珠海格力电器股份有限公司 广东珠海 519070以实现输入电压突变或输出负载变化时都能满足输出电压的稳定性。
3 环路常用补偿回路环路设计的步骤:(1)根据截止频率补偿前的增益选定误差放大器在截止频率处的增益,使系统总增益在截止频率处为0dB,为了保证系统稳定,穿越频率选为开关频率的1/5~1/4,一般穿越频率必须远远小于开关频率,不然会出现很大的开关纹波;(2)选择合适的补偿电路,使得总增益曲线在穿越频率附近斜率为-20dB/dec。
(3)调整误差放大器的增益以获得总增益大于45°的所需相位裕度。
4 设计举例基本参数:见图1输入电压交流85V ~265V,整流后直流电压为120V ~375V,输出为15V/1A,储能电容C2为470uF,初级匝数为128匝,初级绕组电感2.71mH.开关电源最大频率为50KHZ,取样电阻Rsense 为0.11Ω,使用的开关电源芯片是三肯公司的6251。
开关电源用光耦817选型和TL431配合设计建议

开关电源用光耦817选型和TL431配合设计建议开关电源是一种常用的电源设计,在实际使用中,可以使用光耦817和TL431作为配合设计,以提高电源的性能和可靠性。
下面将详细介绍光耦817和TL431的选型和设计建议。
光耦817是一种常用的光耦器件,其内部包含一个红外发射二极管和一个光敏三极管。
光耦817在开关电源中主要用于隔离输入和输出信号,以提高系统的安全性和稳定性。
选型光耦817时,需要考虑以下几个因素:1.峰值反向电压:开关电源中,输入和输出信号需要隔离,因此光耦817的峰值反向电压需要能够满足系统的工作要求。
2.传输速率:光耦817的传输速率决定了信号传输的快慢,选型时需要根据实际需求选择合适的传输速率。
3.耐热性:开关电源在工作过程中可能会产生较高的温度,因此光耦817需要具有良好的耐热性,能够在高温环境下长时间工作。
4.封装类型:光耦817有多种封装类型,如DIP封装、SOP封装等,选型时需要根据实际应用情况选择合适的封装类型。
TL431是一种常用的可编程精密稳压器,其内部包含一个比较器和一个电流源。
TL431在开关电源中主要用于稳压和参考电压源,以提供稳定的工作电压和精确的参考电压。
选型TL431时,需要考虑以下几个因素:1.工作电压范围:开关电源的工作电压要求可能会有所不同,因此选型TL431时需要根据具体的工作电压范围选择合适的器件。
2.稳定性:TL431的稳定性决定了其输出电压的准确性和稳定性,选型时需要根据实际要求选择具有良好稳定性的器件。
3.温度系数:TL431在不同温度下其输出电压可能会发生变化,选型时需要考虑温度系数,并根据实际需求选择合适的器件。
4.封装类型:TL431有多种封装类型,如TO-92封装、SOT-23封装等,选型时需要根据实际应用情况选择合适的封装类型。
在使用光耦817和TL431进行配合设计时,需要注意以下几个问题:1.输入和输出信号的隔离:使用光耦817将输入和输出信号进行隔离,以确保系统的安全性和稳定性。
TL431和PC817配合做的

TL431和PC817配合做的开关电源Traceback:/s/blog_5fee70710100db57.html2009年07月07日星期二 14:00可调式精密并联稳压器TL431TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。
其性能优良,价格低廉,该器件的典型动态阻抗为0.2Ω,可广泛用于单片精密开关电源或精密线性稳压电源中,在很多应用中可以用它代替齐纳二极管。
此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。
TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图1所示。
3 个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。
图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。
由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。
由运放的特性可知,只有当REF 端(同相端)的电压非常接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。
当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。
但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是很有帮助的。
前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。
显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。
TL431与PC817应用

开关电源的稳压反馈通常都使用TL431和PC817,如输出电压要求不高,也可以使用稳压二极管和PC817.德州仪器公司(TI)生产的TL431是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管.上图是该器件的符号。
3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。
TL431的具体功能可以用如下图的功能模块示意。
由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。
由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管图1 的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。
但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。
下面我来通过以下典型应用电路来说明TL431,PC817的配合问题。
电路图如下:为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13的电流为参考段电流的100倍以上,所以此电阻要小于2.5V/200uA=12.5K. 2)待机功耗的要求,如有此要求,在满足《12.5K的情况下尽量取大值。
PC817+TL431的组合设计

PC817的特性:
• PC817A的Ctr曲线:
图2 数据手册对比Ctr拟合曲线
TL431的特性:
二、TL431正常工作时要满足两个条件:
• 1、TL431集电极电压要大于2.5V • 2、TL431集电极电流要大于0.6mA
这两个条件间接的影响了PC817的参数设计。
图3-1 电阻RL计算方法
TL431的特性:
反过来如果先给定最小电阻RL再求最大电流If也是可行的,这里电阻RL的 选取参考功耗和环路速度这两方面,RL取值越大则电路功耗越低但环路响 应也越慢,因为光耦引入了一个极点见下图:
如图3-2电阻RL越小极点 频率越高,如果取RL=1kΩ 则对10kHz以内的影响几 乎可以忽略。
图4-1 电阻Rf计算方法
TL431的特性:
某些情况下电阻Rf可以省掉进一步降低功耗,举个例子假设控制IC的FB范 围为0~3V,重新计算的结为:
图4-2假设的例子中发光二极 管最小工作电流Ifmin=1.9mA 大于TL431的最小工作电流 Ikamin=1mA,所以这里就不 再需要电阻Rf了。
TL431的特性:
跟三极管类似,PC817的参数设计就是对静态工作点的设置,其周边共有三个电 阻所以参数设计也分为三步。
• 第一步,电阻RL的参数设计
参考图1,PC817输出电压FB满足公式:
FB=Vcc-IL*RL
式(1)
TL431的特性:
首先根据电源控制IC给定的FB脚电压范围设定FBmax和FBmin其次设置一个 最大Ifmax利用公式可以求出最小RL值,见下图。
图6 电压验证
图6中注入电压信号最低 值2.5V、最高值8.97V, 输出FB端电压最低0.2V、 最高4.8V跟设定值一致。
TL431是如何结合光耦PC817工作

对于图1的电路,就是要确定R1、R3、R5及R6的值。
设输出电压V o,辅助绕组整流输出电压为12V。
该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器PC817二极管-三极管的电流变化去控制TOP管的C极,从而改变PWM宽度,达到稳定输出电压的目的。
因为被控对象是TOP管,因此首先要搞清TOP管的控制特性。
从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系。
如图2所示。
可以看出,Ic的电流应在2-6mA之间,PWM会线性变化,因此PC817三极管的电流Ice也应在这个范围变化。
而Ice是受二极管电流If控制的,我们通过PC817的Vce与If的关系曲线(如图3所示)可以正确确定PC817二极管正向电流If。
从图3可以看出,当PC817二极管正向电流If在3mA左右时,三极管的集射电流Ice在4mA左右变化,而且集射电压Vce在很宽的范围内线性变化。
符合TOP管的控制要求。
因此可以确定选PC817二极管正向电流If为3mA。
再看TL431的要求。
从TL431的技术参数知,Vka在2.5V-37V变化时,Ika可以在从1mA到100mA以内很大范围里变化,一般选20mA即可,既可以稳定工作,又能提供一部分死负载。
不过对于TOP器件因为死负载很小,只选3-5mA 左右就可以了。
确定了上面几个关系后,那几个电阻的值就好确定了。
根据TL431的性能,R5、R6、Vo、Vr有固定的关系:V o=(1+ R5/R6) Vr式中,Vo为输出电压,Vr为参考电压,Vr=2.50V,先取R6一个值,例如R6=10k,根据Vo的值就可以算出R5了。
再来确定R1和R3。
由前所述,PC817的If取3mA,先取R1的值为470Ω,则其上的压降为Vr1=If* R1,由PC817技术手册知,其二极管的正向压降Vf典型值为1.2V,则可以确定R3上的压降Vr3=Vr1+Vf,又知流过R3的电流Ir3=Ika-If,因此R3的值可以计算出来: R3= Vr3/ Ir3= (Vr1+Vf)/( Ika-If)根据以上计算可以知道TL431的阴极电压值Vka,Vka=Vo’-Vr3,式中V o’取值比V o大0.1-0.2V即可。
开关电源用光耦817选型和TL431配合设计建议

一、反馈式开关电源选用光耦时候必须正确选择线性光耦匹配的型号及参数,不然所设计电源总会工作在不稳定环境中,容易出现失效。
二、我们常注意光耦一个参数CTR (如下表)电流传输比,从LED端传送到光敏端的放大能力CTR=(IC/IB)*100%。
三、一般人关注和认为:光耦的电流传输比(CTR)的允许范围是50%~200%,这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流(IF>5.0mA),才能正常控制开关电源IC的占空比,这会增大光耦的功耗。
若CTR >200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。
四、确实CTR是光耦一个重要参数,但我们不要片面追求这一个参数而忽略其他重要细节,工作速度也是非常重要的,工作区域也是非常重要的,还有和其他器件配合设计也是不可忽略的。
五、首先讲一下工作区域,光耦最好的工作和最稳定工作区域是线性区域就是光耦1-5mA工作的一个区域间IC=IB*X(X是固定数),这样输入和输出电流时成线性比率的,低于和高于这个电流值,线性特性就没这么好了。
线性特性好就说明这个工作区域稳定可控,这是我们要设计要抓住的区域。
六、再来就是开关速度或工作频率,一个光耦在不同负载下工作频率和开关速度是不一样的,负责越重工作频率越慢,开关速度越慢,整个电路控制精度就会降低,影响空载和负载输出电压差。
一般光耦最佳工作速度区域是2mA左右。
一般的器件在2mA时候开关速度不会大于80KHZ,如果电流再小一点如1mA 时候工作频率会有所提高,我们可以根据不同电路设计选择。
七、一般来讲开关电源上817是和TL431配合使用的,所以建议设计其配合最大工作电流不要查过2mA,当然也不能低于0.8mA,一些TL431维持电流和817工作电流都必须大于0.8mA,当然一些特别TL431和817(有些维持电流只有0.5mA或更低)除外,这些低维持电流产品待机功耗更低,工作速度会更快。
基于PC817和TL431的多路输出单端反激式开关电源原理及设计

本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。
为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。
考虑10W的功率以及小体积的因素,电路选用单端反激电路。
单端反激电路的特点是:电路简单、体积小巧且成本低。
单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。
本电源设计成表面贴装的模块电源,其具体参数要求如下:输出最大功率:10W输入交流电压:85~265V输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。
反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。
这也是反激式电路的基本工作原理。
而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。
TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。
控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。
源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。
内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。
TL431和PC817

開關電源的穩壓回饋通常都使用TL431和PC817,如輸出電壓要求不高,也可以使用穩壓二極體和PC817.德州儀器公司(TI)生產的TL431是一個有良好的熱穩定性能的三端可調分流基準源。
它的輸出電壓用兩個電阻就可以任意地設置到從Vref(2.5V)到36V範圍內的任何值(如圖2)。
該器件的典型動態阻抗為0.2Ω,在很多應用中可以用它代替齊納二極體.上圖是該器件的符號。
3個引腳分別為:陰極(CATHODE)、陽極(ANODE)和參考端(REF)。
TL431的具體功能可以用如下圖的功能模組示意。
由圖可以看到,VI是一個內部的2.5V基準源,接在運放的反相輸入端。
由運放的特性可知,只有當REF端(同相端)的電壓非常接近VI(2.5V)時,三極管中才會有一個穩定的非飽和電流通過,而且隨著REF 端電壓的微小變化,通過三極管圖1 的電流將從1到100mA變化。
當然,該圖絕不是TL431的實際內部結構,所以不能簡單地用這種組合來代替它。
但如果在設計、分析應用TL431的電路時,這個模組圖對開啟思路,理解電路都是很有幫助的,前面提到TL431的內部含有一個2.5V的基準電壓,所以當在REF端引入輸出回饋時,器件可以通過從陰極到陽極很寬範圍的分流,控制輸出電壓。
如圖2所示的電路,當R1和R2的阻值確定時,兩者對Vo的分壓引入回饋,若V o增大,回饋量增大,TL431的分流也就增加,從而又導致Vo下降。
顯見,這個深度的負反饋電路必然在VI等於基準電壓處穩定,此時Vo=(1+R1/R2)Vref。
選擇不同的R1和R2的值可以得到從2.5V到36V範圍內的任意電壓輸出,特別地,當R1=R2時,Vo=5V。
需要注意的是,在選擇電阻時必須保證TL431工作的必要條件,就是通過陰極的電流要大於1 mA 。
下面我來通過以下典型應用電路來說明TL431,PC817的配合問題。
電路圖如下:為了避免此端電流影響分壓比和避免噪音的影響,一般取流過電阻R13的電流為參考段電流的100倍以上,所以此電阻要小於2.5V/200uA=12.5K. 2)待機功耗的要求,如有此要求,在滿足《12.5K的情況下儘量取大值。
TL431和PC817在开关电源中的应用电路设计

TL431和PC817在开关电源中的应用电路设计一、TL431的应用电路设计:1.电压调节稳压电路:将TL431连接在开关电源的反馈回路中,可以实现电压调节功能。
具体连接方式如下图所示:```C1C2输入电源,—,—-,—-+,—-++,+,—+—-电压输出R1+,—TL431```其中,C1和C2为输入电源的输入和输出电容,R1为电阻,用于调节输出电压的分压比例。
通过调节R1的阻值,可以实现对输出电压的调节。
2.参考电压源:在开关电源中,TL431还可以作为一个精密的参考电压源,用于控制其他电路的工作状态。
具体电路如下:```输入电源,—,TL431(参考电压),—+,其他电路```在这个电路中,TL431的参考电压可以被其他电路进行检测和控制,从而实现精密的电压调节和保持功能。
二、PC817的应用电路设计:1.光耦隔离器:PC817可以用作开关电源中的光耦隔离器,用于隔离输入和输出电路,从而实现安全和稳定的电气隔离。
具体电路如下:```输入电路,—,—PC817(输入侧),—PC817(输出侧),—,—输出电路```输入侧的PC817将输入电路与输出电路隔离开来,输出侧的PC817将接收到的输入信号进行调整并传输给输出电路。
这种隔离电路可以保护输出电路免受输入电路的干扰,提高系统的安全性和稳定性。
2.隔离控制电路:PC817还可以用作开关电源中的隔离控制电路,用于控制其他电路的开关状态。
具体电路如下:```输入电路,—,,PC817(控制信号),—+,其他电路```在这个电路中,输入电路的信号通过PC817进行隔离,并在输出端控制其他电路的开关状态。
这种隔离控制电路常用于开关电源中的保护电路,可以有效地隔离控制信号和其他电路,提高系统的稳定性和安全性。
总结:。
关于PC817和TL431的配合问题发表一点我的体会,希望同行讨论

关于PC817和TL431的配合问题发表一点我的体会,希望同行讨论在TOP 及3842等单端反激电路中的反馈电路很多都采用TL431,PC817作为参考、隔离、取样。
现以TOPSwicth典型应用电路来说明TL431,PC817的配合问题。
其电路如图1所示。
对于图1的电路,就是要确定R1、R3、R5及R6的值。
设输出电压V o,辅助绕组整流输出电压为12V。
该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器PC817二极管-三极管的电流变化去控制TOP管的C极,从而改变PWM宽度,达到稳定输出电压的目的。
因为被控对象是TOP管,因此首先要搞清TOP管的控制特性。
从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系。
如图2所示。
可以看出,Ic的电流应在2-6mA之间,PWM会线性变化,因此PC817三极管的电流Ice也应在这个范围变化。
而Ice是受二极管电流If控制的,我们通过PC817的Vce与If的关系曲线(如图3所示)可以正确确定PC817二极管正向电流If。
从图3可以看出,当PC817二极管正向电流If在3mA左右时,三极管的集射电流Ice 在4mA左右变化,而且集射电压Vce在很宽的范围内线性变化。
符合TOP管的控制要求。
因此可以确定选PC817二极管正向电流If为3mA。
再看TL431的要求。
从TL431的技术参数知,Vka在2.5V-37V变化时,Ika可以在从1mA到100mA以内很大范围里变化,一般选20mA即可,既可以稳定工作,又能提供一部分死负载。
不过对于TOP器件因为死负载很小,只选3-5mA左右就可以了。
确定了上面几个关系后,那几个电阻的值就好确定了。
根据TL431的性能,R5、R6、V o、Vr有固定的关系:V o=(1+ R5/R6) Vr式中,V o为输出电压,Vr为参考电压,Vr=2.50V,先取R6一个值,例如R6=10k,根据V o的值就可以算出R5了。
TL431—PC817元件漫谈

TL431—PC817元件漫谈TL431TL431是一种具有电流输出能力的可调基准电压源,输出电压范围2.5 ~36V。
在开关电源电路中,常与光耦合器配合构成隔离式电压反馈(误差电压放大器)电路。
其主要优点,是动态阻抗低,典型值为0.2欧,若构成稳压电路,能显著提高稳压精度。
工作电流Ika为1 ~100mA,范围较宽。
器件一般为3引脚和8引脚两种封装形式,为三端控制器件。
内部基准电压Vref为2.5V,接入电路达到稳态输出后,外部基准端子Vref电压也为2.5V,因而此端子也称为外部基准端子。
可以调整输出电压为2.5 ~36V以内的任意值。
在稳压电路中,TL431与外围电路接成闭环电压控制电路,从Vref端子输人的为输出电路反馈信号,电路的动态调整,即是将此反馈信号调整到2.5V左右,电路达到平衡状态。
但在开关电源电路中,对了TL431并不是作为一个稳压电路来使用的。
常规由TL431构成的稳压电路中,K极输出电压再经分压电阻反馈到Vref端,电路工作于闭环状态,形成并联分流式稳压控制。
而开关电源电路中,自身恰恰是工作于开环状态的,利用Vref端子输人小信号电压的变化,控制Iak较大电流的输出。
当Vref端电压<2.5V时,中无电流,Uk约为5V;当Vref端电压>2.5V 时,中产生电流,Uk约为2V左右。
光耦合器1.光耦合器由于光耦电路简单,对不能共地的、电压差异较大的输入、输出信号有较好的隔离度,又具有较高的抗干扰性能,故在幵关电源电路、数字隔离和模拟信号传输通道中被广泛采用。
更换损坏光耦器件时,要充分考虑其在电路中的位置和作用,用同类型光耦器件进行代换。
常用到3种类型的光耦合器:第1种为晶体管型光耦耦合器,如PC816、PC817、4N35等,常用于开关电源电路的输出电压采样和电压误差放大电路,也应用于变频器控制端子的数字信号输人回路。
输人侧为一只发光二极管,输出侧为一只光敏晶体管。
开关电源用光耦817选型和TL431配合设计建议

一、反馈式开关电源选用光耦时候必须正确选择线性光耦匹配的型号及参数,不然所设计电源总会工作在不稳定环境中,容易出现失效。
二、我们常注意光耦一个参数CTR (如下表)电流传输比,从LED端传送到光敏端的放大能力CTR=(IC/IB)*100%。
三、一般人关注和认为:光耦的电流传输比(CTR)的允许范围是50%~200%,这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流(IF>5.0mA),才能正常控制开关电源IC的占空比,这会增大光耦的功耗。
若CTR >200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。
四、确实CTR是光耦一个重要参数,但我们不要片面追求这一个参数而忽略其他重要细节,工作速度也是非常重要的,工作区域也是非常重要的,还有和其他器件配合设计也是不可忽略的。
五、首先讲一下工作区域,光耦最好的工作和最稳定工作区域是线性区域就是光耦1-5mA工作的一个区域间IC=IB*X(X是固定数),这样输入和输出电流时成线性比率的,低于和高于这个电流值,线性特性就没这么好了。
线性特性好就说明这个工作区域稳定可控,这是我们要设计要抓住的区域。
六、再来就是开关速度或工作频率,一个光耦在不同负载下工作频率和开关速度是不一样的,负责越重工作频率越慢,开关速度越慢,整个电路控制精度就会降低,影响空载和负载输出电压差。
一般光耦最佳工作速度区域是2mA左右。
一般的器件在2mA时候开关速度不会大于80KHZ,如果电流再小一点如1mA 时候工作频率会有所提高,我们可以根据不同电路设计选择。
七、一般来讲开关电源上817是和TL431配合使用的,所以建议设计其配合最大工作电流不要查过2mA,当然也不能低于0.8mA,一些TL431维持电流和817工作电流都必须大于0.8mA,当然一些特别TL431和817(有些维持电流只有0.5mA或更低)除外,这些低维持电流产品待机功耗更低,工作速度会更快。
关于PC817和TL431的参数计算问题

PC817和TL431组合系统的参数设计在TOP 及3842等单端反激电路中的反馈电路很多都采用TL431,PC817作为参考、隔离、取样。
现以TOPSwicth典型应用电路来说明TL431,PC817的配合问题。
其电路如图1所示。
对于图1的电路,就是要确定R1、R3、R5及R6的值。
设输出电压Vo,辅助绕组整流输出电压为12V。
该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器PC817二极管-三极管的电流变化去控制TOP管的C极,从而改变PWM宽度,达到稳定输出电压的目的。
因为被控对象是TOP管,因此首先要搞清TOP 管的控制特性。
从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系。
如图2所示。
可以看出,Ic的电流应在2-6mA之间,PWM会线性变化,因此PC817三极管的电流Ice也应在这个范围变化。
而Ice是受二极管电流If控制的,我们通过PC817的Vce与If的关系曲线(如图3所示)可以正确确定PC817二极管正向电流If。
从图3可以看出,当PC817二极管正向电流If在3mA左右时,三极管的集射电流Ice在4mA左右变化,而且集射电压Vce在很宽的范围内线性变化。
符合TOP管的控制要求。
因此可以确定选PC817二极管正向电流If为3mA。
再看TL431的要求。
从TL431的技术参数知,Vka在2.5V-37V变化时,Ika可以在从1mA到100mA以内很大范围里变化,一般选20mA即可,既可以稳定工作,又能提供一部分死负载。
不过对于TOP器件因为死负载很小,只选3-5mA 左右就可以了。
确定了上面几个关系后,那几个电阻的值就好确定了。
根据TL431的性能,R5、R6、Vo、Vr有固定的关系:V o=(1+ R5/R6) Vr式中,Vo为输出电压,Vr为参考电压,Vr=2.50V,先取R6一个值,例如R6=10k,根据Vo的值就可以算出R5了。
关于PC817和TL431的配合问题

关于PC817和TL431的配合问题在TOP 及3842等单端反激电路中的反馈电路很多都采用TL431,PC817作为参考、隔离、取样。
现以TOPSwicth典型应用电路来说明TL431,PC817的配合问题。
其电路如图1所示。
对于图1的电路,就是要确定R1、R3、R5及R6的值。
设输出电压V o,辅助绕组整流输出电压为12V。
该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器PC817二极管-三极管的电流变化去控制TOP管的C极,从而改变PWM宽度,达到稳定输出电压的目的。
因为被控对象是TOP管,因此首先要搞清TOP管的控制特性。
从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系。
如图2所示。
可以看出,Ic的电流应在2-6mA之间,PWM会线性变化,因此PC817三极管的电流Ice也应在这个范围变化。
而Ice是受二极管电流If 控制的,我们通过PC817的Vce与If的关系曲线(如图3所示)可以正确确定PC817二极管正向电流If。
从图3可以看出,当PC817二极管正向电流If在3mA左右时,三极管的集射电流Ice在4mA左右变化,而且集射电压Vce在很宽的范围内线性变化。
符合TOP管的控制要求。
因此可以确定选PC817二极管正向电流If为3mA。
再看TL431的要求。
从TL431的技术参数知,Vka在2.5V-37V变化时,Ika可以在从1mA到100mA以内很大范围里变化,一般选20mA即可,既可以稳定工作,又能提供一部分死负载。
不过对于TOP器件因为死负载很小,只选3-5mA左右就可以了。
确定了上面几个关系后,那几个电阻的值就好确定了。
根据TL431的性能,R5、R6、V o、Vr有固定的关系:V o=(1+ R5/R6) Vr 式中,V o为输出电压,Vr为参考电压,Vr=2.50V,先取R6一个值,例如R6=10k,根据V o的值就可以算出R5了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TL431及PC817在开关电源中的应用
TL431功能简介
本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。
由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。
其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。
其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。
TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。
其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。
此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。
TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。
图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。
TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接从电阻分压器上得到的取样电压,反相端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF通常状态下为2.5V,因此也称为基准端;②内部2.5CV基准电压源Uref ;③NPN型晶体管VT,它在电路中起到调节负载电流的作用;④保护二极管VD,可防止因K-A间电源极性接反而损坏芯片。
TL431的电路图形符号和基本接线如图4.27所示。
它相当于一只可调式齐纳稳压管,输出电压由外部精密分压电阻来设定,其公式为 (4-16) :
R3是IKA的限流电阻。
其稳压原理为:当UO上升时,取样电压UREF也随之升高,使UREF>Uref,比较器输出高电平,使VT导通,UO开始下降。
反之,UO下降会导致UREF下降,从而UREF<Uref,使比较器再次翻转,输出变成低电平,VT截止UO上升。
这样的循环下去,从动态平衡的角度来看,就迫使UO 趋于稳定,从而达到了稳定的目的,并且UREF=Uref。
在本设计中就是利用TL431和光耦构成反馈电路,其工作原理就是当输出电压发生波动时,经分压电阻得到的取样电压就与TL431中的2.5V基准电压进行比较,在阴极上形成误差电压,使LED的工作电流发生变化,再通过光耦去改变SG3525的COMP控制端电流的大小,调节SG3525的输出占空比,从而达到稳压的目的
PC817功能简介
光电耦合器是以光为媒介来传播电信号的器件。
通常是把发光器(发光二极管LED)和受光器(光敏晶体管)封装在同一管壳内如图4.28。
当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。
普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。
线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。
PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。
图4.29为PC817集电极发射极电压V 与发光二极管正向电流If关系。