人教A版高中数学必修三第三章3.2古典概型 同步训练(1)(II)卷

合集下载

人教A版高中数学必修三试卷-高中同步练测:3.2古典概型.docx

人教A版高中数学必修三试卷-高中同步练测:3.2古典概型.docx

第3章 3.2古典概型同步测试试卷(数学人教A版必修3)一、选择题(本题包括6小题,每小题5分,共30分)1.有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1、2、3、4,把两个玩具各抛掷一次,斜向上的面写有的数字之和能被5整除的概率为()A. B. C. D.2. 从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为( )A. B.C. D.3.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A.132 B.164C.332 D.3644.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( )A. B. C. D.5.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )A.15 B.310 C.25 D.126.已知A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是()A.29 B.13C.89 D.1二、填空题(本题包括4小题,每小题5分,共20分)7.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级品)的概率为________.8.从一个信箱中任取一封信,记一封信的重量为ξ(单位:克),如果P(ξ<10)=0.3,P(10≤ξ≤30)=0.4,则P(ξ>30)=________.9. 某种电子元件在某一时刻是否接通的可能性是相同的,有3个这样的电子元件,则出现至少有一个接通的概率为________.10. 将一枚骰子抛掷两次,若先后出现的点数分别为b、c,则方程x2+bx+c=0有实根的概率为建议用时实际用时满分实际得分45分钟100分____________.三、计算题(本题共3小题,共50分)11.(16分)从某小组的2名女生和3名男生中任选2人去参加一项公益活动.(1)求所选2人中恰有一名男生的概率;(2)求所选2人中至少有一名女生的概率.12.(17分)在数学考试中,小明的成绩在90分及以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,计算小明在数学考试中取得80分及以上成绩的概率和小明考试不及格(低于60分)的概率.13.(17分)在甲、乙两个盒子中分别装有标号为1,2,3,4的四个小球,现从甲、乙两个盒子中各取出1个小球,每个小球被取出的可能性相等.(1)求取出的两个小球上的标号为相邻整数的概率;(2)求取出的两个小球上的标号之和能被3整除的概率.第3章 3.2古典概型同步测试试卷(数学人教A版必修3)答题纸得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. 8. 9. 10.二、计算题11.12.13.第3章 3.2古典概型 同步测试试卷(数学人教A 版必修3)答案一、选择题1.C 解析:由于正四面体各面都完全相同,故每个数字向下都是等可能的,两个正四面体各面上数字之和为20,故斜向上的面写有的数字之和能被5整除的概率等于向下面上的数字和能被5整除的概率,向下面上的数字和被5整除的可能为(2,3),(3,2),(1,4),(4,1)共4种,而总共有4×4=16(种),故P =416=14.2.B 解析:从甲、乙、丙、丁四人中任选两名代表的所有可能为:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,满足题意的有:甲乙、甲丙、甲丁,所以概率为P =36=12.3. D 解析:基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364.4.B 解析:(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种.5.C6. C 解析:∵A ∩B =B ,∴B 可能为,{1},{2},{3},{1,2},{2,3},{1,3}.当B =时,a 2-4b <0,满足条件的a ,b 为a =1,b =1,2,3;a =2,b =2,3;a =3,b =3.当B ={1}时,满足条件的a ,b 为a =2,b =1.当B ={2},{3}时,没有满足条件的a ,b .当B ={1,2}时,满足条件的a ,b 为a =3,b =2.当B ={2,3},{1,3}时,没有满足条件的a ,b .∴A ∩B =B 的概率为83×3=89.二、填空题7.0.92 解析:记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级品)的概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.8.0.3解析:P (ξ>30)=1-P (ξ<10)-P (10≤ξ≤30)=1-0.3-0.4=0.3.9. 解析:设电子元件接通记为1,没有接通记为0.又设A 表示“3个电子元件至少有一个接通”,显然A表示“3个电子元件都没有接通”,Ω表示“3个电子元件的状态”,则Ω={(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1),(0,0,0)}.Ω由8个基本事件组成,而且这些基本事件的出现是等可能的,A ={(0,0,0)},事件A 由1个基本事件组成,因此P (A )=18,∵ P (A )+P (A )=1,∴ P (A )=1-P (A )=1-18=78.10. 解析:一枚骰子掷两次,其基本事件总数为36,方程有实根的充要条件为b 2≥4c .b 12 3 4 5 6 使b 2≥4c 的基本事件个数12466由此可见,使方程有实根的基本事件个数为1+2+4+6+6=19,于是方程有实根的概率为P =1936.三、解答题11.解:设2名女生为a 1,a 2,3名男生为b 1,b 2,b 3,从中选出2人的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共10种.(1)设“所选2人中恰有一名男生”的事件为A ,则A 包含的事件有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共6种,∴ P (A )=610=35,故所选2人中恰有一名男生的概率为35.(2)设“所选2人中至少有一名女生”的事件为B ,则B 包含的事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共7种,∴ P (B )=710,故所选2人中至少有一名女生的概率为710.12.解:设小明的数学考试成绩在90分及以上,在80~89分,在70~79分,在60~69分分别为事件B ,C ,D ,E ,这4个事件是彼此互斥的.根据互斥事件的加法公式,小明的考试成绩在80分及以上的概率为P (B +C )=P (B )+P (C )=0.18+0.51=0.69.小明考试及格的概率,即成绩在60分及以上的概率为P (B +C +D +E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.而小明考试不及格与小明考试及格互为对立事件,所以小明考试不及格的概率为1-P (B +C +D +E )=1-0.93=0.07.13.解:设从甲、乙两个盒子中各取1个小球,其标号分别记为x 、y ,用(x ,y )表示抽取结果,则所有可能结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.(1)所取两个小球上的标号为相邻整数的结果有(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),共6种. 故所求概率P =616=38.(2)所取两个小球上的标号和能被3整除的结果有 (1,2),(2,1),(2,4),(3,3),(4,2),共5种. 故所求概率P =516.。

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版高中数学必修3 第三章概率 3.2.1古典概型同步测试(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高一下·江门期中) 已知函数,其中,则使得f(x)>0在上有解的概率为()A .B .C .D . 02. (2分)连续抛掷两次骰子,得到的点数分别为m,n,记向量的夹角为,则的概率是()A .B .C .D .3. (2分)小明有5道课后作业题,他只会做前两道,若他从中任选2道题做,则选出的都是不会做的题的概率为()A .B .D .4. (2分)从一副标准的52张扑克牌(不含大王和小王)中任意抽一张,抽到黑桃Q的概率为()A .B .C .D .5. (2分)若书架中放有中文书5本,英文书3本,日文书2本,则抽出一本书为外文书的概率为()A .B .C .D .6. (2分)甲乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲乙下成和棋的概率为()A . 70%B . 30%C . 20%D . 50%7. (2分)一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。

抽取一个容量为10的样本,每个管理人员被抽到的概率为()B .C .D .8. (2分)某5个同学进行投篮比赛,已知每个同学投篮命中率为,每个同学投篮2次,且投篮之间和同学之间都没有影响.现规定:投中两个得100分,投中一个得50分,一个未中得0分,记为5个同学的得分总和,则的数学期望为()A . 400B . 200C . 100D . 809. (2分) (2019高一下·菏泽月考) 任取一个三位正整数,则对数是一个正整数的概率是()A .B .C .D .10. (2分)甲、乙两人各掷一次骰子(均匀的正方体,六个面上分别为l,2,3,4,5,6点),所得点数分别记为x、y,则的概率为()A .C .D .11. (2分)已知地铁列车每10分钟一班,在车站停1分钟,则乘客到达站台立即乘车的概率为()A .B .C .D . 无法确定12. (2分)任取三个整数,至少有一个数为偶数的概率为()A . 0.125B . 0.25C . 0.5D . 0.87513. (2分) (2016高二下·宜春期中) 吉安市高二数学竞赛中有一道难题,在30分钟内,学生甲内解决它的概率为,学生乙能解决它的概率为,两人在30分钟内独立解决该题,该题得到解决的概率为()A .B .C .D .14. (2分)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知 P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为()A . 0.7B . 0.65C . 0.35D . 0.315. (2分) (2018高一下·葫芦岛期末) 某产品分为三级,若生产中出现级品的概率为0.03,出现级品的概率为0.01,则对产品抽查一次抽得级品的概率是()A . 0.09B . 0.98C . 0.97D . 0.96二、填空题 (共5题;共6分)16. (1分)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.17. (1分)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过:若至少能答对其中的5道题就获得优秀,已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,则他获得优秀成绩的概率是________.18. (1分) (2019高二下·涟水月考) 已知正六棱锥的底面边长为2,高为 .现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量表示所得三角形的面积.则概率的值________.19. (1分)某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:树干周长(单位:cm)[30,40)[40,50)[50,60)[60,70)株数418x6则x的值为________;若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.则排查的树木恰好为2株的概率为________.20. (2分)(2017·长宁模拟) 把一颗骰子投掷2次,观察出现的点数,记第一次出现的点数为a,第二次出现的点数为b,则方程组只有一个解的概率为________.三、解答题 (共5题;共25分)21. (5分)某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:分组频数频率(3.9,4.2]30.06(4.2,4.5]60.12(4.5,4.8]25x(4.8,5.1]y z(5.1,5.4]20.04合计n 1.00(Ⅰ)求频率分布表中未知量n,x,y,z的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.22. (5分) (2017高二下·临淄期末) 某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率.23. (5分) (2015高三上·河北期末) 某商场每天(开始营业时)以每件150元的价格购入A商品若干件(A商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的A商品以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A商品低价处理完毕,且处理完后,当天不再购进A商品).该商场统计了100天A商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x+y=70)前6小时内的销售量t(单位:件)456频数30x y(1)若某该商场共购入6件该商品,在前6个小时中售出4件.若这些产品被6名不同的顾客购买,现从这6名顾客中随机选2人进行回访,则恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A商品时所获得的平均利润最大,求x的取值范围.24. (5分) (2017高二·卢龙期末) 为迎接今年6月6日的“全国爱眼日”,某高中学校学生会随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右图,若视力测试结果不低于5.0,则称为“好视力”,(1)写出这组数据的众数和中位数;(2)求从这16人中随机选取3人,至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.25. (5分) (2019高三上·沈河月考) 将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.1234(1)求4本书恰好放在四个不同抽屉中的概率;(2)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望 .参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共6分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分) 21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。

人教A版高中数学必修三第三章3.2古典概型 同步训练(I)卷

人教A版高中数学必修三第三章3.2古典概型 同步训练(I)卷

人教A版高中数学必修三第三章3.2古典概型同步训练(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分) (2016高二上·桂林开学考) 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是()A .B .C .D .2. (2分) (2015高二下·泉州期中) 在正方体ABCD﹣A1B1C1D1的各个顶点与各棱的中点共20个点中,任取2点连成直线,在这些直线中任取一条,它与对角线BD1垂直的概率为()A .B .C .D .3. (2分) (2018高二上·黑龙江月考) 甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气” 即乙领到的钱数不少于其他任何人的概率是A .B .C .D .4. (2分)用1、2、3、4、5这5个数字,组成没有重复数字的三位数,其中奇数的概率为()A .B .C .D .5. (2分) (2015高二上·海林期末) 从(m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率是()A .B .C .D .二、填空题 (共4题;共4分)6. (1分)(2017·四川模拟) 从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是________.(结果用最简分数表示)7. (1分) (2017高二下·南通期中) 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 ________.8. (1分)(2017·龙岩模拟) 甲盒放有2017个白球和n个黑球,乙盒中放有足够的黑球.现每次从甲盒中任取两个球放在外面.当被取出的两个球同色时,需再从乙盒中取一个黑球放入甲盒;当取出的两球异色时,将取出的白球再放回甲盒,直到甲盒中只剩两个球,则下列结论不可能发生的是________(填入满足题意的所有序号).①甲盒中剩两个黑球;②甲盒中剩两个白球;③甲盒中剩两个同色球;④甲盒中剩两个异色球.9. (1分) 10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为________.三、解答题 (共2题;共15分)10. (5分)(2017·黑龙江模拟) 一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(Ⅰ)求z的值;(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分x的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数xi(1≤i≤8,i∈N),设样本平均数为,求|xi﹣|≤0.5的概率.11. (10分) (2019高二上·张家口月考) 某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:第一次第二次第三次第四次第五次甲的成绩(分)乙的成绩(分)(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共4题;共4分)6-1、7-1、8-1、9-1、三、解答题 (共2题;共15分)10-1、11-1、11-2、。

高中数学人教新课标A版必修3 第三章 概率 3.2古典概型(II)卷

高中数学人教新课标A版必修3 第三章 概率 3.2古典概型(II)卷

高中数学人教新课标A版必修3 第三章概率 3.2古典概型(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019高三上·凤城月考) 《孙子算经》中曾经记载,中国古代诸侯的等级从高到低分为:公、侯、伯、子、男,共有五级.若给有巨大贡献的人进行封爵,则两人不被封同一等级的概率为()A .B .C .D .2. (2分) 5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为()A .B .C .D .3. (2分)一位同学一次投篮的命中率试0.4,我们通过随机模拟的方式来判断这位同学3次投篮的命中情况,用表示命中,用0,1,2,3表示不命中,计算机产生20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989则这位同学恰有两次命中的概率是()A .B .C .D .4. (2分)抛掷两个骰子,至少有一个4点或5点出现时,就说这次实验成功,则在10次实验中,成功次数ξ的期望是()A .B .C .D .5. (2分)从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A .B .C .D . 无法确定6. (2分)下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A . 0.2B . 0.4C . 0.5D . 0.67. (2分)甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A .B .C .D .8. (2分)如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A方格的数字大于D方格的数字的概率为()A BC DA .B .C .D .二、填空题 (共3题;共3分)9. (1分)(2018·绵阳模拟) 在一场比赛中,某篮球队的11名队员共有9名队员上场比赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.10. (1分) (2019高三上·杨浦期中) 从1,2,3,4,5,6,7,8,9中任取5个不同的数,中位数为4的取法有________种.(用数值表示)11. (1分)(2014·广东理) 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.三、解答题 (共3题;共25分)12. (10分) (2018高一下·江津期末) 全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播2017年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组频数12283743(1)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数;(2)现从融合指数在和内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在内的概率.13. (10分)在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1、2、3、4、5.甲先从箱子中摸出一个小球,记下球上所标数字后,将该小球放回箱子中摇匀后,乙再从该箱子中摸出一个小球.(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(数字相同为平局),求甲获胜的概率;(2)规定:两人摸到的球上所标数字之和小于6,则甲获胜,否则乙获胜,这样规定公平吗?14. (5分)某批零件共160个,其中一级品有48人,二级品有64个,三级品有32个,等外品有16个.从中抽取一个容量为20的样本.试简要叙述用简单随机抽样、系统抽样、分层抽样法进行抽样都是等可能抽样.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共25分)12-1、12-2、13-1、13-2、14-1、。

人教A版高中数学必修三试卷高中3.2.1《古典概型》同步测试新.docx

人教A版高中数学必修三试卷高中3.2.1《古典概型》同步测试新.docx

3-2-1古典概型一、选择题1.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,则基本事件有( )A.1个B.2个C.3个D.4个[答案] C[解析]基本事件有{数学,计算机},{数学,航空模型},{计算机,航空模型},共3个,故选C.2.下列试验中,是古典概型的为( )A.种下一粒花生,观察它是否发芽B.向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D.在区间[0,5]内任取一点,求此点小于2的概率[答案] C[解析]对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C.3.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为( ) A.{正好2个红球} B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}[答案] D[解析]至少1个红球包含,一红一白或一红一黑或2个红球,所以{至少1个红球}不是基本事件,其他项中的事件都是基本事件.4.在200瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是( )A.0.2 B.0.02C.0.1 D.0.01[答案] B[解析]所求概率为4200=0.02.5.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个②每个事件出现的可能性相等③每个基本事件出现的可能性相等④基本事件总数为n,随机事件A若包含k个基本事件,则P(A)=knA.②④B.①③④C.①④D.③④[答案] B[解析]②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.6.投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数,我们称其为正实验;若第二次面向上的点数小于第一次面向上的点数,我们称其为负实验;若两次面向上的点数相等,我们称其为无效.那么一个人投掷该骰子两次后出现无效的概率是( )A.136B.112C.16D.12[答案] C[解析]连续抛一枚骰子两次向上的点数记为(x,y),则有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个基本事件,设无效为事件A,则事件A有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个基本事件,则P(A)=636=16.7.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,现选出的两人中有中国人的概率为( )A.14B.13C.12D.1[答案] C[解析]用列举法可知,共6个基本事件,有中国人的基本事件有3个.8.(2012·安徽卷)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45[答案] B[解析] 1个红球,2个白球和3个黑球记为a 1,b 1,b 2,c 1,c 2,c 3从袋中任取两球共有a 1,b 1;a 1,b 2;a 1,c 1;a 1,c 2;a 1,c 3;b 1,b 2;b 1,c 1;b 1,c 2;b 1,c 3;b 2,c 1;b 2;c 2;b 2,c 3;c 1,c 2;c 1,c 3;c 2,c 315种;满足两球颜色为一白一黑有6种,概率等于615=25.9.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13B.14C.16D.112[答案] D[解析] 由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112,故选D.10.若自然数n 使得作竖式加法n +(n +1)+(n +2)产生进位现象,则称n 为“先进数”.例如:4是“先进数”,因4+5+6产生进位现象.2不是“先进数”,因2+3+4不产生进位现象.那么,小于100的自然数是“先进数”的概率为( )A .0.10B .0.90C .0.89D .0.88 [答案] D[解析] 一位数中不是“先进数”有0,1,2共3个;两位数中不是“先进数”其个位数可以取0,1,2,十位数可取1,2,3,共有9个,则小于100的数中不是“先进数”的数共有12个,所以小于100的“先进数”的概率为P =1-1299≈0.88,故应选D.本题考查了新定义概念题及古典概型的求解问题,此题解决的关键在于找出所有的对立事件的个数.二、填空题11.袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色. (1)从中任取1球,取出白球的概率为________.(2)从中任取2球,取出的是红球、白球的概率为________.[答案](1)14(2)16[解析](1)任取一球有4种等可能结果,而取出的是白球只有一个结果,∴P=1 4 .(2)取出2球有6种等可能结果,而取出的是红球、白球的结果只有一种,∴概率P=16 .12.在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,则两数之和等于5和概率为________.[答案]1 6[解析]两个袋内分别任取一张卡片包含的基本事件有(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(2,0),(2,1),(2,2),(2,3),(2,4),(2,5),(3,0),(3,1),(3,2),(3,3),(3,4),(3,5),(4,0),(4,1),(4,2),(4,3),(4,4),(4,5),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),共有36个基本事件,设两数之和等于5为事件A,则事件A包含的基本事件有(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),共有6个基本事件,则P(A)=636=16.13.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为a,b,则log2a b=1的概率为________.[答案]1 12[解析]基本事件有36个,当log2a b=1时,有2a=b,则a=1,b=2或a=2,b=4或a=3,b=6.所以log2a b=1的概率为336=112.14.某学校共有2 000名学生,各年级男、女生人数如下表:样的方法从全校学生中抽取80名学生,则三年级应抽取的学生人数为________人.[答案] 20[解析] 由题意知,抽到二年级女生的概率为0.19,则x2 000=0.19,解得x =380,则y+z =2 000-(369+381+370+380)=500,则三年级学生人数为500,又分层抽样的抽样比为802 000=125,所以从全校学生中抽取80名学生中,三年级应抽取的学生人数为500×125=20. 三、解答题15.一枚硬币连掷3次,观察向上面的情况,(1)写出所有的基本事件,并计算总数;(2)求仅有2次正面向上的概率.[解析] (1)所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个基本事件.(2)由(1)知,仅有2次正面向上的有(正,正,反),(正,反,正),(反,正,正),共3个.设仅有2次正面向上为事件A ,则P (A )=38.16.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则: (1)这3人的值班顺序共有多少种不同的排列方法? (2)这3人的值班顺序中,甲在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?[解析] (1)3个人值班的顺序所有可能的情况如下图所示. 甲乙丙丙乙 乙甲丙丙甲 丙甲乙乙甲 由图知,所有不同的排列顺序共有6种. (2)由图知,甲排在乙之前的排法有3种. (3)记“甲排在乙之前”为事件A ,则P (A )=36=12.17.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.[解析](1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310.(2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815. 18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m ,后面一天发芽的种子数为n ,用(m ,n )的形式列出所有基本事件,并求满足“⎩⎪⎨⎪⎧25≤m ≤3025≤n ≤30”的概率.[解析] (1)因为16<23<25<26<30,所以这5天发芽数的中位数是25. (2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(x ,y )表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16).共有10个基本事件.记“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P (A )=310,即事件“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”的概率为310.。

人教A版高中数学 必修三第三章3.2古典概型同步练习(II)卷

人教A版高中数学 必修三第三章3.2古典概型同步练习(II)卷

人教A版高中数学必修三第三章3.2古典概型同步练习(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)若书架上放有中文书五本,英文书三本,日文书两本,则抽出一本为外文书的概率为()A .B .C .D .2. (2分)同时掷两枚骰子,所得点数之和为5的概率为()A .B .C .D .3. (2分)掷一个骰子,出现“点数是质数”的概率是()A .B .C .D .4. (2分)设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z,且|x|≤5},则A∪B中的元素个数是()A . 11B . 10C . 16D . 155. (2分) (2019高二上·南充期中) 某中学从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是83,乙班学生成绩的平均数是86,则的值为()A . 7B . 8C . 9D . 106. (2分)(2020·武汉模拟) 同时抛掷两个质地均匀的骰子,向上的点数之和小于5的概率为()A .B .C .D .二、填空题 (共4题;共4分)7. (1分)(2019·奉贤模拟) 有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆放到书架的同一层上,则同一科目的书都相邻的概率是________8. (1分) (2017高二上·扬州月考) 袋中有形状、大小都相同的5只球,其中3只白球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.9. (1分) (2017高二下·池州期末) 如图,表示3种开关,设在某段时间内它们正常工作的概率分别是0.9,0.8,0.7,至少有1个开关正常工作时系统能正常工作,那么该系统正常工作的概率是________.10. (1分)(2019·广东模拟) 从4张分别写有数字1,2,3,4的卡片中随机抽取2张,则所取2张卡片上的数字之积为奇数的概率是________三、解答题 (共3题;共35分)11. (15分) (2018高二上·齐齐哈尔期中) 2017年10月18日至10月24日,中国共产党第十九次全国代表大会简称党的“十九大” 在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1组,第2组,第3组,第4组,第5组,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.(1)求这100人的平均得分同一组数据用该区间的中点值作代表;(2)求第3,4,5组分别选取的作深入学习的人数;(3)若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.12. (10分) (2016高二上·南城期中) 将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数﹒图中三角形阴影部分的三个顶点为(0,0)、(4,0)和(0,4).(1)若点P(a,b)落在如图阴影所表示的平面区域(包括边界)的事件记为A,求事件A的概率;(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率P最大,求m和P的值﹒13. (10分)(2020·达县模拟) 我国已进入新时代中国特色社会主义时期,人民生活水平不断提高.某市随机统计了城区若干户市民十月人均生活支出比九月人均生活支出增加量(记为P元)的情况,并根据统计数据制成如图频率分布直方图.(1)根据频率分布直方图估算P的平均值;(2)若该市城区有4户市民十月人均生活支出比九月人均生活支出分别增加了42元,50元,52元,60元,从这4户中随机抽取2户,求这2户P值的和超过100元的概率.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共4题;共4分)7-1、8-1、9-1、10-1、三、解答题 (共3题;共35分)11-1、11-2、11-3、12-1、12-2、13-1、13-2、。

人教A版高中数学 必修三第三章3.2古典概型同步练习(I)卷

人教A版高中数学 必修三第三章3.2古典概型同步练习(I)卷

人教A版高中数学必修三第三章3.2古典概型同步练习(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)在某次技能大赛中,有6位参赛者的成绩分别是70,76,72,70,72,90,从这6为参赛者中随机的选x位,其中恰有1位的成绩为70的概率是,则x等于()A . 2B . 4C . 3D . 2或42. (2分)掷一枚骰子,则掷得奇数点的概率是()A .B .C .D .3. (2分) (2018高一下·合肥期末) 从存放号码分别为1,2,,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A . 0.53B . 0.5C . 0.47D . 0.374. (2分) (2018高三上·济南月考) 已知集合,,则等于()A .B .C .D . R5. (2分) (2018高二上·南山月考) 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间(142,153)上的运动员人数是()A . 2B . 3C . 4D . 3或46. (2分) (2018高二下·陆川期末) 一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则最多有一个二等品的概率为()A .B .C .D .二、填空题 (共4题;共4分)7. (1分)给出下列三个结论:①小王任意买1张电影票,座号是3的倍数的可能性比座号是5的倍数的可能性大;②高一(1)班有女生22人,男生23人,从中任找1人,则找出的女生可能性大于找出男生的可能性;③掷1枚质地均匀的硬币,正面朝上的可能性与反面朝上的可能性相同.其中正确结论的序号为________.8. (1分) (2019·奉贤模拟) 有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆放到书架的同一层上,则同一科目的书都相邻的概率是________9. (1分)(2017·青浦模拟) 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p=________.10. (1分) (2020高二上·遂宁期末) 两个男生一个女生并列站成一排,其中两男生相邻的概率为________三、解答题 (共3题;共30分)11. (5分) (2017高二下·寿光期中) 某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动.(I)求男生甲、女生乙至少有1人被选中的概率;(II)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P (A)和P (B|A).12. (10分) (2015高二上·葫芦岛期末) 一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于8的概率;(2)若随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字3的概率.13. (15分) (2018高二下·甘肃期末) 社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).年份(第年)12345人数(人)3738494556参考公式:,.(1)试求人数关于年份的回归直线方程;(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共4题;共4分)7-1、8-1、9-1、10-1、三、解答题 (共3题;共30分)11-1、12-1、12-2、13-1、13-2、13-3、。

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版 高中数学必修3 第三章概率 3.2.1古典概型 同步测试(I)卷

人教新课标A版高中数学必修3 第三章概率 3.2.1古典概型同步测试(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高一下·江门期中) 已知函数,其中,则使得f(x)>0在上有解的概率为()A .B .C .D . 02. (2分),,则的概率是()A .B .C .D .3. (2分)从数字1,2,3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A .B .C .4. (2分)从一副标准的52张扑克牌(不含大王和小王)中任意抽一张,抽到黑桃Q的概率为()A .B .C .D .5. (2分)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色不同的概率为()A .B .C .D .6. (2分)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为()A . 0.95B . 0.97C . 0.92D . 0.087. (2分)一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。

抽取一个容量为10的样本,每个管理人员被抽到的概率为()B .C .D .8. (2分)甲、乙两人独立地解决同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么其中至少有一人解决这个问题的概率是A .B .C .D .9. (2分) (2018高二上·铜仁期中) 集合 ,集合,先后掷两颗骰子,掷第一颗骰子得点数为 ,掷第二颗骰子得点数为 ,则的概率等于()A .B .C .D .10. (2分)(2017·昆明模拟) 在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为()A .B .C .D .11. (2分) (2017高二下·故城期末) 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛两次,记第一次出现的点数为,第二次出现的点数为,则事件“ ”的概率为()A .B .C .D .12. (2分)在集合{1,2,3,4…,10}中任取一个元素,所取元素恰好满足方程的概率为()A .B .C .D .13. (2分) (2017高二下·莆田期末) 甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,目标被命中的概率为()A .B .C .D .14. (2分)若P(A∪B)=P(A)+P(B)=1,事件A与事件B的关系是()A . 互斥不对立B . 对立不互斥C . 互斥且对立D . 以上答案都不对15. (2分) (2017高一下·郑州期末) 把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得黑牌”与“乙分得黑牌”是()A . 对立事件B . 必然事件C . 不可能事件D . 互斥但不对立事件二、填空题 (共5题;共6分)16. (1分) (2016高二下·姜堰期中) 掷一枚硬币,出现正面向上的概率为________.17. (1分)甲、乙两队进行足球比赛,若甲获胜的概率为0.3,甲不输的概率为0.8,则两队踢成平局的概率为________18. (1分) (2019高一下·西城期末) 从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为________.19. (1分)从2012名学生中选50名学生参加中学生作文大赛,若采用下面的方法选取:先用简单随机抽样的方法从2012人中剔除12人,剩下的再按系统抽样的抽取,则每人入选的概率________ (填相等或不相等)20. (2分)(2016·江苏模拟) 分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是________.三、解答题 (共5题;共25分)21. (5分) (2017高三上·连城开学考) 某班从6名干部中(其中男生4人,女生2人)选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列及Eξ;(2)求男生甲或女生乙被选中的概率;(3)在男生甲被选中的情况下,求女生乙也被选中的概率.22. (5分)某班50名学生在元旦联欢时,仅买了甲、乙两种瓶装饮料供饮用.在联欢会上喝掉36瓶甲饮料,喝掉39瓶乙饮料.假设每个人至多喝1瓶甲饮料和1瓶乙饮料,并且有5名学生两种饮料都没有喝,随机选取该班的1名学生,计算下列事件的概率.(Ⅰ)他没有喝甲饮料;(Ⅱ)他只喝了1瓶乙饮料;(Ⅲ)他喝了1瓶甲饮料和1瓶乙饮料.23. (5分) (2016高一下·玉林期末) 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.24. (5分) (2017高二下·深圳月考) 某中学校本课程开设了A、B、C、D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:(Ⅰ)求这3名学生选修课所有选法的总数;(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;(Ⅲ)求A选修课被这3名学生选择的人数的分布列 .25. (5分) (2016高二上·黑龙江期中) 在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相邻整数的概率;(Ⅱ)求取出的两个球上标号之和能被3整除的概率.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共6分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、21-3、22-1、23-1、23-2、24-1、25-1、第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版高中数学必修三第三章3.2古典概型同步训练(1)(II)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:
,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是()
A .
B .
C .
D .
2. (2分) (2018高一下·东莞期末) 从集合 3,4,中随机抽取一个数a,从集合 6,中随机抽取一个数b,则向量与向量平行的概率为
A .
B .
C .
D .
3. (2分) (2016高二上·南城期中) 现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子只能放一个球,则C或E在盒中的概率是()
A .
B .
C .
D .
4. (2分)(2016·新课标Ⅲ卷文) 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()
A .
B .
C .
D .
5. (2分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,第一次和第二次都抽取到理科题的概率为()
A .
B .
C .
D .
6. (2分) (2018高一下·珠海期末) 奥地利遗传学家孟德尔1856年用豌豆作实验时,他选择了两种性状不同的豌豆,一种是子叶颜色为黄色,种子性状为圆形,茎的高度为长茎,另一种是子叶颜色为绿色,种子性状为皱皮,茎的高度为短茎。

我们把纯黄色的豌豆种子的两个特征记作,把纯绿色的豌豆的种子的两个特征记作,实验杂交第一代收获的豌豆记作,第二代收获的豌豆出现了三种特征分别为,,,请问,孟德
尔豌豆实验第二代收获的有特征的豌豆数量占总收成的()
A .
B .
C .
D .
7. (2分)设A,B是任意事件,下列哪一个关系式正确的()
A . A+B=A
B . AB A
C . A+AB=A
D .
8. (2分) (2015高二下·双流期中) 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()
A .
B .
C .
D .
9. (2分)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()
A .
B .
C .
D .
10. (2分) (2015高二上·大方期末) 从1,2,3,4,5,6这六个数中,不放回地任意取两个数,每次取一个数,则所取的两个数都是偶数的概率为()
A .
B .
C .
D .
二、填空题 (共5题;共5分)
11. (1分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是________.
12. (1分) (2017高二下·桃江期末) 设随机变量X等可能取1,2,3,…,n这n个值,如果P(X≤4)=0.4,则n等于________.
13. (1分) 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率________.
14. (1分)同时掷两枚质地均匀的骰子,所得的点数之和为5的概率是________
15. (1分)(2017·南通模拟) 100张卡片上分别写有1,2,3,…,100.从中任取1张,则这张卡片上的数是6的倍数的概率是________.
三、解答题 (共4题;共40分)
16. (10分) (2018高一下·濮阳期末) 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽
奖方法是:从装有个红球,和个白球的甲箱与装有个红球,和个白球,的乙箱中,各随机摸出个球,若模出的个球都是红球则中奖,否则不中奖.
(1)用球的标号列出所有可能的模出结果;
(2)有人认为:两个箱子中的红球比白球多所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
17. (15分)做投掷2个骰子试验,用(x,y)表示点P的坐标,其中x表示第1个骰子出现的点数,y表示第2个骰子出现的点数.
(1)求点P在直线y=x上的概率.
(2)求点P不在直线y=x+1上的概率.
(3)求点P的坐标(x,y)满足16<x2+y2≤25的概率.
18. (5分) (2016高二下·广东期中) 长时间用手机上网严重影响着学生的身体健康,某校为了解A、B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;
(Ⅱ)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
19. (10分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y,
(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?试求点(x,y)落在直线x+y=7上的概率;
(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共5分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共4题;共40分) 16-1、
16-2、
17-1、
17-2、
17-3、
18-1、
19-1、19-2、。

相关文档
最新文档