关于变电站110kV母线保护设计

合集下载

110KV变电所继电保护设计整定计算设计任务书

110KV变电所继电保护设计整定计算设计任务书

电力职业技术学院继电保护及其自动化专业毕业设计任务书标题:110KV变电站继电保护的设计与整定计算原始数据:1.设计一座110KV降压变电站(1)110KV侧有L101、L103两条出线,35KV侧有L302、L303、L304、L305、L306五条出线,10KV侧有八条出线。

(2)与电力系统的连接;①110KV侧线路L101接入110kv系统:②35KV侧一路通过306开关接入35KV区域供电系统。

(3)主变压器数量及容量:1、每台变压器容量:31.5MVA绕组类型及接线组别:三相三绕组,yo/y/△-12-11;额定电压:110/38.5/11KV;短路百分比:高-中(17),高-低(10),中-低(6.5):绝缘类型:分级绝缘。

(4)110kv、35KV、10KV母线侧线路后备保护最大动作时间分别为110kv:2.5S、35kv:2.5S、10kv:2S。

2.电力系统的主要参数:(1)1)110kv系统最大等效正序电抗*ma*为6.6ω,最小等效正序电抗*ma*为5.3ω,最大等效电抗*ma* = 5.3Ω,35KV系统为9.2ω,最小等效电抗*.ma*为8.1ω。

(2)部分线路的主要参数如下表所示:L101:额定电压110KV长度52KM最大(额定)负载为51MVA每单位长度正序电抗(ω/km) 0.4L302:额定电压35KV长度18KM最大(额定)负载为6.3MVA每单位长度正序电抗(ω/km) 0.4L303:额定电压35KV长度16公里;最大(额定)负载为6.3MVA每单位长度正序电抗(ω/km) 0.4L304额定电压35KV长度32KM最大(额定)负载为4MVA每单位长度正序电抗(ω/km) 0.4L305:额定电压35KV长21公里;最大(额定)负载为4MVA每单位长度正序电抗(ω/km) 0.4L306:额定电压35KV长度25公里;最大(额定)负载为13.2MVA每单位长度正序电抗(ω/km) 0.4二、设计的主要要求1.根据本变电站主变压器的类型和容量,配置主变压器的继电保护方案,计算其主保护的整定;2.配置L303和L304线路的继电保护方案,并进行相应的整定计算。

110KV变电站电气主接线设计(课程设计)

110KV变电站电气主接线设计(课程设计)

110KV变电站电气主接线设计摘要本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。

该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。

110KV电压等级采用双母线接线,35KV和10KV电压等级都采用单母线分段接线。

本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、熔断器等)、各电压等级配电装置设计以及防雷保护的配置。

关键词:降压变电站;电气主接线;变压器;设备选型;无功补偿Abstract目录1.电气主接线设计1.1 110KV变电站的技术背景 (3)1.2 主接线的设计原则 (3)1.3主接线设计的基本要求 (3)1.4高压配电装置的接线方式 (4)1.5主接线的选择与设计 (8)1.6主变压器型式的选择 (9)2.短路电流计算2.1 短路电流计算的概述 (11)2.2短路计算的一般规定…………………………………………………………………………112.3短路计算的方法………………………………………………………………………………122.4短路电流计算…………………………………………………………………………………123.电气设备选择与校验3.1电气设备选择的一般条件……………………………………………………………………153.2高压断路器的选型……………………………………………………………………………163.3高压隔离开关的选型…………………………………………………………………………173.4互感器的选择…………………………………………………………………………………173.5短路稳定校验…………………………………………………………………………………183.6高压熔断器的选择……………………………………………………………………………184.屋内外配电装置设计4.1设计原则………………………………………………………………………………………194.2设计的基本要求………………………………………………………………………………204.3布置及安装设计的具体要求…………………………………………………………………204.4配电装置选择…………………………………………………………………………………215.变电站防雷与接地设计5.1雷电过电压的形成与危害……………………………………………………………………225.2电气设备的防雷保护…………………………………………………………………………225.3避雷针的配置原则……………………………………………………………………………235.4避雷器的配置原则……………………………………………………………………………235.5避雷针、避雷线保护范围计算 (23)5.6变电所接地装置………………………………………………………………………………246.无功补偿设计6.1无功补偿的概念及重要性……………………………………………………………………246.2无功补偿的原则与基本要求…………………………………………………………………247.变电所总体布置7.1总体规划………………………………………………………………………………………267.2总平面布置……………………………………………………………………………………26结束语 (27)参考文献 (27)1.电气主接线设计1.1 110KV变电站的技术背景近年来,我国的电力工业在持续迅速的发展,而电力工业是我国国民经济的一个重要组成部分,其使命包括发电、输电及向用户的配电的全部过程。

110kv变电站继电保护设计

110kv变电站继电保护设计

110kv变电站继电保护设计
设计110kV变电站的继电保护系统包括以下几个方面:
1. 主保护:主要保护变电站的主设备,如110kV断路器、变压器等。

常见的主保护设备有差动保护、零序保护、过流保护等。

差动保护能够检测设备内部故障,零序保护用于检测成组设备的故障,过流保护用于检测设备的过载和短路故障。

2. 辅助保护:用于检测辅助设备如电源、电源变压器、电源电缆等的故障。

常见的辅助保护设备有电源差动保护、电池保护等。

3. 母线保护:用于保护母线和母线附件,如母线差动保护、过电流保护等。

4. 过电压保护:用于对变电站的过电压进行保护,常见的设备有绝缘监测装置、避雷器等。

5. 母联保护:用于保护变电站的母联断路器和其附件,常见的保护设备有过流保护、差动保护等。

6. 通信保护:用于传输保护信号和故障信息,常见的通信保护设备有光纤通信系统、无线通信系统等。

以上只是110kV变电站继电保护系统中的一部分,根据具体的变电站情况和需
求,还可以加入其他的保护设备和措施,以确保变电站的安全运行。

设计时需要考虑设备的选择、参数的设置、通信方式的选择等因素,并根据实际情况进行工程化设计和调试。

110Kv变电所母线保护

110Kv变电所母线保护

母线是电力系统变电站最重要的设备之一。

母线保护是保障母线安全和可靠运行的保护设备. 获取保护性能和可靠性更高的母线保护是变电所继电保护所要达到的目的。

母线保护由过去的固定连接式母线完全差动保护、电流相位比较式母线差动保护,发展到现在的中阻抗比率制动母线差动保护和微机母线差动保护,在类保护中,经多年的经验总结,分相电流差动原理构成的比率制动式母差保护效果最佳。

随着我国电网电压等级的提高,新型传感器的应用以及IEC-61850标准(变电站通信网络与系统)的推行,母线保护技术也必将提高到一个新的水平,中阻抗比率制动母线差动保护和集中式微机母线差动保护以其良好的性能在目前的市场占据主导地位,分布式微机母线保护将是未来的主要发展方向。

1.1 母线保护的重要性变电所的母线是电力系统的重要组成部分,是汇集和分配电能的枢纽。

母线保护是保证电网安全、稳定运行的重要系统设备,它的安全性、可靠性、灵敏性和快速性对保证整个区域电网的安全具有决定性的意义。

随着电网微机保护技术的普及和微机型母差保护的不断完善,以中阻抗比率差动保护为代表的传统型母差保护的局限性逐渐体现出来。

尤其是随着变电站自动化程度的提高,各种设备的信息需上传到监控系统中进行远方监控,使传统型的母差保护无法满足现代变电站运行维护的需要。

母线故障大部分是由于绝缘子对地放电引起,母线故障开始阶段很多表现为单相接地故障,而随着短路电弧的移动,故障往往发展为两相或三相接地短路。

绝缘子污秽老化、电流互感器损坏或爆炸、运行人员误操作是造成母线故障主要原因。

虽然母线发生故障的几率很低,但母线故障的后果十分严重,它将使连接在故障母线上所有元件在母线故障修复期间或切换到另一组母线所必需的时间内被停电,尤其发生母线多相短路而不能瞬间切除时,可能破坏整个电力系统的并列运行稳定性。

1.2 母线保护的装设原则由于母线在电力系统中的地位和母线发生故障造成的后果的严重性及其母线保护在电力系统中的重要性,因此必需装设相应的保护庄主,以便快速、有选择性地切除故障母线。

(完整版)110KV变电站设计

(完整版)110KV变电站设计

110KV变电站设计学院:专业:年级: 指导老师:学生姓名:日期:摘要:本文主要进行110KV变电站设计。

首先根据任务书上所给系统及线路和所有负荷的参数,通过对所建变电站及出线的考虑和对负荷资料分析,满足安全性、经济性及可靠性的要求确定了110KV、35KV、10KV侧主接线的形式,然后又通过负荷计算及供电范围确定了主变压器台数、容量、及型号,从而得出各元件的参数,进行等值网络化简,然后选择短路点进行短路计算,根据短路电流计算结果及最大持续工作电流,选择并校验电气设备,包括母线、断路器、隔离开关、电压互感器、电流互感器等,并确定配电装置。

根据负荷及短路计算为线路、变压器、母线配置继电保护并进行整定计算。

本文同时对防雷接地及补偿装置进行了简单的分析,最后进行了电气主接线图及110KV配电装置间隔断面图的绘制。

关键词:变电站设计,变压器,电气主接线,设备选择Abstract:This paper mainly carries on the design of 110KV substation. According to the mandate given by the system and the load line and all parameters of the substation and line consideration and the data of load analysis, meet the safety, economy and reliability requirements of 110KV, 35KV, 10KV side of the main connection form is determined, and then through the load calculation and determine the scope of supply the number, size, and type of the main transformer, thus obtains the parameters of each element, the equivalent network simplification, and then select the short circuit short circuit calculation, the calculation results and the maximum continuous working current according to short-circuit current, selection and calibration of electrical equipment, including bus, circuit breaker, isolating switch, voltage transformer, current transformer etc., and determine the distribution device. According to the load and short circuit calculation for the line, transformer, bus configuration of relay protection and setting calculation. At the same time, this paper makes a simple analysis of lightning protection and grounding and compensation device, and finally carries out the electrical main wiring diagram and the 110KV distribution unit interval section drawing.Key words: substation design, transformer, electrical main wiring, equipment selection目录1 引言 (1)1.1 变电站的作用 (1)1.2 我国变电站及其设计的发展趋势 (2)1.3 变电站设计的主要原则和分类 (5)1.4 选题目的及意义 (6)1.5 设计思路及工作方法 (6)1.6 设计任务完成的阶段内容及时间安排 (7)2 任务书 (7)2.1 原始资料 (7)2.2 设计内容及要求 (10)3 电气主接线设计 (11)3.1 电气主接线设计概述 (11)3.2 电气主接线的基本形式 (14)3.3 电气主接线选择 (14)4 变电站主变压器选择 (18)4.1 主变压器的选择 (19)4.2 主变压器选择结果 (21)5 短路电流计算 (22)5.1 短路的危害 (22)5.2 短路电流计算的目的 (22)5.3 短路电流计算方法 (22)5.4 短路电流计算 (23)5.4.1 110kv侧母线短路计算 (25)5.4.2 35kv侧母线短路计算 (27)5.4.3 10kv侧母线短路计算 (28)6 电气设备的选择 (31)6.1 导体的选择和校验 (31)6.1.1 110kv母线选择及校验 (32)6.1.2 35kv母线选择及校验 (33)6.1.3 10kv母线选择及校验 (34)6.2 断路器和隔离开关的选择及校验 (35)6.2.1 110kv侧断路器及隔离开关的选择及校验 (36)6.2.2 35kv侧断路器及隔离开关的选择及校验 (38)6.2.3 10kv侧断路器及隔离开关的选择及校验 (40)6.3 电压互感器和电流互感器的选择 (42)6.3.1 电流互感器的选择 (42)6.3.2 电压互感器的选择 (44)7 继电保护的配置 (46)7.1 继电保护的基本知识 (46)7.2 110kv线路的继电保护配置及整定计算 (53)7.2.1 110kV线路继电保护配置 (53)7.2.2 110kV线路继电保护整定计算 (53)7.3 变压器的继电保护及整定计算 (58)7.3.1 变压器的继电保护 (58)7.3.2变压器的继电保护整定计算 (59)7.4 母线保护 (61)7.5 备自投和自动重合闸的设置 (63)7.5.1 备用电源自动投入装置的含义和作用 (63)7.5.2 自动重合闸装置 (63)8 防雷与接地方案的设计 (64)防雷概述 (64)1.1雷电的成因及危害 (64)1.2直击雷的成因及危害 (64)1.3感应雷的成因及危害 (64)防雷设计原则 (65)8.1 防雷保护 (65)8.2 接地装置的设计 (66)9 配电装置 (67)9.1 配电装置概述 (67)9.2 配电装置类型 (68)9.3 对配电装置的基本要求和设计步骤 (68)9.4 屋内配电装置 (69)9.5 屋外配电装置 (69)10 结束语 (70)参考文献 (72)致谢 (73)附录 (74)附录一电气主接线图 (74)附录二110KV屋外普通中型单母线分段接线的进出线间隔断面图 (75)1 引言1.1 变电站的作用一、变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。

110KV变电站设计论文

110KV变电站设计论文

1变电所概况一、系统至110kV母线的短路容量1000MVA。

最大负荷利用小时数为5000h/年,变电所10kV出线保护最长动作时间为1.0s。

110kV架空线路两回路供电,型号LGJ185,长度为25KM,;10kV侧16回出线,功率因数为0.85:1# 、2# :负荷为900kW,长度为3KM3# 、4# :负荷为1000kW,长度为1.5KM5# 、6# :负荷为6000kW,长度为2.5KM7# 、8# :负荷为1800 kW,长度为2KM9# 、10#:负荷为600 kW,长度为5KM11# 、12#:负荷为1000 kW,长度为4.5KM13# 、14#:负荷为950kW,长度为3KM15# 、16# 负荷为1600kW,长度为1.5KM。

其中1、3、5、7、9、11、13、15出线的一、二负荷约占各自总负荷40%,其余约为各自总负荷的10%左右,负荷同时率为0.9。

设计中应考虑保证扩建时,不中断原有负荷的供电,扩建后应保证功率因素为0.9,该变电所海拔高度为1000kM,历史最高温度为35摄氏度,最低温度为-7摄氏度。

最高月平均温度为27摄氏度。

该所附近地势平坦,交通便利,可不考虑环境污染影响。

2 负荷计算负荷计算直接影响着变压器的选择,计算负荷是根据变电所所带负荷的容量确定的,这个负荷是设计时作为选择变电所电力系统供电线路的导线截面,母线的选择,变压器容量,断路器,隔离开关,互感器额定参数的依据。

计算方法:根据原始材料给定的有功功率P 、功率因素cos ϕ,求出无功功率。

tan Q P ϕ=⨯,P ∑=1P +2P +3P +……+n P , Q ∑=1Q +2Q +3Q +……+nQ 根据原始资料:cos 0.85ϕ=,则tan tan(arccos0.85)0.62ϕ==,由公式可计算出 21121=900,tan 9000.62558var P KW k P Q Q P ϕ===⨯=⨯=343431000,tan 10000.62620var P P KW Q Q P k ϕ====⨯=⨯=565656000,tan 60000.623720var P P KW Q Q P k ϕ====⨯=⨯=787871800,tan 18000.621116var P P KW Q Q P k ϕ====⨯=⨯=9109109600,tan 6000.62372var P P KW Q Q P k ϕ====⨯=⨯=11121112111000,tan 10000.62620var P P KW Q Q P k ϕ====⨯=⨯=1314131413950,tan 9500.62589var P P KW Q Q P k ϕ====⨯=⨯=1516`1516151600,tan 16000.62992var P P KW Q Q P k ϕ====⨯=⨯=综上:16i 1=60100iP P KW =∑=∑ 16i 1=37262k var i Q Q =∑=∑3 变压器选择由于明备用投资较大,所以选择暗备用即两台变压器同时投入运行,正常情况下每台变压器各承担负荷的50%,此时,变压器的容量应按变压器最大负荷的70%选择。

110kv变电站电气一次部分及主变差动保护配置设计

110kv变电站电气一次部分及主变差动保护配置设计

110kv变电站电气一次部分及主变差动保护
配置设计
110千伏变电站是电力系统的重要组成部分,其电气一次部分的配置设计以及主变差动保护方案对于保障电力系统的稳定运行至关重要。

首先,110千伏变电站电气一次部分应包括主要设备如高压进线柜、高压母线、断路器、隔离开关、电容器、电流互感器、电压互感器等。

其中,高压进线柜是用于接收输电线路带来的电能,将其通过高压母
线供应给各个用电设备。

断路器负责切断故障电路,隔离开关用于进
行设备的检修和维护。

电容器的作用是对电力负载进行补偿,提高系
统功率因数。

电流互感器和电压互感器则用于测量电力系统中的电流
和电压。

其次,主变差动保护是保护主变压器的重要手段。

差动保护主要
措施是测量变压器两侧电流的差值,若存在差异则说明系统中存在故障,保护装置将立即切断故障电路。

差动保护的可靠性、速度和灵敏
度是电力系统保障稳定运行的关键指标,在实际设计过程中,需要根
据变电站的实际情况确定变压器的额定电流和差动保护的动作性能参数。

此外,为保障电力系统的安全运行,110千伏变电站电气一次部分和主变差动保护的设计也需要考虑电力系统的可靠性、灵活性和可维
护性等要素。

在实际工程中,应根据变电站的实际情况,合理选择设
备规格,并进行对应的系统配置。

总之,110千伏变电站电气一次部分及主变差动保护是保障电力系统稳定运行的重要组成部分。

在设计过程中,需要充分考虑电力系统的实际情况,根据不同情况做出对应的设计方案,以确保设备的可靠性和安全性。

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计

浅谈110kV变电站电气设计【摘要】110kV变电站电气设计在现代电力系统中起着至关重要的作用。

本文从引言、正文和结论三个部分对其进行了全面探讨。

在引言中,阐述了110kV变电站电气设计的重要性和发展现状,为后续内容打下基础。

接着在详细介绍了110kV变电站电气设计的基本原则、关键技术、安全考虑、节能环保措施以及智能化应用,为读者深入理解该领域提供了丰富的知识和信息。

最后在结论中,展望了110kV变电站电气设计的未来发展方向,并总结了其重要性。

通过本文的阐述,读者可以更全面地了解110kV变电站电气设计在电力领域中的重要性和发展趋势,为相关领域的研究和实践提供了有益的参考。

【关键词】110kV变电站、电气设计、基本原则、关键技术、安全考虑、节能环保、智能化应用、未来发展方向、重要性、现状、总结1. 引言1.1 110kV变电站电气设计的重要性110kV变电站电气设计是电力系统中至关重要的一环,其重要性体现在多个方面。

110kV变电站是连接输电网和配电网的重要纽带,承担着电能传输和转换的关键任务。

而电气设计则是变电站建设和运行的基础,直接影响着电力系统的安全、稳定和可靠运行。

110kV变电站的电气设计涉及到大量设备和系统的选择、配置和布置,需要充分考虑功率传输、设备保护、系统协调等多方面因素,以确保电力系统的正常运行。

随着电力系统的不断发展和变革,110kV变电站电气设计也日益受到重视,不断涌现出新的技术和理念,为电力系统的安全、经济和可持续发展提供了重要支撑。

深入理解110kV变电站电气设计的重要性,对于提高电力系统的运行效率、保障电力供应质量具有重要意义。

1.2 110kV变电站电气设计的发展现状110kV变电站电气设计是电力系统中至关重要的一个环节,随着电力行业的发展和技术的进步,110kV变电站电气设计也在不断发展和完善。

目前,随着电力系统的规模不断扩大和质量要求的提高,110kV变电站电气设计也在不断创新和改进。

110KV变电站继电保护课程设计

110KV变电站继电保护课程设计

题目 110KV A站变电站保护初步设计一、设计资料1.110KV系统电气主接线110KV系统电气主接线如下图所示2.系统各元件主要参数:(1)发电机参数机组容量(MVA)额定电压(KV)额定功率因数X%#1、#2 2×15 10.5 0.8 13.33 (2)输电线路参数AS2 AB AC BS1 LGJ-185/15 LGJ-240/25 LGJ-185/18 LGJ-240/28 ф=670ф=710ф=670ф=710(3)变压器参数序号1B、2B 3B、4B 5B、6B型号SF-15000/110 SF-20000/110 SF-15000/110接线组别Y0/△-11 Y/△-11 Y/△-11目录前言 (1)摘要 (4)1 概述 (5)2系统运行方式 (5)2.1运行方式的选择 (5)2.2变压器中性点接地选择 (6)3故障点选择与序网络制定 (6)4 变电站保护的配置 (8)4.1 线路保护的配置 (8)4.2 母线保护的配置 (8)4.3变压器保护的配置 (9)5 主要保护的综合评价 (10)5.1 变压器保护的综合评价 (10)5.2线路保护的综合评价 (10)5.3母线保护综合评价 (11)结束语 (12)参考文献 (13)附录一系统参数 (14)附录二线路保护整定计算与校验 (16)附录三变压器保护整定计算和校验 (18)附录四变电站保护配置图摘要本设计围绕110KV变电站的继电保护,根据设计原始资料提供的变电站的一次系统图和相关规程,进行短路电流的计算,对变压器、母线、线路配置保护,主要保护整定计算与校验。

通过计算和比较,按照继电保护选择性、速动性、可靠性、灵敏性,确定了变电站电气设备、母线、线路保护的初步设计方案和配置,并对主要保护进行了综合评价。

最后绘出变电站的保护配置图。

【关键词】整定计算、零序电流保护、差动保护1 概述继电保护装置是能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

110KV变电站主变继电保护原理设计图纸

110KV变电站主变继电保护原理设计图纸
图 号公司制 图日 期共 校 核设 计批 准标准化审 核第 比 例页 72页设计阶段监控保护原理接线图2ZC015-187-1P03.2技术110KV主变压器保护原理接线图5页页 公司日 期共 设 计校 核制 图7第 比 例审 核标准化批 准5图 号110KV主变压器ZC015-187-1P03.5技术阶段设计本体重瓦斯跳闸本体重瓦斯信号有载轻瓦斯信号温度过高信号冷却器故障图 号标准化校 核共 日 期7页 3第 比 例页公司设 计制 图批 准审 核ZC015-187-1P03.3监控保护原理接线图3110KV主变压器阶段设计技术非 电 量 保 护 FTJB1TBJHYJHWJ1,2FTJB12B10TBJ1371TQTWJ1,2U5(CZ25-B)K810112HBJTBJFTJ+KMB9HBJ1071HQ102K834主变 高 压 侧 1DL 控 制 回 路就地手分就地手合遥控跳闸自动开关遥控合闸-KM控制小母线B5B3TYJB4B2KKJRSHYJ TYJB7B6B81064593141YTJYHJ1031331DL1391DL1091KK合闸压力跳闸压力气压不足U5(CZ25-C)HYJC1C7C8C6241C5TBJTYJC2C4201K921+KMC3HBJFTJC12TYJHYJ 237HWJ1,2TBJC10RSKKJ2DL2TQ239207FTJHBJFTJTBJTWJ1,2C92022DL2092HQK943-KM直接零序过流复压过流高 压 侧 后 备 保 护电源GG27LPGGGGU3(SEL-351A)中 压 侧 后 备 保 护本体轻瓦斯信号有载重瓦斯跳闸有载重瓦斯信号压力释放信号压力释放跳闸手动复归电 流 回 路N4919LHcC491Z21Z23Z19Z22Z24Z20U1(SEL-387)Z17Z18A411Z01Z02A4919LHbB4919LH

110kV变电站保护配置

110kV变电站保护配置

110kV变电站保护配置
引起保护装置误动作的工作,应采取有效防范措施。 5)在继电保护工作完毕时,运维人员应认真检查验 收,如拆动的接线、元件、标志等是否恢复正常,压板位 置、设备工作记录所写内容是否清楚等。所有保护装置交 流回路工作后,继电保护人员应检查回路正确,并检查相
110kV变电站保护配置
8.变电站运维人员进行倒闸操作注意事项: 1)母联(分段)的充电保护压板,仅在给母线充电 时投入,充电完毕后退出; 2)线路及备用设备充电运行时,应将重合闸和备用 电源自动投入装置临时退出运行;
3)备用电源自投装置必须在所属主设备投运后投入
运行,在所属主设备停运前退出运行; 4)在保护装置及二次回路上工作前,运维人员必须 严格审查继电保护工作人员的工作票,更改整定值和变更 接线一定要有批准的定值通知单,才能允许工作。凡可能
波装置,故障录波装置启动时,应汇报调度,由调度决
定是否上报。
110kV变电站保护配置
9.录波装置不能自动关机或装置死机,应向调度申请 将装置退出,再将装置电源开关分合一次,看装置能否恢
复。若不能恢复,应通知专业人员来检修。
110kV变电站保护配置
五、继电保护与自动装置的一般规定 1.继电保护及自动装置(以下简称保护装置)的投入和
110kV变电站保护配置
受热分解而产生大大量的气体,还可能引起变压器油箱的 爆炸。 变压器的引出线故障,主要是引出线上绝缘套管的故 障,这种故障可能导致引出线的相间或接地短路。 1)主变差动保护
作为主变压器线圈匝间短路及保护范围内相间短路和
单相接地短路的主保护。正常保护范围为主变三侧差动CT 之间。 2)主变后备保护 主变常见的后备保护有复合电压闭锁过流保护、零序
110kV变电站保护配置

110KV变电站保护配置介绍课件

110KV变电站保护配置介绍课件
1) 左侧9653b的分段自投方式充电完成,当1母失压,备自投动作切1DL且 合3DL成功以后,如果整定值CKJFZT1=1就给出一个开出到右侧9653b的备自投 合分段且成功开入,此时如果右侧9653b的均分方式1投入且充电完成,则会断开 4DL且合上6DL。使得负荷能够均匀分配在2#与3#变压器。
1.2.3低后备保护
以南瑞继保的RCS-9682为例,主要包括: 1)四段复合电压闭锁过流保护(Ⅰ段、Ⅱ段、Ⅲ段可带方向, Ⅳ段不带方向); 2)保护出口采用跳闸矩阵方式,可灵活整定; 3)过负荷发信号; 4﹚零序过压报警; 5)故障录波。
**PT断线(略) **跳闸逻辑矩阵(略)
1.2.4接地变(或站用变)保护
2)右侧9653b的分段自投方式充电完成,当4母失压,备自投动作切5DL且 合6DL成功以后,如果整定值CKJFZT2=1就给出一个开出到左侧9653b的备自投 合分段且成功开入,此时如果左侧9653b的均分方式2投入且充电完成,则会断开 2DL且合上3DL。使得负荷能够均匀分配在1#与2#变压器。
CSC-160系列不同型号功能配置表
2.2保护功能及整定
以北京四方的CSC-161A为例,主要包括:
1)距离保护:大电流接地系统距离保护包括三段式相间距离和三段式接地距离,小
电流接地系统距离保护包括三段式相间距离。距离保护各段的投退均受距离压板控 制。
*距离保护的出口选择: 根据系统的需求,可以选择“相间故障永跳”和“III段及以上故障永跳”,
**跳闸逻辑矩阵
各保护跳闸方式采用整定方式, 即哪个保护动作, 跳何开关可以按需自由整定。 RCS9681共有三组出口跳闸继电器:出口1(CK1)、出口2(CK2)、出口3 (CK3)。原则上,出口跳闸继电器2用于跳开主变各侧开关。出口跳闸继电器1、 3可由用户选择去跳何种开关。

110kV智能变电站备自投保护用母线电压的分析

110kV智能变电站备自投保护用母线电压的分析

110 kV智能变电站备自投保护用母线电压的分析发布时间:2022-10-24T05:37:36.405Z 来源:《当代电力文化》2022年6月12期作者:陈宇[导读] 110 kV智能变电站需要有备用电源作为自投装置,从而检测和维修变电站故障,在110 kV智能变电站的备自投保护断开之后,可以及时地进行反应,自动应用备用电源,陈宇广东电网有限责任公司广州供电局变电管理二所广东广州510000摘要:110 kV智能变电站需要有备用电源作为自投装置,从而检测和维修变电站故障,在110 kV智能变电站的备自投保护断开之后,可以及时地进行反应,自动应用备用电源,保证110 kV智能变电站的正常工作,同时也需要有备自投保护用母线的电源投入工作,才可以在进行智能化管理。

在此过程中,双母线接线有较强的特殊性,110 kV智能变电站的备自投保护用母线会发生一定的改变,才可以适应灵活的接线形式,提高110 kV智能变电站的可靠性,加强电力系统的安全性和经济性。

关键词:110 kV智能变电站;备自投;保护用母线;电压分析回线和两回线路以上的多回供电线路改造,通过增加备用线路能够进一步提高可靠性,而其可以自动投入使用,这样的装置便是备自投。

近年来,我国110 kV智能变电站经常会出现一些事故问题,很大程度上也会影响用户的用电质量。

电力企业应当探索更加高效的备自投保护方法,完善变电站的架构,减轻110 kV变电站运行负荷,降低变电站发生故障断电的可能性,才可以保证110 kV智能变电站的稳定运行。

在此过程中,如果母线故障被母线保护切除,备自投就可以动作于合闸,使变电站的断路器合闸于故障。

一、110 kV智能变电站备自投保护用母线概述及优势1.110 kV智能变电站备自投保护用母线基本原理备自投设备是备用电源在主电源被断电之后,立即取代主电源的功用,自动的投入使用的一个电力能源装置,一般包括分段备自投、主变备自投及线路备自投。

(完整word版)110KV变电站继电保护设计

(完整word版)110KV变电站继电保护设计

第一章综述第一节继电保护的发展简史继电保护技术是随着电力系统的发展而发展起来的。

继电保护原理经历一系列的发展,从开始的单一过电流保护到现在的差动保护、距离保护、高频保护、微机保护、行波保护以及现在研究的光纤保护.继电保护装置也经历了三代,即电磁型继电保护,晶体管型继电保护和微机型继电保护(简称微机保护)。

与过去的保护装置相比,微机保护具有巨大的计算、分析和逻辑判断能力,有存储记忆功能,可以实现任何性能完善且复杂的原理。

微机保护可连续不断地对本身地工作情况进行自检,其工作可靠性高。

此外,微机保护可用同一硬件实现不同地保护原理,这使保护装置的制造大为简化,也容易实行保护装置的标准化。

微机保护除了保护功能外,还可兼有故障滤波、故障测距、事件顺序记录、和调度计算机交换信息等辅助功能,这对简化保护的调试、事故分析和事故处理等都有重大的意义。

由于微机保护装置的巨大优越性和潜力,因而受到了运行人员的欢迎,进入90年代以来,在我国得到了大量应用,将成为继电保护装置的主要型式。

可以说微机保护代表着电力系统继电保护的未来,将成为未来电力系统保护、控制、运行调度及事故处理的统一计算机系统的组成部分。

第二节继电保护的作用继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

它的基本任务是:一、自动,迅速,有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行;二、反应电气元件地不正常运行状态,并根据运行维护地条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。

此时一般不要求动作,而是根据对电力系统及元件地危害程度规定一定地延时,以免不必要的动作和由于干扰而引起的误动作。

第三节继电保护的基本要求即在电力系统的电气元件发生故障或不正常运行时,保护动作必须具有选择性、速动性、灵敏性和可靠性。

一、选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统无故障部分仍能继续安全运行。

关于变电站110kV母线保护设计

关于变电站110kV母线保护设计

关于变电站110kV母线保护设计作者:谢德艺来源:《城市建设理论研究》2013年第04期摘要:继电保护及自动装置是电力系统的重要组成部分,对保证电力系统的安全经济运行,防止事故发生和扩大起到关键性的决定作用。

而母线作为电力系统中最重要的元件之一 ,对母线保护装置的安全性及可靠性要求极高。

关键词:变电站;110kV母线;继电保护装置中图分类号:TM411+.4文献标识码:A文章编号:1.电力系统常见故障及产生后果电力系统的所有一次设备在运行过程中由于各种因素的影响可能会发生短路、断线等故障,最常见也是最危险的故障时各种类型的短路。

有三相短路、两相短路、两相接地短路、不同地点的两点接地短路、单项接地短路以及电机和变压器的匝间短路。

在中性点直接接地系统中,一相对地短路故障最为常见,据统计约占故障总数的90%左右。

在中性点不接地或经消弧线圈接地的系统中,单相接地并不构成大电流的短路环路。

母线故障如未装设专用的母线保护,需靠相邻元件的保护作为后备,将延长故障切除时间,利用母线保护清除和缩小故障造成的后果,是十分必要的。

由于母线保护涉及开关较多,误动作后果特别严重,所以要求它比其他保护具有更高的安全性。

2.母线保护2.1母线差动保护1、起动元件母线差动保护的起动元件由‘和电流突变量’和‘差电流越限’两个判据组成。

‘和电流’是指母线上所有连接元件电流的绝对值之和;‘差电流’是指所有连接元件电流的绝对值,Ij为母线上第j个连接元件的电流。

(1)和电流突变量判据,当任一相的和电流突变量大于突变量门坎时,该相起动元件动作。

其表达式为:(2)差电流越限判据,当任一相得差电流大于差电流门坎定值时,该相起动元件动作。

其表达式为:(3)起动元件返回判据,起动元件一旦动作后自动展宽40ms,再根据起动元件返回判据决定该元件何时返回。

当任一相差电流小于差电流门坎定值的75%时,该相起动元件返回。

其表达式为:2、差动元件母线保护差动元件由分相复式比率差动判据和分相突变量复式比率差动判据构成。

110kV单母线变电站PT检修线路保护分析

110kV单母线变电站PT检修线路保护分析

110kV单母线变电站PT检修线路保护分析摘要实际在对110kV的单母线变电站进行PT检修时,由于线路中往往设置了距离保护,因此在检修时往往需要将该保护退出。

此次针对不同继电保护装置是否设计PT断线过流保护功能,以及不同的运作方案进行分析,并对PT断线过流中距离保护的不同设计档案进行阐述,并最终形成一有效方案。

希望可以为相关单位提供参考借鉴。

关键词110kV线路;变电站;PT断线对于双母线以及双PT的变电站在进行PT检修时,往往可以基于PT并列屏从而将当前在工作的PT电压与欠压线路进行连接,从而起到很好的保护效果。

而实际当前相当一部分110kV变电站通常采用一段母线一组PT 的形式。

因此,基于这样的线路连接方式,当线路PT退出后,整个110kV线路势必失压,相关的距离保护无法正常运行。

此次笔者就不同情况线路保护运行方案进行分析[1]。

1 RCS保护系列、LFP保护系列以及四方CSC保护系列包括RCS保护系列、LFP保护系列以及四方CSC保护系列等继电保护装置,均或多或少具备了PT断线过流的相关保护设计,且此类功能均与距离保护的设备有关,受相关控制压板的限制。

以RCS-941继电保护装置为例,实际三相电压的向量相加和高于8v,此时保护不做相应,待延时所整定的1.25s后,设备发出PT断线异常告警;而当正序电压低于33v时,其中任何一相有流元件动作以及跳闸继电器拒动时,待延时所整定的1.25s后,设备发出PT断线告警。

当PT 断线信号动作的期间,退出距离保护,并自动投入两段PT断线相过流保护。

待三相电压恢复后,经过10s整定延时,信号复位,实际PT断线相过流保护受到相关保护压板的控制。

而当上述三个系列保护,PT退出后,有以下几种可供选择方案:其一,在对PT线路进行检修过程中,使整个线路处于停电状态。

这是最为安全的办法,但是对于大部门供电局而言,在当前的电网结构下,该方案实施存在一定难度;其二,当PT进行检修前将距离保护退出。

分析110kV变电站母线保护配置

分析110kV变电站母线保护配置

分析110kV变电站母线保护配置摘要:本文主要为分析100kV变电站母线保护装置自身实际作用和功能,精细化分析变电所主接线方式,明晰变电站母线保护配置原理和特征,对确保变电站可靠、安全运行十分关键。

关键词:110kV变电站;母线保护;配置母线保护始终是变电站母线发生故障的有效防护,处于母线工作运行范围内产生故障动作,可及时跳开母联断路器,及时中断和切除该母线上全部衔接的元件。

但实践中110kV变电站母线保护并未具有统一的标准,相关规范中描述较为灵活,促使母线保护配置更自由,应积极对其展开分析,做好母线保护合理化配置,为后续实践提供参考。

一、110kV变电站主接线方式优劣分析现下部分110kV变电站实际确定主接线方式时,综合性考量供电可靠性、经济性等因素,选取不同的主接线方式,其中多数选取内桥、单母线分段接线,还存在少量的线便组接线,各类接线均具备自身特有的优缺点,体现在以下几方面:(1)内桥接线。

此类接线方式优势在于设备较少,接线明晰简易,引出线切除和投入较为便捷,实际应用灵活度较佳,可选用备用电源自投装置。

不足在于变压器检修或发生故障状况下,应将其中一路电源和桥断路器,且需将变压器两侧隔离开关拉开,按照实际需求投入线路断路器,整个操作程序较多,继电保护装置复杂。

(2)单母分段接线。

该接线方式最佳的优势是接线明晰简易,设备较少,操作较为便捷,有助于扩建和选用成套配电装置。

实际应用中不足在于缺乏可靠性、灵活性,任意元件故障或检修,均可促使整个配电装置停电。

单母线可利用隔开开关分段,但一段母线均发生故障时,需进行短暂性停电,利用隔离开关将故障母线段分开后方可保证并未发生故障区域内正常供电。

(3)线变组接线。

此种方式优势在于体积较小、可靠性较高、安全性能优良,维护较为便捷、检修周期较长等优点。

选用此类接线方式为设备价格高昂,多处于环境条件不佳等变电站内应用。

二、110kV变电站母线保护配置基本原则分析母差保护主要保护变电站母线,其自身作用是电流汇集和配置,母线处于变电站内发挥的作用十分凸显,其整体结构较为简易,多布设于变电站内部,受内部因素干扰较为凸显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于变电站110kV母线保护设计
摘要:继电保护及自动装置是电力系统的重要组成部分,对保证电力系统的安全经济运行,防止事故发生和扩大起到关键性的决定作用。

而母线作为电力系统中最重要的元件之一 ,对母线保护装置的安全性及可靠性要求极高。

关键词:变电站;110kv母线;继电保护装置
中图分类号:tm411+.4文献标识码:a文章编号:
1.电力系统常见故障及产生后果
电力系统的所有一次设备在运行过程中由于各种因素的影响可能会发生短路、断线等故障,最常见也是最危险的故障时各种类型的短路。

有三相短路、两相短路、两相接地短路、不同地点的两点接地短路、单项接地短路以及电机和变压器的匝间短路。

在中性点直接接地系统中,一相对地短路故障最为常见,据统计约占故障总数的90%左右。

在中性点不接地或经消弧线圈接地的系统中,单相接地并不构成大电流的短路环路。

母线故障如未装设专用的母线保护,需靠相邻元件的保护作为后备,将延长故障切除时间,利用母线保护清除和缩小故障造成的后果,是十分必要的。

由于母线保护涉及开关较多,误动作后果特别严重,所以要求它比其他保护具有更高的安全性。

2.母线保护
2.1母线差动保护
1、起动元件
母线差动保护的起动元件由‘和电流突变量’和‘差电流越限’两个判据组成。

‘和电流’是指母线上所有连接元件电流的绝对值之和;‘差电流’是指所有连接元件电流的绝对值,ij为母线上第j个连接元件的电流。

(1)和电流突变量判据,当任一相的和电流突变量大于突变量门坎时,该相起动元件动作。

其表达式为:
(2)差电流越限判据,当任一相得差电流大于差电流门坎定值时,该相起动元件动作。

其表达式为:
(3)起动元件返回判据,起动元件一旦动作后自动展宽40ms,再根据起动元件返回判据决定该元件何时返回。

当任一相差电流小于差电流门坎定值的75%时,该相起动元件返回。

其表达式为:2、差动元件
母线保护差动元件由分相复式比率差动判据和分相突变量复式比率差动判据构成。

(1)复式比率差动判据,动作表达式为:
复式比率差动判据相对于传统的比率制动判据,由于在制动量的计算中引入了差电流,使其在母线区外故障时有极强的制动特性,在母线区内故障时无制动,因此能更明确区分区外故障和区内故障,下图2.2为复式比率差动元件的动作特性。

图2.2 复式比率差动元件的动作特性
(2)故障分量复式比率差动判据
根据叠加原理,故障分量电流有以下特点:a.母线内部故障时,母线各支路同名相故障分量电流在相位上接近相等;b.理论上,只要故障点过渡电阻不是,母线内部故障时故障分量电流的相位关系不会改变。

为有效减少负荷电流对差动保护灵敏度的影响,为进一步减少故障前系统电源功角关系对保护动作特性的影响,提高保护切除经过渡电阻接地故障的能力,本装置采用电流故障分量相位差动构成复式比率差动判据。

故障分量的提取有多种方案,本保护采用的数字算法如下:
故障分量差电流:;故障分量和电流:
动作表达式为:
保护将母线上所有连接元件的电流采样值输入上述两个差动判据,即构成大差比率差动元件;对于分段母线,将每一段母线所连接元件的电流采样值输入上述差动判据,即构成小差比率差动元件。

各元件连接在哪一段母线上,是根据各连接元件的刀闸位置来决定的。

3、电压闭锁元件
以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。

电压闭锁元件的动作表达式为:
三个判据中的任何一个满足,该段母线的电压闭锁元件就会动
作,称为复合电压元件动作。

如母线电压正常,则闭锁元件返回。

本元件瞬时动作,动作后自动展宽40ms再返回。

差动元件动作出口,必须相应母线段的母线差动复合电压元件动作。

2.2 母联(分段)充电保护
分段母线其中一段母线停电检修后,可以通过母联(分段)开关对检修母线充电以恢复双母运行。

此时投入母联(分段)充电保护,当检修母线有故障时,跳开母联(分段)开关,切除故障。

母联(分段)充电保护的起动需同时满足三个条件:(1)母联(分段)充电保护压板投入;(2)其中一段母线已失压,且母联(分段)开关已断开;(3)母联电流从无到有。

充电保护一旦投入自动展宽200ms后推出。

充电保护投入后,当母联任一相电流大于充电电流定值,经可整定延时跳开母联开关,不经复合电压闭锁。

图2.3 充电保护逻辑框图
2.3 母联(分段)过流保护
母联(分段)过流保护可以作为母线解列保护,也可以作为线路(变压器)的临时应急保护。

母联(分段)过流保护压板投入后,当母联任一相电流大于母联过流定值,或母联零序电流大于母联零序过流定值时,经可整延时跳开母联开关,不经复合电压闭锁。

图2.4母联过流保护逻辑框图
2.4电压回路断线告警
某一段非空母线失去电压,延时9秒发tv断线告警信号。

除了该段母线的复合电压元件将一直动作外,对保护没有其他影响。

3.结论
母线保护是电能集中与分配的重要环节,它的安全运行对不间断供电具有极为重要的意义。

母线故障是发电厂和变电站中电气设备最严重的故障之一,将使连接在故障母线上的所有元件在修复故障母线期间或是转换到另一组无故障母线上运行以前被迫停电。

而且,在电力系统枢纽变电站的母线上发生故障时,有可能引起系统稳定的破坏,造成电力系统解列、大面积停电甚至崩溃,所以必须针对母线故障设置相应的保护装置。

相关文档
最新文档