随机过程孙应飞第一章习题答案1-5

合集下载

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。

(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。

解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。

(2) 同时掷三颗骰子,记录三颗骰子点数之和。

解:{}18,,4,3 =S 。

(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。

解: {}10,,4,3 =S 。

(4) 生产产品直到得到10件正品,记录生产产品的总件数。

解: {} ,11,10=S 。

(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。

解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。

(6) 甲乙二人下棋一局,观察棋赛的结果。

解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。

(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。

解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。

(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。

(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。

随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。

如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则jξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。

(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。

解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η 解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。

脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。

也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。

图题1-2画出了它的样本函数。

试求)(t ξ的一维概率密度)(x f t ξ。

解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。

中国科学大学随机过程(孙应飞)复习题及标准答案汇总

中国科学大学随机过程(孙应飞)复习题及标准答案汇总

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。

解:由定义,有:)(2)0()0()}()({2)0()0()]}()()][()({[2)]([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D(2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马尔可夫过程。

证明:我们要证明:n t t t <<<≤∀Λ210,有})()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P Λ形式上我们有:})()(,,)(,)({})()(,,)(,)(,)({})(,,)(,)({})(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤=======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P ΛΛΛΛΛ因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2,,2,1,)(-=n j t X j Λ相互独立即可。

随机过程课后习题答案

随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。

在学习随机过程的过程中,习题是不可或缺的一部分。

通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。

下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。

1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。

解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。

由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。

因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。

根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。

将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。

所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。

2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。

解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。

根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。

根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。

将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。

所以,该过程的均值为μ。

根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。

将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。

随机过程习题答案及知识点

随机过程习题答案及知识点

协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。

2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。

N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。

(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。

随机过程作业和答案第一二章

随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。

求X(t)的一维和二维分布。

解 先求一维分布。

当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。

这亦是随机过程X(t)的一维分布。

再求二维分布。

当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。

则其线性变换也服从正态分布。

且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。

P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。

X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。

随机过程课后题答案

随机过程课后题答案

《随机信号分析》复习备考题第一章概率论简介第二章随机信号概论参考答案:(1))(t X 的一个样本函数的草图(2)时间连续,状态离散,离散型随机过程。

(3)一维概率密度函数:nT t T n A x A x t x p X <<-++-=)1(),(21)(21),(δδ二维概率密度函数:[][]⎪⎩⎪⎨⎧>-<<<-++-++-<<-+++--=nTt T n t nT t T n A x A x A x A x nT t t T n A x A x A x A x t t x x p X 22122112121212121)1(,)1(,)()()()(41,,)1(),()(21)()(21),;,(或δδδδδδδδ参考答案:[][]625.3341683241181)()()(111=⨯+⨯+⨯+⨯==∑t x P t x t X E[][]625.2141283441581)()()(222=⨯+⨯+⨯+⨯==∑t x P t x t X E[]()875.7)13(41)62(83)42(41)51(81,)()(212121=⨯⨯+⨯⨯+⨯⨯+⨯⨯==∑x x P x x t X t X E )1()3(41)2()6(83)4()2(41)5()1(81),;,(212121212121--+--+--+--=x x x x x x x x t t x x p X δδδδδδδδ参考答案:Φ的概率密度为⎪⎩⎪⎨⎧≤≤=Φ其它,020,21)(πϕπϕp均值:[][]021)cos()cos()()(2000=Φ⋅Φ+=Φ+==⎰d t a t a E t X E t m X ππωω 方差:01(t)cos(t)cos(t)X a b ωω=+ 自相关函数:[][12120102011202110102011202(,)()()cos()cos()cos()cos()cos()cos()cos()cos()][cos()cos()][cos()X R t t E X t X t E a t a t a t b t a t b t E a t a t E a t b t E a t b ωωωωωωωωωωω==+Φ⋅+Φ++Φ⋅+Φ++Φ⋅+Φ=+Φ⋅+Φ++Φ⋅+Φ++Φ⋅[[][][]1010*******01020102111201022201211cos(cos()cos()][cos()cos()cos()cos(2)cos()cos(2)22cos ()cos (22E a t a t E b t b t a b E t t t t E t t t t a b t t t t ωωωωωωωωωωωωωωω≈+Φ⋅+Φ++Φ⋅+Φ=-+++Φ+-+++Φ=-+-22201)cos ()cos ()22a b ωτωτ=++第三章平稳随机过程参考答案:0)sin(cos )cos(21)(21)(000lim lim lim=Φ=Φ+==∞→-∞→-∞→⎰⎰T T A dt t A T dt t x T t x T TT T T T T ωωω)cos(2)cos()cos(21)()(020002limτωτωωωτA dt t t A T t x t x T T T =Φ++Φ+=+⎰-∞→由于A 和Φ为统计独立的随机变量,于是有[][][][]021)cos()cos()(2000=ΦΦ+⋅=Φ+⋅=⎰ππωωd t A E t E A E t X E[][][][][][])cos(21)22cos()cos(21)cos()cos()()(),(020*******τωτωωτωτωωωττA E t E A E t t E A E t X t X E t t R X =Φ+++⋅=Φ++Φ+⋅=+=+由图3.5可看出,不同样本函数的A 不同,则相应的时间平均自相关函数)()(τ+t x t x 也不同,),()()(ττ+=+t t R t x t x X 不能以概率1成立,因此该随机过程不具有各态历经性。

中国科学大学随机过程(孙应飞)复习题及答案

中国科学大学随机过程(孙应飞)复习题及答案

中国科学大学随机过程(孙应飞)复习题及答案中国科学大学随机过程(孙应飞)复习题及答案(1)设是一个实的零均值二阶矩过程,其相关函数为,且是一个周期为的函数,即,求方差函数。

解:由定义,有:(2)试证明:如果是一独立增量过程,且,那么它必是一个马尔可夫过程。

证明:我们要证明:,有形式上我们有:因此,我们只要能证明在已知条件下,与相互独立即可。

由独立增量过程的定义可知,当时,增量与相互独立,由于在条件和下,即有与相互独立。

由此可知,在条件下,与相互独立,结果成立。

(3)设随机过程为零初值()的、有平稳增量和独立增量的过程,且对每个,,问过程是否为正态过程,为什么?解:任取,则有:由平稳增量和独立增量性,可知并且独立因此是联合正态分布的,由可知是正态过程。

(4)设为为零初值的标准布朗运动过程,问次过程的均方导数过程是否存在?并说明理由。

解:标准布朗运动的相关函数为:如果标准布朗运动是均方可微的,则存在,但是:故不存在,因此标准布朗运动不是均方可微的。

(5)设,是零初值、强度的泊松过程。

写出过程的转移函数,并问在均方意义下,是否存在,为什么?解:泊松过程的转移率矩阵为:其相关函数为:,由于在,连续,故均方积分存在。

(6)在一计算系统中,每一循环具有误差的概率与先前一个循环是否有误差有关,以0表示误差状态,1表示无误差状态,设状态的一步转移矩阵为:试说明相应齐次马氏链是遍历的,并求其极限分布(平稳分布)。

解:由遍历性定理可知此链是遍历的,极限分布为。

(7)设齐次马氏链一步转移概率矩阵如下:(a)写出切普曼-柯尔莫哥洛夫方程(C-K方程);(b)求步转移概率矩阵;(c)试问此马氏链是平稳序列吗?为什么?解:(a)略(b)(c)此链不具遍历性(8)设,其中为强度为的Poission过程,随机变量与此Poission过程独立,且有如下分布:问:随机过程是否为平稳过程?请说明理由。

由于:故是平稳过程。

(9)设,其中与独立,都服从(a)此过程是否是正态过程?说明理由。

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

随机过程第一章习题答案

随机过程第一章习题答案
似水年华轻轻一瞥,年华似水轻描淡写
随机过程 第一章 习题答案
1.方法一: F (t ; x) P{ X (t ) x} P{ X sin t x} 当t k 时,P{ X (t ) 0} 1,其中k为整数,
k 当t 时,
x x sin t (i)若 sin t 0, F (t ; x) P{ X } ( x) dx sin t x 1 1 1 1 x 2 f (t ; x) ( ) exp{ ( )} sin t sin t sin t 2 2 sin t x x x sin t (ii )若 sin t 0, F (t ; x) P{ X } 1 P{ X } 1 ( x)dx sin t sin t 1 1 1 x 2 f (t ; x) Fx' (t ; x) exp{ ( )} sin t 2 2 sin t 1 1 x 2 f (t ; x) exp{ ( ) }, k 为整数。 2 sin t 2 sin t

时,k为整数,有 X
一维分布密度为:f (t ; x) 当t= k

时,k为整数,有P{ X (t ) 0} 1
1 1 Xt x}=P{e } e Xt x 1 1 1 =P{Xt ln }=P{Xt ln x}=P{X ln x}=1-P{X ln x} x t t 1 11 1 1 f (t ; x) Fx' (t ; x) f ( ln x)( ) f ( ln x) t t x tx t 2.F(t;x)=P{X(t) x}=P{e Xt x}=P{
方法二: X N(0,1) EX=0,EX 2 =DX=1 EX(t)=E(Xsin t)=sin tEX 0 k N(0 , sin 2 t) 1 1 x 2 exp{ ( ) }, x 2 sin t 2 sin t DX (t ) D(Xsin t) (sin t) 2 DX sin 2 t 当t

《随机过程-孙应飞》1第一章随机向量与多元正态分布

《随机过程-孙应飞》1第一章随机向量与多元正态分布

往在使用某种统计方法之前,将每个指标“标准化”, 即做出如下变换:
X *Biblioteka jX j EX j DX j
, j 1, 2, ,X* p)
,p
* X * ( X 1* , X 2 ,
于是
1 EX 0, DX corr ( X ) R X * X * n 1
* *
欧氏距离的优点是能反映空间两个点的实际距离; 缺点是每个坐标对欧氏距离的贡献是对等的,即欧 氏距离大小与坐标的量刚或单位有关。 马氏距离的优点是它是统计距离,大小与坐标的量 刚或单位无关,由标准化数据和中心化数据得到的 马氏距离相同,还可排除变量间的相互干扰。缺点 是夸大了变化微小的变量的作用。
设随机向量X= (X1,X2,┅,Xp)′的协方差存在, 且每个分量的方差都大于0,则X的相关阵定义为:
R Corr ( X i , X j ) ri j ri j cov( X i , X j ) DX i DX j
p p
, i, j 1, 2,
,p
称rij也称为Xi与Yj之间的(线性)相关系数。 对于两组不同的随机向量X与Y,它们之间的相关问题 将在典型相关分析的章节讨论。 在数据处理时,为了克服指标量刚带来的不利影响,往
x

f (u )du,
xRp
一般: P( X 1 x1 , X 2 x2 , , X k xk ) F ( x1, x2 , , xk , , , ) 连续 : f1 ( x1 ) f1 ( x1 , x2 , , xk ) f ( x1, x2 ,


称cov(X, Y)=0,称为X与Y是不相关的。 当A,B为常数矩阵时,有如下性质: 1)D(AX)=AD(X)A′=AΣA′ 2)cov(AX, BX)=Acov(X, Y)B′ 3)令μ=EX,Σ=DX,则E(X′AX)=tr(AΣ)+μ′Aμ 注:Σ是一个对称阵,并总是非负定的,多为正定的。

随机过程习题解答_毛用才

随机过程习题解答_毛用才
jtz jt ln F ( x ) ] (2)Q f Z ( t ) E ( e ) E [ e
1 ja t
=
e
0
1
1
j t ln y
1d y
1 jt y dy = 1 jt 0
fZ' (t) (1) j (1 jt)2
f Z '' (t ) (1)(2) j 2 (1 jt )3

0 F ( y ) y 1
y 0 0 y 1 y 1
F ( x ) 在区间[0,1]上服从均匀分布
ejtx 1 1 jt 0 (e 1) F ( x) 的特征函数为 fX (t) e dx jt jt 0
jtx
1
f Y ( t ) e jb t f X ( at ) e jb t ( e jta 1)


nxn
n0
1 1 x (1 x ) 2 1 x (1 x ) 2

同理
k
k 0

2
x k (k 1)x k 2 kx k x k
k 0 k 0 k 0
令 S ( x) (k 1)2 x k
k 0



0
x
S ( t )d t
f

Xi
(t ) (
b P ) i b jt
W
3、设 X 是一随机变量, F ( x) 是其分布函数,且是严格单调的,求以下随机变量 的特征函数。 (1) Y aF ( X ) b, (a 0, b是常数); (2) Z ln F ( X ), 并求E ( Z k )(k是常数)。 解 (1)Q P{ F ( x ) y} P{ x F 1 ( y )} F [ F 1 ( y )] y ( 0 y 1)

(完整版)随机过程习题答案

(完整版)随机过程习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。

解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。

随机过程习题答案

随机过程习题答案

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,(2)因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

《随机过程》第一章题目与答案

《随机过程》第一章题目与答案

第一章一. 填空题1.p(A)=0.5,p(B)=0.7,A与B相互独立,则p(AUB)= _2.若已知两点(x1,y 1),(x2,y2)有x1 < x2, y 1<y2,则概率密度p{ x1<x< x2, y 1< y < y2}=__.3.若p(A)=0.2,p(B)=0.5,p(C)=0.1,且p(A),p(B),p(C)两两相互独立,则p A(C|B)=__.4.设X,Y是相互独立的随机变量,已知EX=1 ,EY=2,DX=1 ,DY=2 则E(XY)=___,E(2X+3Y) =___, D(2X+3Y) =__.5.若X1,X2,…,X n是相互独立的随机变量,且g i(t)是X i的特征函数,i=1,2,…,n)则X=X1+X2+…X n的特征函数g(t)=__.二.证明题1.设P(S)是的母函数,试证:(1)若E(X)存在,则EX=P′(1)(2)若D(X)存在,则 DX = P"(1)+ P′(1)-[ P′(1)]22.试证明连续型随机变量的全概率公式:p(A)=dF Y(y)=f Y(y)dy三.计算题1. 通过抛掷一枚均匀硬币定义一个随机过程{X(t),-∞< t<∞},其中X(t)=试求随机过程X(t)的一维分布函数F(x;-).2.设X服从B(n,p),求X的特征函数g(t).3. 设商店在一天的顾客数N服从[900,1100]上的均匀分布,又设每位顾客所花的钱Xi服从N(100,502);求商店的日销售额Z的平均值.4. 已知随机变量X服从[0,a]上的均匀分布,且随机变量Y服从[X,a]上的均匀分布,试求:(1)E(Y|X=a),0x a (2)E(Y)参考答案一.填空题 1. 0.852. F(x 2,y 2)-F(x 1,y 2)-F(x 2,y 1)+F(x 1,y 1)3. 0.14. 2, 8, 225. g 1(t) g 2(t)…g n (t) 二.证明题1. 证明:(1)因为p (s )=s p kk k ∑∞=0,则p ′(s )=s kp k k k 11-∞=∑,令s↑1,得EX==∑∞=1k k kp p ′(1)。

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

(完整版)随机过程习题答案

(完整版)随机过程习题答案

(完整版)随机过程习题答案-CAL-FENGHAI.-(YICAI)-Company One1随机过程部分习题答案习题2 2.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数 )])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。

解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数 ⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程 ⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。

中国科学大学随机过程(孙应飞)复习题及答案汇总

中国科学大学随机过程(孙应飞)复习题及答案汇总

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。

解:由定义,有:)(2)0()0()}()({2)0()0()]}()()][()({[2)]([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D(2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马尔可夫过程。

证明:我们要证明:n t t t <<<≤∀ 210,有})()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P形式上我们有:})()(,,)(,)({})()(,,)(,)(,)({})(,,)(,)({})(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤=======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2,,2,1,)(-=n j t X j 相互独立即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档