整式的加减知识点总结以及题型归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减
【本将教学内容】
整式的基本概念、加减运算、代数式求值等 整式知识点
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
注意:(若a 、b 、c 、p 、q 是常数)ax 2
+bx+c 和x 2
+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨
⎧多项式
单项式整式 .
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
11. 列代数式
列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.
12.代数式的值
根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所
得的结果是代数式的值.
13. 列代数式要注意
①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。
例1 某市对一段全长1500米的道路进行改造. 原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.
变式1某商店经销一批衬衣,每件进价为a 元,零售价比进价高m %,后因市场变化,该商店把零售价调整为原来零售价的n %出售,那么调整后每件衬衣的零售价是
( )
A. a (1+m %)(1-n %)元
B. am %(1-n %)元
C. a (1+m %)n %元
D. a (1+m %·n %)元
例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.
x -7,13x ,23a ,8a 3x ,-1,x +1
3.
变式2下列代数式中:)(61b a +-,,21+m x ,2
33
2c ab -,5,xy x 232
-,
12+a b ,y
1
, 单项式有 ,多项式有 , 整式有
例3.
已知多项式-2x 2a +
1y 2-
13x 3y 3+x 4y
5
是七次多项式,则a =__________. 变式3 已知多项式+1
2(m-1)m x y 是四次式,则m =__________.
例4. 如果多项式x 4-(a -1)x 3+5x 2-(b +3)x -1不含x 3和x 项,求a 、b 的值.
变式4若多项式5)4(3
-+--x x x a b
是关于x 、y 的二次三项式,则a= ,b= ;
例5. 32m b a 2-与1n ab 5+-是同类项,则=m ___________,n=___________。 变式5 若5
23m x
y +与3n x y 的和是单项式,则m n
= .
例6. 先化简,再求值)(3)321(2
2
x x x x --++-其中x=-2.
变式6(1))23()31(62122y x y x x --+-+,其中3
1,38-=-=y x .
(2)求代数式()()2
2222y 2xy x 2y 2xy 3x x 2+--++-+的值,其中
()0|1y |1x 22=++-
综合练习
1. 规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”、“=”或“>”).
2.将自然数按以下规律排列,则2008所在的位置是第 行第 列.
3.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三
角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).
…
4.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.
⎪⎭⎫ ⎝⎛-+-22213y xy x 2
22 212342
1y x y xy x +-=⎪⎭⎫ ⎝⎛-+--,阴影部分即
为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )
A .xy 7-
B . xy 7+
C . xy -
D .xy +
5.化简 )]72(53[2b a a b a ----的结果是 ( )
A .b a 107+-
B .b a 45+
C .b a 4--
D .b a 109-
6.若多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 等于( )
A :2
B :-2
C :4
D :-4
7.若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( ) A 、可能是七次多项式 B 、一定是大于七项的多项式 C 、可能是二次多项式 D 、一定是四次多项式 8.
有
这
样
一
道
题
“
当
2
,2-==b a 时,求多项式
⎪⎭⎫ ⎝⎛---+-
2233233414213b b a b a b b a b a ⎪⎭
⎫
⎝⎛++b a b a 23341 322+-b 的值”,马小虎做题时把2=a 错抄成2-=a ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
1、m 为何值时多项式π3-mx 3m y +m 2y 2是关于x ,y 的四次多项式?最高次项的系数是多少?
2、(2a 2-5a -1)+3(-a 2+5a -2)
3、3(2x 2-3x -1)-2(3x 2-x +2)
5、三角形第一边长为2a -b ,第三边比第一边长a +b ,第三边比第二边的2倍还多a ,求:
(1)三角形的周长;
(2)若a =5,b =3,求周长的值。