霍尔传感器原理.ppt
合集下载
霍尔式传感器原理及应用(共9张PPT)
该现象称为霍尔效应,所产生的电动势 VH 称为霍尔电势
霍尔电势 VH 的大小 48)
式中 KH——霍尔常数,表示单位磁感应强度和
单位控制电流下所得的开路霍尔电势, 取决于材质、元件尺寸,并受温度变化影响;
α——电流方向与磁场方向夹角,如两者垂直,则sinα=1。
磁场变化 材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
霍尔芯片一般用非磁性金属、陶瓷或环氧树脂封装 若在一个方向上通以电流 I 磁场变化
洛伦兹力•F应L 的用方中向由不左用手定永则久决定磁铁产生的磁场,而是用一个可变电流作激磁的可变磁场,输
R为调节电阻,调节控制电流的大小 建立霍尔电势所需的时间极短(10-12~10-14)
使用时,I 和 B 都可作为输入信号,输出信号正比于两者的乘积
一式般中采K用H—N形—锗霍、尔锑常化寿数铟,命、表砷长示化单铟位、磁砷感化应镓强和度磷和砷化铟等
材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
价格低
•可以广泛应用于测量:
位移
可转化为位移的力和加速度
在垂直于 B 和 I 的方向上产生一感应电动势 VH
洛伦兹力 FL 的方向由左手定则决定 当霍尔元件相对于磁极作x方向位移时,可得到输出电压VH=VH1-VH2,且ΔVH数值正比于位移量Δx,正负方向取决于位移Δx的方向 若在一个方向上通以电流 I 霍尔元件置于两相反方向的磁场中
霍尔元件霍可制尔成位传移传感感器器 的结构
R为调节电阻,调节控制电流的大小 建立霍尔电势所需的时间极短(10-12~10-14) 在垂直于 B 和 I 的方向上产生一感应电动势 VH
• 霍尔元件传感器既能测量位移的大小,又能鉴别位移的方向
•霍尔元件在静止状态下具有感受磁场的独特能力
霍尔电势 VH 的大小 48)
式中 KH——霍尔常数,表示单位磁感应强度和
单位控制电流下所得的开路霍尔电势, 取决于材质、元件尺寸,并受温度变化影响;
α——电流方向与磁场方向夹角,如两者垂直,则sinα=1。
磁场变化 材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
霍尔芯片一般用非磁性金属、陶瓷或环氧树脂封装 若在一个方向上通以电流 I 磁场变化
洛伦兹力•F应L 的用方中向由不左用手定永则久决定磁铁产生的磁场,而是用一个可变电流作激磁的可变磁场,输
R为调节电阻,调节控制电流的大小 建立霍尔电势所需的时间极短(10-12~10-14)
使用时,I 和 B 都可作为输入信号,输出信号正比于两者的乘积
一式般中采K用H—N形—锗霍、尔锑常化寿数铟,命、表砷长示化单铟位、磁砷感化应镓强和度磷和砷化铟等
材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
价格低
•可以广泛应用于测量:
位移
可转化为位移的力和加速度
在垂直于 B 和 I 的方向上产生一感应电动势 VH
洛伦兹力 FL 的方向由左手定则决定 当霍尔元件相对于磁极作x方向位移时,可得到输出电压VH=VH1-VH2,且ΔVH数值正比于位移量Δx,正负方向取决于位移Δx的方向 若在一个方向上通以电流 I 霍尔元件置于两相反方向的磁场中
霍尔元件霍可制尔成位传移传感感器器 的结构
R为调节电阻,调节控制电流的大小 建立霍尔电势所需的时间极短(10-12~10-14) 在垂直于 B 和 I 的方向上产生一感应电动势 VH
• 霍尔元件传感器既能测量位移的大小,又能鉴别位移的方向
•霍尔元件在静止状态下具有感受磁场的独特能力
《霍尔式传感器》课件
对于长期不使用的传感器,应定 期通电检查,以确保其性能正常 。
对于有可调元件的传感器,应定 期检查可调元件是否松动或损坏 。
05
霍尔式传感器的发展趋势与 未来展望
新型霍尔式传感器的研发与进展
1 2 3
新型霍尔式传感器研发
随着科技的不断进步,新型霍尔式传感器正在被 不断研发出来,以满足各种不同的应用需求。
在汽车工业中的应用
1 2
3
发动机控制
霍尔式传感器可用于检测曲轴位置和气缸识别,以实现精确 的点火和喷油控制,从而提高发动机效率和性能。
自动变速器
通过检测车速和发动机转速,霍尔式传感器帮助控制自动变 速器的换挡逻辑,确保平稳换挡和最佳燃油经济性。
防抱死刹车系统
霍尔式传感器监测车轮转速,控制刹车油压,防止车轮抱死 ,提高制动效果和车辆稳定性。
02
霍尔式传感器在物联网领域的应用主要包括智能家居、智能农业 、智能工业等领域,能够实现智能化控制和远程监控等功能。
03
随着物联网技术的不断发展,霍尔式传感器的应用前景将 更加广阔。
霍尔式传感器的发展趋势与未来展望
未来,霍尔式传感器将继续朝着高灵敏 度、高可靠性、微型化、集成化等方向 发展。
随着人工智能、物联网等技术的不断发展, 霍尔式传感器的应用领域将进一步拓展,其 在智能制造、智能医疗等领域的应用也将得 到更广泛的发展。
用于测量地球磁场、磁性材料、电流产生的磁 场等,如指南针、磁性编码器等。
位置检测
用于检测物体的位置变化,如门窗开关状态、 气瓶压力等。
霍尔式传感器的优缺点
优点
结构简单、体积小、重量轻、线性度 好、稳定性高、温度稳定性好等。
缺点
对外界磁场干扰敏感,易受干扰影响 测量精度,需要定期校准等。
《霍尔传感器原理》课件
检测碰撞程度,决定是否触发安全气囊。
03
02
01
电机控制
检测电机转子的位置,实现无接触式控制。
位置控制
在机器人和自生产过程的监控。
通过霍尔传感器检测门的状态,实现自动锁定和解锁。
智能门锁
根据光线强度自动调节窗帘的开合。
智能窗户
与其它传感器结合,实现家电的远程控制和智能管理。
《霍尔传感器原理》PPT课件
目录
CONTENTS
霍尔传感器简介霍尔效应原理霍尔传感器的分类与特性霍尔传感器的应用实例霍尔传感器的未来展望参考文献
霍尔传感器简介
1
2
3
霍尔传感器广泛应用于自动化控制、电机控制、汽车电子、安防监控、智能家居等领域。
在自动化控制领域,霍尔传感器用于检测电机转子位置和转速,实现电机精准控制。
霍尔效应原理
洛伦兹力
当带电粒子在磁场中运动时,会受到洛伦兹力的作用,导致粒子运动轨迹发生偏转。
描述霍尔元件性能的一个重要参数,与载流子浓度、迁移率等有关。
霍尔常数
指单位体积内载流子的数目,对霍尔常数有直接影响。
载流子浓度
指载流子在电场作用下的平均漂移速度与电场强度的比值,也影响霍尔常数的大小。
迁移率
03
优点
霍尔元件具有测量精度高、线性度好、稳定性强、耐高温等特点。
01
材料
常用的霍尔元件材料包括半导体、金属、陶瓷等。
02
结构
霍尔元件通常由N型或P型半导体材料制成,其结构包括电极、基片、电极引脚等部分。
霍尔传感器的分类与特性
线性型霍尔传感器主要用于测量磁场,其输出电压与所处环境的磁场强度成正比。
由于其线性输出特性,线性型霍尔传感器常用于精确测量磁场,如电流检测、磁通量测量等。
03
02
01
电机控制
检测电机转子的位置,实现无接触式控制。
位置控制
在机器人和自生产过程的监控。
通过霍尔传感器检测门的状态,实现自动锁定和解锁。
智能门锁
根据光线强度自动调节窗帘的开合。
智能窗户
与其它传感器结合,实现家电的远程控制和智能管理。
《霍尔传感器原理》PPT课件
目录
CONTENTS
霍尔传感器简介霍尔效应原理霍尔传感器的分类与特性霍尔传感器的应用实例霍尔传感器的未来展望参考文献
霍尔传感器简介
1
2
3
霍尔传感器广泛应用于自动化控制、电机控制、汽车电子、安防监控、智能家居等领域。
在自动化控制领域,霍尔传感器用于检测电机转子位置和转速,实现电机精准控制。
霍尔效应原理
洛伦兹力
当带电粒子在磁场中运动时,会受到洛伦兹力的作用,导致粒子运动轨迹发生偏转。
描述霍尔元件性能的一个重要参数,与载流子浓度、迁移率等有关。
霍尔常数
指单位体积内载流子的数目,对霍尔常数有直接影响。
载流子浓度
指载流子在电场作用下的平均漂移速度与电场强度的比值,也影响霍尔常数的大小。
迁移率
03
优点
霍尔元件具有测量精度高、线性度好、稳定性强、耐高温等特点。
01
材料
常用的霍尔元件材料包括半导体、金属、陶瓷等。
02
结构
霍尔元件通常由N型或P型半导体材料制成,其结构包括电极、基片、电极引脚等部分。
霍尔传感器的分类与特性
线性型霍尔传感器主要用于测量磁场,其输出电压与所处环境的磁场强度成正比。
由于其线性输出特性,线性型霍尔传感器常用于精确测量磁场,如电流检测、磁通量测量等。
霍尔效应原理图ppt课件
37
在该电桥的负载电阻RP2上 取出电桥的部分输出电压 (称为补偿电压),与霍尔 元件的输出电压反向串联。 在磁感应强度B为零时,调 节RP1和RP2,使补偿电压抵 消霍尔元件此时输出的不等 位电势,从而使B=0时的总 输出电压为零。
38
优点:采用桥式补偿电路,可以在霍
尔元件的整个温度范围内对不等位电 势进行良好的补偿,并且对不等位电 势的恒定部分和变化部分的补偿可独 立地进行调节。所以,可达到相当高 的补偿精度。
5
电荷的聚积必将产生静电场,即为霍尔电 场,该静电场对电子的作用力为FE与洛仑兹力 方向相反,将阻止电子继续偏转,其大小为 式中EH为霍尔电场,e 为电子电量,UH为霍尔 电势。当FL = FE时,电 子的积累达到动平衡, 即
所以
B A I D B
FE
C l
FL
L
d
UH
A、B- 霍尔电极 C、D-控制电极
对于一个确定的霍尔元件,可以方 便地获得α、β和R0的值,因此只要使 负载电阻RL满足上式,就可在输出回路 实现对温度误差的补偿了。虽然RL通常 是放大器的输入电阻或表头内阻,其值 是一定的,但可通过串、并联电阻来调 整RL的值。
30
(三)采用热敏元件
对于由温度系数较 大的半导体材料 (如锑化铟)制成 的霍尔元件,常采 用右图所示的温度 补偿电路,图中Rt 是热敏元件(热电 阻或热敏电阻)。
25
连接方式 为了获得较大的霍尔输出电势,可以 采用几片叠加的连接方式。下图(a)为直流 供电,控制电流端并联输出串联。下图(b) 为交流供电,控制电流端串联变压器叠加 输出。
26
二、温度误差及其补偿
由于载流子浓度等随温度变化而变化,因 此会导致霍尔元件的内阻、霍尔电势等也随温 度变化而变化。这种变化程度随不同半导体材 料有所不同。而且温度高到一定程度,产生的 变化相当大。温度误差是霍尔元件测量中不可 忽视的误差。 针对温度变化导致内阻(输入、输出电阻) 的变化,可以采用对输入或输出电路的电阻进 行补偿。
在该电桥的负载电阻RP2上 取出电桥的部分输出电压 (称为补偿电压),与霍尔 元件的输出电压反向串联。 在磁感应强度B为零时,调 节RP1和RP2,使补偿电压抵 消霍尔元件此时输出的不等 位电势,从而使B=0时的总 输出电压为零。
38
优点:采用桥式补偿电路,可以在霍
尔元件的整个温度范围内对不等位电 势进行良好的补偿,并且对不等位电 势的恒定部分和变化部分的补偿可独 立地进行调节。所以,可达到相当高 的补偿精度。
5
电荷的聚积必将产生静电场,即为霍尔电 场,该静电场对电子的作用力为FE与洛仑兹力 方向相反,将阻止电子继续偏转,其大小为 式中EH为霍尔电场,e 为电子电量,UH为霍尔 电势。当FL = FE时,电 子的积累达到动平衡, 即
所以
B A I D B
FE
C l
FL
L
d
UH
A、B- 霍尔电极 C、D-控制电极
对于一个确定的霍尔元件,可以方 便地获得α、β和R0的值,因此只要使 负载电阻RL满足上式,就可在输出回路 实现对温度误差的补偿了。虽然RL通常 是放大器的输入电阻或表头内阻,其值 是一定的,但可通过串、并联电阻来调 整RL的值。
30
(三)采用热敏元件
对于由温度系数较 大的半导体材料 (如锑化铟)制成 的霍尔元件,常采 用右图所示的温度 补偿电路,图中Rt 是热敏元件(热电 阻或热敏电阻)。
25
连接方式 为了获得较大的霍尔输出电势,可以 采用几片叠加的连接方式。下图(a)为直流 供电,控制电流端并联输出串联。下图(b) 为交流供电,控制电流端串联变压器叠加 输出。
26
二、温度误差及其补偿
由于载流子浓度等随温度变化而变化,因 此会导致霍尔元件的内阻、霍尔电势等也随温 度变化而变化。这种变化程度随不同半导体材 料有所不同。而且温度高到一定程度,产生的 变化相当大。温度误差是霍尔元件测量中不可 忽视的误差。 针对温度变化导致内阻(输入、输出电阻) 的变化,可以采用对输入或输出电路的电阻进 行补偿。
霍尔传感器原理--中英双语PPT课件
• ● Small size, light weight, easy to install and it will not bring any loss to the system.
2021
6
霍尔电流传感器及其应用
开环电流传感器的原理图 open loop current sensor principle diagram
• ● The linearity is better than 0.5%; • ● Good dynamic performance. The dynamic
response time of general Hall sensor module is less than 7μs, and the tracking speed di/dt is above 50A/μs;
• The performance characteristics of Hall current sensor
• ● Measure the arbitrary waveform current, such as DC, AC, and even to transient peak parameters measurement;
动态响应时间小于为7μs,跟踪速度di / dt是 上述50A/μs; • ●工作频段宽。它可以工作在频率范围从0到 20 KHZ非常好; • ●过载能力强。测量范围宽(0〜±10000A); • ●高可靠性。平均无故障工作是超过5×10000 小时; • ●体积小,重量轻,易于安装和系统不会带来 任何损失
2021
5
霍尔电流传感器及其应用
• 霍尔电流传感器的性能特 性
• ●测量任意波形的电流,如DC,AC,乃至瞬 态峰值参数测量的;
2021
6
霍尔电流传感器及其应用
开环电流传感器的原理图 open loop current sensor principle diagram
• ● The linearity is better than 0.5%; • ● Good dynamic performance. The dynamic
response time of general Hall sensor module is less than 7μs, and the tracking speed di/dt is above 50A/μs;
• The performance characteristics of Hall current sensor
• ● Measure the arbitrary waveform current, such as DC, AC, and even to transient peak parameters measurement;
动态响应时间小于为7μs,跟踪速度di / dt是 上述50A/μs; • ●工作频段宽。它可以工作在频率范围从0到 20 KHZ非常好; • ●过载能力强。测量范围宽(0〜±10000A); • ●高可靠性。平均无故障工作是超过5×10000 小时; • ●体积小,重量轻,易于安装和系统不会带来 任何损失
2021
5
霍尔电流传感器及其应用
• 霍尔电流传感器的性能特 性
• ●测量任意波形的电流,如DC,AC,乃至瞬 态峰值参数测量的;
《霍尔传感器》课件
优点
• 非接触式测量 • 高精度和稳定性 • 快速响应
缺点
• 受外部磁场影响 • 价格相对较高 • 对温度变化敏感
霍尔传感器与其他传感器的比较
光电传感器
可感知光强,但受环境光影响。
电阻式传感器Biblioteka 测量电阻值,受温度和湿度影响。
温度传感器
用于测量温度变化,但无法测量磁场。
霍尔传感器在智能家居中的应 用
霍尔传感器可用于智能门窗、智能家电等设备的开关和状态监测,提高家居 安全和便利性。
霍尔传感器在汽车行业中的应用
霍尔传感器广泛应用于转向传感、刹车传感和座椅安全传感等汽车系统中,提升驾驶体验和安全 性。
具有灵敏度高、响应速 度快等特点。
效应霍尔元件
可测量磁场的强度和方 向。
开关型霍尔元件
用于检测接近或远离磁 场的开关状态。
霍尔元件的特点
1 非接触式测量
不受物体表面状态和材料的影响。
3 快速响应
适用于高速测量和控制应用。
2 高精度和稳定性
能够实时准确测量磁场强度。
4 广泛的工作温度范围
可在极端环境下工作。
《霍尔传感器》PPT课件
本课件将为您介绍霍尔传感器的原理、种类及其在各个领域的广泛应用。通 过清晰的图示和丰富的案例,带您深入了解霍尔传感器的优点、发展历程以 及未来的挑战。
概述
霍尔传感器利用霍尔效应测量磁场,有广泛的应用领域。本节将介绍霍尔传 感器的定义、原理以及与其他传感器的比较。
霍尔元件
线性霍尔元件
基于霍尔元件的测量电路
电压输出型
输出电压随磁场强度变化。
电流输出型
输出电流随磁场强度变化。
开关输出型
检测物体是否接近或远离磁 场。
第八章霍尔传感器-PPT课件
路状态下工作时,可在输入回路中串人适当电 阻来补偿温度误差,其分析过程与结果同式
pptcn
温度误差及其补偿
温度误差产生原因: 霍尔元件的基片是半导体材料,因而对温
度的变化很敏感。其载流子浓度和载流子迁移 率、电阻率和霍尔系数都是温度的函数。 当温度变化时,霍尔元件的一些特性参数, 如霍尔电势、输入电阻和输出电阻等都要发生 变化,从而使霍尔式传感器产生温度误差。
恒流源及输入并联电阻温度补偿电路
pptcn
由补偿电路图知,在温度t0和t时
当温度影响完全补偿时,UH0=UHt,则 将式(9-8)~式(9-11)代入式(9-12),可得
(9-8) (9-9) (9-10) (9-11)
(9-12)
(9-13,14)
pptcn
2.选取合适的负载电阻RL 霍尔元件的输出电阻R。和霍尔电势都是温度的函数
移动距离与输出关系
pptcn
2.霍尔开关集成器件 常用的霍尔开关集成器件有UGN3000系列,
其外形与UGN3501T相同。
+
霍尔开关集成器件 (a) 内部结构框图;(b)工作特性;(c)工作电路;(d)锁定型器件工作特性
pptcn
第三节 霍尔传感器应用
霍尔电势是关于I、B、θ 三个变量的函数,即 E=kIBcosθ ,人们利用这个关系可以使其中两个变量 不变,将第三个量作为变量,或者固定其中一个量、 其余两个量都作为变量。三个变量的多种组合使得霍 尔传感器具有非常广阔的应用领域。霍尔传感器由于 结构简单、尺寸小、无触点、动态特性好、寿命长等 特点,因而得到了广泛应用。如磁感应强度、电流、 电功率等参数的检测都可以选用霍尔器件。它特别适 合于大电流、微小气隙中的磁感应强度、高梯度磁场 参数的测量。此外,也可用于位移、加速度、转速等 参数的测量以及自动控制。归纳起来,霍尔传感器主 要有下列三个方面的用途:
pptcn
温度误差及其补偿
温度误差产生原因: 霍尔元件的基片是半导体材料,因而对温
度的变化很敏感。其载流子浓度和载流子迁移 率、电阻率和霍尔系数都是温度的函数。 当温度变化时,霍尔元件的一些特性参数, 如霍尔电势、输入电阻和输出电阻等都要发生 变化,从而使霍尔式传感器产生温度误差。
恒流源及输入并联电阻温度补偿电路
pptcn
由补偿电路图知,在温度t0和t时
当温度影响完全补偿时,UH0=UHt,则 将式(9-8)~式(9-11)代入式(9-12),可得
(9-8) (9-9) (9-10) (9-11)
(9-12)
(9-13,14)
pptcn
2.选取合适的负载电阻RL 霍尔元件的输出电阻R。和霍尔电势都是温度的函数
移动距离与输出关系
pptcn
2.霍尔开关集成器件 常用的霍尔开关集成器件有UGN3000系列,
其外形与UGN3501T相同。
+
霍尔开关集成器件 (a) 内部结构框图;(b)工作特性;(c)工作电路;(d)锁定型器件工作特性
pptcn
第三节 霍尔传感器应用
霍尔电势是关于I、B、θ 三个变量的函数,即 E=kIBcosθ ,人们利用这个关系可以使其中两个变量 不变,将第三个量作为变量,或者固定其中一个量、 其余两个量都作为变量。三个变量的多种组合使得霍 尔传感器具有非常广阔的应用领域。霍尔传感器由于 结构简单、尺寸小、无触点、动态特性好、寿命长等 特点,因而得到了广泛应用。如磁感应强度、电流、 电功率等参数的检测都可以选用霍尔器件。它特别适 合于大电流、微小气隙中的磁感应强度、高梯度磁场 参数的测量。此外,也可用于位移、加速度、转速等 参数的测量以及自动控制。归纳起来,霍尔传感器主 要有下列三个方面的用途:
《霍尔传感器 》课件
防电击
确保传感器外壳接地良好,避免因漏电等原因造成电 击危险。
操作规范
遵循安全操作规范,避免在未经授权的情况下擅自拆 卸、改装传感器。
04
霍尔传感器的发展趋势与未来 展望
技术创新与改进
微型化
多功能化
随着微电子技术的不断发展,霍尔传 感器的尺寸逐渐减小,性能不断提高 ,应用范围更加广泛。
未来霍尔传感器将逐渐实现多功能化 ,能够同时检测多种物理量,满足不 同领域的需求。
《霍尔传感器》PPT课件
目录
• 霍尔传感器简介 • 霍尔传感器的类型与特点 • 霍尔传感器的使用与注意事项 • 霍尔传感器的发展趋势与未来展望 • 案例分析与实践应用
01
霍尔传感器简介
霍尔传感器的定义
霍尔传感器是一种基于霍尔效应的磁 感应传感器,能够检测磁场变化并转 换为电信号输出。
它利用霍尔效应原理,通过测量磁场 中导体或半导体的电压或电流变化来 检测磁场。
开关型霍尔传感器具有低功耗、高可靠性、快速响应等优点,广泛应用于无刷电机 、电磁阀等电子设备的控制系统中。
开关型霍尔传感器通常由霍尔元件、放大器和比较器等组成,具有较小的体积和重 量。
温度补偿型霍尔传感器
温度补偿型霍尔传感器主要用 于消除温度对霍尔元件的影响 ,提高测量精度和稳定性。
温度补偿型霍尔传感器通常 采用热敏电阻或集成温度传 感器来实现温度补偿功能。
物联网
随着物联网技术的不断发展,霍 尔传感器在智能家居、智能农业 、智能安防等领域的应用前景广 阔。
市场前景与展望
全球霍尔传感器市场规模不断扩大,预计未来几年将继续保持增长态势。
随着技术的不断创新和应用的不断拓展,霍尔传感器的应用领域将越来越 广泛,市场前景十分看好。
确保传感器外壳接地良好,避免因漏电等原因造成电 击危险。
操作规范
遵循安全操作规范,避免在未经授权的情况下擅自拆 卸、改装传感器。
04
霍尔传感器的发展趋势与未来 展望
技术创新与改进
微型化
多功能化
随着微电子技术的不断发展,霍尔传 感器的尺寸逐渐减小,性能不断提高 ,应用范围更加广泛。
未来霍尔传感器将逐渐实现多功能化 ,能够同时检测多种物理量,满足不 同领域的需求。
《霍尔传感器》PPT课件
目录
• 霍尔传感器简介 • 霍尔传感器的类型与特点 • 霍尔传感器的使用与注意事项 • 霍尔传感器的发展趋势与未来展望 • 案例分析与实践应用
01
霍尔传感器简介
霍尔传感器的定义
霍尔传感器是一种基于霍尔效应的磁 感应传感器,能够检测磁场变化并转 换为电信号输出。
它利用霍尔效应原理,通过测量磁场 中导体或半导体的电压或电流变化来 检测磁场。
开关型霍尔传感器具有低功耗、高可靠性、快速响应等优点,广泛应用于无刷电机 、电磁阀等电子设备的控制系统中。
开关型霍尔传感器通常由霍尔元件、放大器和比较器等组成,具有较小的体积和重 量。
温度补偿型霍尔传感器
温度补偿型霍尔传感器主要用 于消除温度对霍尔元件的影响 ,提高测量精度和稳定性。
温度补偿型霍尔传感器通常 采用热敏电阻或集成温度传 感器来实现温度补偿功能。
物联网
随着物联网技术的不断发展,霍 尔传感器在智能家居、智能农业 、智能安防等领域的应用前景广 阔。
市场前景与展望
全球霍尔传感器市场规模不断扩大,预计未来几年将继续保持增长态势。
随着技术的不断创新和应用的不断拓展,霍尔传感器的应用领域将越来越 广泛,市场前景十分看好。
霍尔传感器的工作原理及应用页PPT文档
产生的电动势称霍尔电势
半导体薄片称霍尔元件
返回
上一页
下一页
霍尔效应原理
返回
UH
RH
IB d
上一页
下一页
载流子受洛仑兹力 Fe B
霍尔电场强度 平衡状态
EH
UH b
eEH evB
EH vB
因为
I nbvde
电子运动平均速度 v I bdne
返回
上一页
下一页
霍尔电势
UH
1 IB ne d
为使霍尔电势不变,补偿电路必须满足: 升温前、后的霍尔电势不变,
U H 0 K H 0 I2B 0 U H K H I2 B
KH0I20KHI2
K H 0 R P 0 R P 0 R i0 I s K H 0 ( 1 T ) R P 0 ( 1 R P 0 T ( 1 ) R i0 T ( 1 ) T ) I S
不等位电势是由霍尔电极2和之间的电阻决定的, r 0称不等位电阻
返回
上一页
下一页
(4) 寄生直流电势 霍尔元件零位误差的一部分 当没有外加磁场,霍尔元件用交流控制电流时,
霍尔电极的输出有一个直流电势 控制电极和霍尔电极与基片的连接是非完全欧姆
接触时,会产生整流效应。 两个霍尔电极焊点的不一致,引起两电极温度不
经整理,忽略 T 2 高次项后得
返回
上一页
下一页
RP0 Ri0
R i0
当霍尔元件选定后,它的输入电阻 和温度系
数 及霍尔电势温度系数 可以从元件参数表
中查到( R i0 可以测量出来),用上式即可计算 出分流电阻 R p 0 及所需的分流电阻温度系数 值。
半导体薄片称霍尔元件
返回
上一页
下一页
霍尔效应原理
返回
UH
RH
IB d
上一页
下一页
载流子受洛仑兹力 Fe B
霍尔电场强度 平衡状态
EH
UH b
eEH evB
EH vB
因为
I nbvde
电子运动平均速度 v I bdne
返回
上一页
下一页
霍尔电势
UH
1 IB ne d
为使霍尔电势不变,补偿电路必须满足: 升温前、后的霍尔电势不变,
U H 0 K H 0 I2B 0 U H K H I2 B
KH0I20KHI2
K H 0 R P 0 R P 0 R i0 I s K H 0 ( 1 T ) R P 0 ( 1 R P 0 T ( 1 ) R i0 T ( 1 ) T ) I S
不等位电势是由霍尔电极2和之间的电阻决定的, r 0称不等位电阻
返回
上一页
下一页
(4) 寄生直流电势 霍尔元件零位误差的一部分 当没有外加磁场,霍尔元件用交流控制电流时,
霍尔电极的输出有一个直流电势 控制电极和霍尔电极与基片的连接是非完全欧姆
接触时,会产生整流效应。 两个霍尔电极焊点的不一致,引起两电极温度不
经整理,忽略 T 2 高次项后得
返回
上一页
下一页
RP0 Ri0
R i0
当霍尔元件选定后,它的输入电阻 和温度系
数 及霍尔电势温度系数 可以从元件参数表
中查到( R i0 可以测量出来),用上式即可计算 出分流电阻 R p 0 及所需的分流电阻温度系数 值。
霍尔传感器原理及其应用ppt课件
▪ 因此在测量技术、自动化技术和信息处理得到了广泛 的应用。
2
▪ 7.1.1 霍尔元件的结构
➢ 霍尔元件的外形如图7-1(a)所示,它是由霍尔片、4 根引线和壳体组成。
➢ 霍尔片是一块矩形半导体单晶薄片(一般为),在它的 长度方向两端面上焊有a、b两根引线,称为控制电流 端引线,通常用红色导线。
➢ 其焊接处称为控制电流极(或称激励电流),要求焊接 处接触电阻很小,并呈纯电阻,即欧姆接触(无PN结 特性)。
➢ 但是,只有磁感应强度小于0.5T时,上述的线性关系才 较好。
霍尔元件的主要特性参数如下 ➢ 1.额定控制电流与最大控制电流 ➢ 2.输入电阻和输出电阻 ➢ 3.乘积灵敏度 ➢ 4.不等位电势和不等位电阻
8
7.2霍尔传感器的测量电路和误差分析
▪ 7.2.1 霍尔传感器的测量电路
➢ 霍尔元件的基本测量电路如图7-4所示。控制电流I 由电压源E供给,R是调节电阻,用以根据要求改变 I的大小。所施加的外电场B一般与霍尔元件的平面 垂直。控制电流也可以是交流电。
▪ 霍尔传感器是基于霍尔效应将被测量(如电流、磁场、 位移、压力、压差、转速等)转换成电动势输出的一 种传感器。
▪ 虽然它的转换率较低、温度影响大、要求转换精度较 高时必须进行温度补偿,但霍尔式传感器结构简单、 体积小、坚固、频率响应宽(从直流到微波)、动态 范围(输出电动势的变化)大、非接触、使用寿命长、 可靠性高、易于微型化和集成化。
感应强度和单位激励电流作用下霍尔电势的大小。
7
▪ 7.1.4霍尔传感器的特性参数 ➢ 由式(7-1)看出,当磁场和环境温度一定时,霍尔元
件输出的霍尔电势 EH与控制电流 I成正比。
➢ 同样,当控制电流和环境温度一定时,霍尔元件的输出 电势与磁感应强度B的乘积成正比。用上述的一些线性 关系可以制作多种类型的传感器。
2
▪ 7.1.1 霍尔元件的结构
➢ 霍尔元件的外形如图7-1(a)所示,它是由霍尔片、4 根引线和壳体组成。
➢ 霍尔片是一块矩形半导体单晶薄片(一般为),在它的 长度方向两端面上焊有a、b两根引线,称为控制电流 端引线,通常用红色导线。
➢ 其焊接处称为控制电流极(或称激励电流),要求焊接 处接触电阻很小,并呈纯电阻,即欧姆接触(无PN结 特性)。
➢ 但是,只有磁感应强度小于0.5T时,上述的线性关系才 较好。
霍尔元件的主要特性参数如下 ➢ 1.额定控制电流与最大控制电流 ➢ 2.输入电阻和输出电阻 ➢ 3.乘积灵敏度 ➢ 4.不等位电势和不等位电阻
8
7.2霍尔传感器的测量电路和误差分析
▪ 7.2.1 霍尔传感器的测量电路
➢ 霍尔元件的基本测量电路如图7-4所示。控制电流I 由电压源E供给,R是调节电阻,用以根据要求改变 I的大小。所施加的外电场B一般与霍尔元件的平面 垂直。控制电流也可以是交流电。
▪ 霍尔传感器是基于霍尔效应将被测量(如电流、磁场、 位移、压力、压差、转速等)转换成电动势输出的一 种传感器。
▪ 虽然它的转换率较低、温度影响大、要求转换精度较 高时必须进行温度补偿,但霍尔式传感器结构简单、 体积小、坚固、频率响应宽(从直流到微波)、动态 范围(输出电动势的变化)大、非接触、使用寿命长、 可靠性高、易于微型化和集成化。
感应强度和单位激励电流作用下霍尔电势的大小。
7
▪ 7.1.4霍尔传感器的特性参数 ➢ 由式(7-1)看出,当磁场和环境温度一定时,霍尔元
件输出的霍尔电势 EH与控制电流 I成正比。
➢ 同样,当控制电流和环境温度一定时,霍尔元件的输出 电势与磁感应强度B的乘积成正比。用上述的一些线性 关系可以制作多种类型的传感器。
《霍尔传感器测速》课件
ERA
霍尔传感器的定义与工作原理
霍尔传感器是一种基于霍尔效应的磁感应传感器,能够检测磁场强度的变化,并 将磁场变化转换为电信号输出。
工作原理:当电流通过霍尔元件时,磁场作用于霍尔元件,使其产生电压差,这 个电压差与磁场强度成正比,通过测量这个电压差即可得知磁场强度的大小。
霍尔传感器的应用领域
01
BIG DATA EMPOWERS TO CREATE A NEW ERA
《霍尔传感器测速》PPT课
件
• 霍尔传感器简介 • 霍尔传感器测速原理 • 霍尔传感器测速系统设计 • 实验结果与分析 • 结论与展望
目录
CONTENTS
01
霍尔传感器简介
BIG DATA EMPOWERS TO CREATE A NEW
02
03
工业自动化
用于测量电机、发电机、 减速机等设备的转速、角 度和位置。
汽车电子
用于检测车速、发动机转 速、ABS轮速等。
智能家居
用于智能门锁、智能照明 、智能空调等设备的控制 和监测。
霍尔传感器的优缺点
优点
结构简单、体积小、重量轻、响 应速度快、测量精度高、可靠性 高、寿命长等。
缺点
对外界磁场干扰敏感,需要使用 磁屏蔽措施来减小干扰;同时价 格较高,不适合大规模应用。
当磁场随时间变化时,由于霍尔元件的磁阻效应,会产生一 个与磁场变化率成正比的电压输出。
霍尔传感器测速的数学模型
01
霍尔元件输出的电压信号与磁场 变化率成正比,因此可以通过测 量霍尔元件的输出电压来计算速 度。
02
数学模型通常采用一阶微分方程 或二阶微分方程来描述速度与电 压信号之间的关系。
测速的精度和误差分析
霍尔传感器的定义与工作原理
霍尔传感器是一种基于霍尔效应的磁感应传感器,能够检测磁场强度的变化,并 将磁场变化转换为电信号输出。
工作原理:当电流通过霍尔元件时,磁场作用于霍尔元件,使其产生电压差,这 个电压差与磁场强度成正比,通过测量这个电压差即可得知磁场强度的大小。
霍尔传感器的应用领域
01
BIG DATA EMPOWERS TO CREATE A NEW ERA
《霍尔传感器测速》PPT课
件
• 霍尔传感器简介 • 霍尔传感器测速原理 • 霍尔传感器测速系统设计 • 实验结果与分析 • 结论与展望
目录
CONTENTS
01
霍尔传感器简介
BIG DATA EMPOWERS TO CREATE A NEW
02
03
工业自动化
用于测量电机、发电机、 减速机等设备的转速、角 度和位置。
汽车电子
用于检测车速、发动机转 速、ABS轮速等。
智能家居
用于智能门锁、智能照明 、智能空调等设备的控制 和监测。
霍尔传感器的优缺点
优点
结构简单、体积小、重量轻、响 应速度快、测量精度高、可靠性 高、寿命长等。
缺点
对外界磁场干扰敏感,需要使用 磁屏蔽措施来减小干扰;同时价 格较高,不适合大规模应用。
当磁场随时间变化时,由于霍尔元件的磁阻效应,会产生一 个与磁场变化率成正比的电压输出。
霍尔传感器测速的数学模型
01
霍尔元件输出的电压信号与磁场 变化率成正比,因此可以通过测 量霍尔元件的输出电压来计算速 度。
02
数学模型通常采用一阶微分方程 或二阶微分方程来描述速度与电 压信号之间的关系。
测速的精度和误差分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/12/27
5
霍尔元件的主要外特性参数
最大磁感应强度BM
线性区
上图所示霍尔元件的线性范围是负的多少
2019/12/27 高斯至正的多少高斯?
6
霍尔元件的主要外特性参数(续)
最大激励电流IM :
由于霍尔电势随激励电流增大而增大, 故在应用中总希望选用较大的激励电流。但 激励电流增大,霍尔元件的功耗增大,元件 的温度升高,从而引起霍尔电势的温漂增大, 因此每种型号的元件均规定了相应的最大激 励电流,它的数值从几毫安至十几毫安。
a c
d b
磁感应强度B为零时的情况
2019/12/27
2
磁感应强度B 较大时的情况
作用在半导体薄片上的磁场强度B越强,霍尔电势 也就越高。霍尔电势EH可用下式表示:
EH=KH IB
2019/12/27
3
霍尔效应演示
d
a b
c
当磁场垂直于薄片时,电子受到洛仑兹力的 作用,向内侧偏移,在半导体薄片c、d方向的端 面之间建立起霍尔电势。
2019/12/27
4
磁场不垂直于霍尔元件时的霍尔电动势
若磁感应强度B不垂直于霍尔元件,而是与其法 线成某一角度 时,实际上作用于霍尔元件上的有效
磁感应强度是其法线方向(与薄片垂直的方向)的分
量,即Bcos,这时的霍尔电势为
EH=KHIBcos
结论:霍尔电势与输入电流I、磁感应强度B成正 比,且当B的方向改变时,霍尔电势的方向也随之改 变。如果所施加的磁场为交变磁场,则霍尔电势为同 频率的交变电势。
第九章 霍尔传感器
本章主要学习霍尔传感器 的工作原理、霍尔集成电路的特 性及其在检测技术中的应用,还 涉及磁场测量技术。
霍尔元件是 一种四端元件
2019/12/27
1
第一节 霍尔元件的结构及工作原理
半导体薄片置于磁感应强度为B 的磁场中,磁场方向 垂直于薄片,当有电流I 流过薄片时,在垂直于电流和磁 场的方向上将产生电动势EH,这种现象称为霍尔效应。
开关型霍尔集成电路是将霍尔元件、稳 压电路、放大器、施密特触发器、OC门(集 电极开路输出门)等电路做在同一个芯片上。 当外加磁场强度超过规定的工作点时,OC门 由高阻态变为导通状态,输出变为低电平; 当外加磁场强度低于释放点时,OC门重新变 为高阻态,输出高电平。较典型的开关型霍 尔器件如UGN3020等。
回差越 大,抗振动 干扰能力就 越强。
当磁铁从远到近地接近霍尔IC,到多少特斯拉 时输出翻转?当磁铁从近到远地远离霍尔IC,到多 少特斯拉时输出再次翻转?回差为多少特斯拉?
2019/12/27
14
出去活动一下
2019/12/27
15
以下哪一个激励电流的数值较为妥当?
5μ A 0.1mA 2mA 80mA
2019/12/27
7
第二节 霍尔集成电路
霍尔集成电路可分为线性型和开关型两大类。 线性型集成电路是将霍尔元件和恒流源、线性差 动放大器等做在一个芯片上,输出电压为伏级,比直 接使用霍尔元件方便得多。较典型的线性型霍尔器件 如UGN3501等。
2019/12/27
10
开关型霍尔集成电路 的外形及内部电路
Vcc
霍尔 元件
施密特 触发电路
OC门
双端输入、
.单端输出运放
Байду номын сангаас
2019/12/27
11
开关型霍尔集成电路 (OC门输出)的接线
请按以下电路,将下一页中的有关元件连接起来.
2019/12/27
12
开关型霍尔集成电路 与继电器的接线
?
开关型霍尔集成电路的史密特输出特性
线性型三端 霍尔集成电路
2019/12/27
8
线性型霍尔特性
右图示出了具有双 端差动输出特性的线性 霍尔器件的输出特性曲 线。当磁场为零时,它 的输出电压等于零;当 感受的磁场为正向(磁 钢的S极对准霍尔器件 的正面)时, 输出为 正;磁场反向时,输出 为负。
2019/12/27
请画出线性范围
9
开关型霍尔集成电路