spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析
spss非参数检验K多个独立样本检验KruskalWallis检验案例解析

spss-非参数检验-K多个独立样本检验
(Kruskal-Wallis检验)案例解析Kruskal-Wallis检验,也称为KW检验,是一种非参数检验方法,用于比较两个或多个独立样本的中位数是否相等。
它利用秩(等级)来进行统计分析,而不是直接使用原始数据。
假设有一个关于人们在不同饮料中的品尝体验的数据集。
数据集中包含了人们在红酒、白酒和啤酒中品尝的感受,包括甜度、酸度、苦度等。
现在想要比较这三种饮料在甜度方面的中位数是否有显著差异。
首先,对每种饮料的甜度进行排序,得到每个人的秩。
然后,将每个人的秩平均分到他们所对应的饮料中,得到每个饮料的平均秩。
接着,对这些平均秩进行比较。
如果红酒、白酒和啤酒的平均秩存在显著差异,则说明这三种饮料在甜度方面的中位数存在显著差异。
如果平均秩没有显著差异,则说明这三种饮料在甜度方面的中位数没有显著差异。
下面是一个具体的案例数据:
根据上述数据,我们可以计算出每种饮料的平均秩:
红酒: (2+1)/2 = 1.5
白酒: (4+3)/2 = 3.5
啤酒: (6+5)/2 = 5.5
然后对这些平均秩进行比较。
由于红酒的平均秩最小,白酒的平均秩次之,啤酒的平均秩最大,因此可以得出结论:这三种饮料在甜度方面的中位数存在显著差异,其中啤酒的甜度最高,白酒次之,红酒最低。
需要注意的是,KW检验的前提假设是各个样本是独立同分布的,且样本容量足够大。
如果样本不满足这些条件,可能会导致检验结果出现偏差。
此外,KW检验只能告诉我们是否存在显著差异,但不能告诉我们差异的具体原因。
如果想要了解更多信息,需要进行后续的统计分析。
SPSS统计分析教程独立样本T检验doc

SPSS统计分析教程-独立样本T检验.docSPSS统计分析教程:独立样本T检验一、简介独立样本T检验(Independent Sample T-test)是统计分析中常见的一种方法,主要用于比较两组数据的均值是否存在显著差异。
这种检验的前提假设是,两组数据来自正态分布的独立样本。
独立样本T检验在SPSS中的实现相对简单,下面将详细介绍其操作步骤和解读结果。
二、数据准备在进行独立样本T检验之前,需要准备好数据。
数据通常存储在Excel或SPSS数据文件中。
为了方便起见,我们将使用SPSS数据文件进行说明。
三、操作步骤1.打开SPSS软件,点击“分析”(Analyze)菜单,然后选择“比较均值”(Compare Means)中的“独立样本T检验”(Independent Sample T-test)。
2.在弹出的对话框中,将左侧的“组别”(Grouped By)字段设置为一组变量,如“性别”(Gender),将右侧的“组1”(Group 1)和“组2”(Group 2)字段设置为另一组变量,如“年龄”(Age)。
3.点击“确定”(OK)按钮开始进行独立样本T检验。
四、结果解读1.假设检验(Hypothesis Test):在结果中,可以看到假设检验的结果。
如果p值小于显著性水平(通常为0.05),则拒绝原假设(即两组数据的均值无显著差异),认为两组数据的均值存在显著差异。
反之,如果p值大于显著性水平,则接受原假设,认为两组数据的均值无显著差异。
2.均值(Mean):在结果中,可以看到每组数据的均值。
如果两组数据的均值存在显著差异,则可以通过均值的大小来判断哪组数据更好或更优。
3.标准差(Standard Deviation):在结果中,还可以看到每组数据的标准差。
标准差反映了数据分布的离散程度,标准差越大,说明数据分布越不集中。
4.t统计量(t-statistic):t统计量是用来衡量两组数据之间差异大小的一个指标。
spss非参数检验K多个独立样本检验KruskalWallis检验重点学习学习案例分析.doc

spss- 非参数检验 -K 多个独立样本检验(Kruskal-Wallis检验)案例解析2011-09-19 15:09最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS非-参数检验 --K 个独立样本检验(Kruskal-Wallis检验)。
还是以 SPSS教程为例:假设: HO:不同地区的儿童,身高分布是相同的H1:不同地区的儿童,身高分布是不同的不同地区儿童身高样本数据如下所示:提示:此样本数为 4 个(北京,上海,成都,广州)每个样本的样本量(观察数)都为 5 个即:K=4>3 n=5,此时如果样本逐渐增大,呈现出自由度为K-1 的平方的分布,(即指:卡方检验)点击“分析”——非参数检验——旧对话框—— K 个独立样本检验,进入如下界面:将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市( CS)变量”拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”(Kruskal-Wallis检验)点击确定运行结果如下所示:对结果进行分析如下:1:从“检验统计量a,b ”表中可以看出:秩和统计量为:13.900自由度为: 3=k-1=4-1下面来看看“秩和统计量”的计算过程,如下所示:假设“秩和统计量”为kw那么:其中: n+1/2为全体样本的“秩平均”Ri./ni为第i个样本的秩平均Ri. 代表第 i 个样本的秩和, ni 代表第 i 个样本的观察数)最后得到的公式为:北京地区的“秩和”为:秩平均 * 观察数( N) = 14.4*5=72上海地区的“秩和”为:8.2*5=41成都地区的“秩和”为:15.8*5=79广州地区的“秩和”为: 3.6*5=18接近 13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)2:“检验统计量 a,b ”表中可以看出:“渐进显著性为0.003 ,由于0.003<0.01所以得出结论:H1:不同地区的儿童,身高分布是不同的。
kruskal-wallis检验方法

kruskal-wallis检验方法Kruskal-Wallis检验方法。
Kruskal-Wallis检验方法是一种非参数检验方法,用于比较两个或多个独立样本的中位数是否相等。
它是对方差分析的一种推广,适用于数据不满足正态分布的情况。
在实际应用中,Kruskal-Wallis检验方法常常用于医学、社会科学等领域的数据分析。
Kruskal-Wallis检验的原假设是各组样本来自同一总体,备择假设是各组样本来自不同总体。
在进行Kruskal-Wallis检验时,首先需要对数据进行秩次转换,然后计算秩和值,最后根据计算出的检验统计量进行显著性检验。
Kruskal-Wallis检验方法的步骤如下:1. 将所有数据合并,并按照大小顺序排列;2. 对排列后的数据进行秩次转换,即用1, 2, 3, ... , n表示数据的大小顺序;3. 计算各组的秩和值,即将每组的秩次相加;4. 根据计算出的检验统计量进行显著性检验。
在进行Kruskal-Wallis检验时,需要注意以下几点:1. 样本独立性,各组样本应该是相互独立的;2. 数据类型,Kruskal-Wallis检验适用于等距数据或等比数据;3. 样本量,各组样本量应该相等或接近相等;4. 数据分布,Kruskal-Wallis检验对数据的分布没有要求,可以是正态分布、偏态分布或者其他分布。
Kruskal-Wallis检验方法的结果解释通常包括检验统计量、自由度和显著性水平。
如果显著性水平小于设定的显著性水平(通常为0.05),则拒绝原假设,认为各组样本来自不同总体;反之,则接受原假设,认为各组样本来自同一总体。
在实际数据分析中,Kruskal-Wallis检验方法常常与其他统计方法结合使用,例如配对t检验、Wilcoxon秩和检验等,以全面地分析数据的差异性和相关性。
总之,Kruskal-Wallis检验方法是一种非参数检验方法,适用于比较两个或多个独立样本的中位数是否相等。
spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析2011-09-19 15:09最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。
还是以SPSS教程为例:假设:HO: 不同地区的儿童,身高分布是相同的H1:不同地区的儿童,身高分布是不同的不同地区儿童身高样本数据如下所示:提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定运行结果如下所示:对结果进行分析如下:1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900自由度为:3=k-1=4-1下面来看看“秩和统计量”的计算过程,如下所示:假设“秩和统计量”为 kw 那么:其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)最后得到的公式为:北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72上海地区的“秩和”为:8.2*5=41成都地区的“秩和”为:15.8*5=79广州地区的“秩和”为:3.6*5=18接近13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003,由于0.003<0.01 所以得出结论:H1:不同地区的儿童,身高分布是不同的(注:文档可能无法思考全面,请浏览后下载,供参考。
kruskal-wallis检验法

kruskal-wallis检验法
Kruskal-Wallis检验法是一种非参数统计方法,用于比较多个独立样本的中位数是否有统计显著差异。
Kruskal-Wallis检验法的假设是各组样本是来自同一总体,而备择假设是各组样本来自于不同总体。
这一方法对所有的样本进行合并,然后按照值的大小进行排序,并给予排名。
然后,计算每个样本的排名和的平均值。
基于排名和的平均值来检验组间的差异是否达到统计显著水平。
如果Kruskal-Wallis检验的统计检验值小于显著性水平,则可以拒绝原假设,即认为各组样本的中位数有显著差异。
反之,如果统计检验值大于显著性水平,则不能拒绝原假设,即无法得出各组样本中位数存在显著差异的结论。
Kruskal-Wallis检验法广泛应用于实验设计中,特别是在具有不符合正态分布的数据和有序分类变量的情况下。
spss-非参数检验-K多个独立样本检验(-Kruskal-Wallis检验)案例解析

spss-非参数检验-K多个独立样本检验(-Kruskal-Wallis检验)案例解析spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析2011-09-19 15:09最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K 个独立样本检验( Kruskal-Wallis检验)。
还是以SPSS教程为例:假设:HO: 不同地区的儿童,身高分布是相同的H1:不同地区的儿童,身高分布是不同的不同地区儿童身高样本数据如下所示:提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定运行结果如下所示:对结果进行分析如下:1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900自由度为:3=k-1=4-1下面来看看“秩和统计量”的计算过程,如下所示:假设“秩和统计量”为 kw 那么:其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)最后得到的公式为:北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72上海地区的“秩和”为:8.2*5=41成都地区的“秩和”为:15.8*5=79广州地区的“秩和”为:3.6*5=18接近13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003,由于0.003<0.01 所以得出结论:H1:不同地区的儿童,身高分布是不同的。
SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景

SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景一、T检验1.1 样本均值比较T检验的使用前提1.正态性;(单样本、独立样本、配对样本T检验都需要)2.连续变量;(单样本、独立样本、配对样本T检验都需要)3.独立性;(独立样本T检验要求)4.方差齐性;(独立样本T检验要求)1.2 样本均值比较T检验的适用场景1.单样本T检验(比较样本均数和总体均数);2.操作:打开分析—比较均值—单样本t检验要求:正态性(可以用K-S检验法,在SPSS中的“分析”–“非参数检验”—“单样本”中;或者直接根据直方图、P-P图,Q-Q图来观察或根据偏度峰度法来分析)说明:由中心极限定理可知,即使原数据不符合正态分布,只要样本量足够大时样本均数分布仍然是正态的。
只要数据不是强烈的偏正态,没有明显的极端值,一般而言单样本t检验都是可以使用的,分析结果都是稳定的。
3.独立样本T检验(比较成组设计的两个样本);4.操作:打开分析—比较均值—独立样本t检验5.我们输入数据的时候,两个样本的数据是要在一列变量里的,另外还有一列二分类变量为这列因变量做标注。
要求:独立性、正态性(对正态性有耐受性)、方差齐性(影响大,检验更有必要,使用Levene’s检验,两样本T检验中提供Levene’s检验,如需更详细的检验结果可在“分析”–“描述统计”–“探索”中进行)说明:各样本相互独立,且均来自于正态分布的样本,各样本所在总体的方差相等;* 疑问:独立性怎么检验?有些数据可以根据现实环境判断;*6.配对样本T检验(如用药前和用药后的两个人群的样本、同一样品用两种方法的比较)7.操作:打开分析—比较均值—配对样本t检验要求:正态性(配对样本等价于单样本T检验,检验的是两个样本对应的差值,初始假设为差值等于0)二、单因素方差分析2.1 单因素方差分析的基本思想•基本思想:变异分解,总变异=随机变异+处理因素导致的变异,又可以分解为总变异=组内变异+组间变异,F=组间变异/组内变异,F 的值越大,处理因素的影响越大。
SPSS-非参数检验

SPSS-⾮参数检验⾮参数检验(卡⽅(Chi-square)检验、⼆项分布(Binomial)检验、单样本K-S(Kolmogorov-Smirnov)检验、单样本变量值随机性检验(Runs Test)、两独⽴样本⾮参数检验、多独⽴样本⾮参数检验、两配对样本⾮参数检验、多配对样本⾮参数检验)参数检验:T检验、F检验等常⽤来估计或检验总体参数,统称为参数检验⾮参数检验:这种不是针对总体参数,⽽是针对总体的某些⼀般性假设(如总体分布)的统计分析⽅法称⾮参数检验1.总体分布的卡⽅(Chi-square)检验(Q统计量)定义:总体分布的卡⽅检验适⽤于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
特点:⽐较适⽤于⼀个因素的多项分类数据分析。
总体分布的卡⽅检验的数据是实际收集到的样本数据,⽽⾮频数数据。
SPSS操作2.⼆项分布检验(Z统计量)⼆项分布:从这种⼆分类总体中抽取的所有可能结果,要么是对⽴分类中的这⼀类,要么是另⼀类,其频数分布称为⼆项分布⼆项分布检验:SPSS⼆项分布检验就是根据收集到的样本数据,推断总体分布是否服从某个指定的⼆项分布SPSS操作3.SPSS单样本变量值随机性检验(Z统计量)定义:单样本变量值的随机性检验是对某变量的取值出现是否随机进⾏检验,也称为游程检验(Run过程)SPSS操作4.SPSS单样本K-S检验(Z统计量)定义:单样本K-S检验是利⽤样本数据推断总体是否服从某⼀理论分布的⽅法,适⽤于探索连续型随机变量的分布形态SPSS操作5.两独⽴样本⾮参数检验定义:两独⽴样本的⾮参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来⾃的两个独⽴总体分布是否存在显著差异。
⼀般⽤来对两个独⽴样本的均数、中位数、离散趋势、偏度等进⾏差异⽐较检验。
检验⽅法:①两独⽴样本的Mann-Whitney U检验(主要检验总体均值有没有显著差异)②两独⽴样本的K-S检验③两独⽴样本的游程检验④两独⽴样本的极端反应检验SPSS操作6.多独⽴样本⾮参数检验定义:多独⽴样本⾮参数检验分析样本数据是推断样本来⾃的多个独⽴总体分布是否存在显著差异SPSS多独⽴样本⾮参数检验⼀般推断多个独⽴总体的均值或中位数是否存在显著差异检验⽅法:①多独⽴样本的中位数检验②多独⽴样本的K-W检验③多独⽴样本的Jonkheere-Terpstra检验SPSS操作7.两配对样本⾮参数检验定义:两配对样本(2 Related Samples)⾮参数检验是在对总体分布不很清楚的情况下,对样本来⾃的两相关配对总体分别进⾏检验。
SPSS非参数检验

SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
非参数检验的SPSS操作

第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
Kruskal-Wallis H检验(多个独立样本)-SPSS教程

Kruskal-Wallis H检验(多个独立样本)【详】-SPSS教程一、问题与数据某研究者认为工作年限多的人能更好地应对职场的压力。
为了验证这一假设,某研究招募了31名研究对象,调查了他们的工作年限,并测量了他们应对职场压力的能力。
根据工作年限,研究对象被分为4组:0-5年、6-10年、11-15年、>16年(变量名为working_time)。
利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为stress_score)。
部分数据如图1。
图1 部分数据二、对问题分析研究者想知道不同工作年限之间CWWS得分是否不同。
由于CWWS得分不服从正态分布(仅为模拟数据,实际使用时需要专业判断或结合正态性检验结果),因此可以使用Kruskal-Wallis H检验。
Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序分类变量是否存在差异。
使用Kruskal-Wallis H test检验时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或有序分类变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值。
三、SPSS操作3.1 Kruskal-Wallis H检验在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
如图2。
图2 Nonparametric Tests: Two or More Independent Samples点击Fields,在Fields下方选择Use custom field assignments,将变量stress_score放入Test Fields框中,将变量working_time放入Groups框中。
多独立样本Kruskal-Wallis检验的原理及其实证分析

2多独立样本Kr u s k a l-Wa llis检验的原理及其实证分析摘要:阐述了多独立样本Kruskal-Wallis检验的基本思想和如何构造K-W统计量,运用多独立样本Kruskal- Wallis检验方法进行了实例分析,并进行H检验的事后比较,给出应用Mathematica和SPSS 做出的相关图形。
关键词:Kruskal-Wallis检验;K-W统计量;Mathematica中图分类号:O212.7非参数检验在总体分布未知时有很大的优越性。
这时如果利用传统的假定分布已知的检验,就会产生错误甚至灾难。
非参数检验总是比传统检验安全。
但是在总体分布形式已知时,非参数检验就不如传统方法效率高。
这是因为非参数方法利用的信息要少些。
往往在传统方法可以拒绝零假设的情况,非参数检验无法拒绝。
但非参数统计在总体未知时效率要比传统方法高,有时要高很多。
是否用非参数统计方法,要根据对总体分布的了解程度来确定[1]。
笔者就K r uskal-Wal lis检验方法及其在经济研究中的应用进行分析,以期对经济分析领域的实证研究提供借鉴。
1多独立样本Kruskal-Wallis检验的基本思想多独立样本K r uskal-Wal lis检验(又称H检验)的实质上是两独立样本时的M ann-Whi tney U检验在多个独立样本下的推广,用于检验多个总体的分布是否存在显著差异。
其原假设是:多个独立样本来自的多个总体的分布无显著差异。
多独立样本K r uskal-Wal lis检验的基本思想是:首先,将多组样本数混合并按升序排序,求出各变量值的秩;然后,考察各组秩的均值是否存在显著差异。
如果各组秩的均值不存在显著差异,则认为多组数据充分混合,数值相差不大,可以认为多个总体的分布无显著差异;反之,如果各组秩的均值存在显著差异,则是多组数据无法混合,有些组的数值普遍偏大,有些组的数值普遍偏小,可认为多个总体的分布存在显著差异,至少有一个样本不同于其他样本。
第七章SPSS的非参数检验

H
67
分析步骤: 首先,将多组样本混合按升序排序,并求出混合样
本的中位数。 然后,分别计算各组样本中大于和小于上述中位数
的样本个数,形成列联表。 接着,利用卡方检验方法分析各组样本来自的总体
对于上述中位数的分布是否一致。如果各组中大 于(或小于)上述中位数的样本比例大致相同, 则可认为多组样本有共同的中位数,它们来自的 总体的中位数没有显著差异。反之,则有显著差 异。 最后,进行统计决策。
在小样本下,依据U统计量的概率P值进行决策 ;在大样本下,则依据Z统计量的概率P值进行决 策。
若概率P值小于显著性水平 ,则拒绝原假设, 即认为样本来自的两总体分布存在显著差异;反 之,则差异不显著。
具体计算举例以课本P199页数据为例
H
43
曼-惠特尼U检验SPSS基本操作
(以两独立样本使用寿命为例)
H
4
基本思想
将总体的取值范围分成有限个互不相容的子集
,从总体中抽取一个样本,考察样本观察值落到每
个子集中的实际频数,并按假设的总体分布计算每
个子集的理论频数,最后根据实际频数和理论频数
的差构造卡方统计量,即
2
k i1
(
fi0
fie)2 fi0
当原假设成立时,统计量服从卡方分布。以此来检
验假设总体的分布是否成立。
四城市周岁儿童身高样本数据
城市 身高样本数据
北京 上海 成都 广州
H
79,75,78,76,
72
72,71,74,74,
73
76,78,78,77,
75
70,72,71,71,
69
66
中位数检验
基本思想
概念:通过对多组独立样本的分析,检验它们 来自的总体的中位数是否存在显著差异。
spss的多独立样本的非参数检验论文

4.为研究烫伤后不同时间切痂对大鼠肝脏三磷酸腺苷(ATP)的影响,现将30只雄性大鼠随机分成3组,每组10只:A组为烫伤无切痂,B组为烫伤后24小时时切痂组,C组为烫伤后96小时切痂组,全部大鼠在烫伤168小时后测量其肝脏ATP含量。
试检验3组大鼠肝脏ATP总数均数是否相同。
表。
大鼠烫伤后肝脏ATP含量(mg)解:由题意可知,通过分析多组独立样本的数据,推断样本来自多个总体的中位数或分布是否存在差异,所以可以选用多独立样本的Kruskal-Wallis检验数据的组织方式如下:30只雄性大鼠的多独立样本非参数检验的基本操作步骤如下:(1)选择菜单:【Nnalyze】→【Nonparametric Tests】→【K Independent Samples】于是出现以下所示的窗口。
(2)、选择ATP 到【Test Variable List】框中。
(3)、指定分组的变量到【Grouping Variable】框,并按Define Range按钮给出组标志值的而取之范围。
(4)、在【Test Type】框中选择三种检验方法。
一、中位数检验结果如下图所示表(a)三组雄性大鼠的中位数检验结果(一)·表(b)三组雄性大鼠的中位数检验结果(二)表(a)与表(b)中,三组共同的中位数为9.5150,计算出卡方统计量为10.400,概率P-值为0.006。
如果显著性水平α为0.05,由于概率P-值小于显著性水平α,应拒绝原假设,认为三组雄性大鼠的分布存在显著性差异。
二、多独立样本Kruskal-Wallis检验结果表(c)三组雄性大鼠的Kruskal-Wallis检验结果(一)表(d)三组雄性大鼠的Kruskal-Wallis检验结果(二)由表(c)和表(d)可知:三组雄性大鼠的平均秩分别为8.7、23.6、14.2,K-W 统计量为14.65,概率P值为0.001。
如果显著性水平α为0.05,由于概率P-值小于显著性水平α,应拒绝原假设,认为三组雄性大鼠的平均秩差异是显著的,总体分布存在显著性差异。
kruskal-wallis检验方法

kruskal-wallis检验方法Kruskal-Wallis检验方法。
Kruskal-Wallis检验方法是一种非参数检验方法,用于比较三个以上独立样本的中位数是否相等。
它是对方差分析的一种推广,适用于不满足方差齐性和正态性假设的情况。
在实际应用中,Kruskal-Wallis检验方法常常用于分析不同组别之间的差异,例如不同药物治疗组的疗效比较、不同教学方法对学生成绩的影响等。
Kruskal-Wallis检验的原假设是各总体的中位数相等,备择假设是至少有一对总体的中位数不相等。
在进行Kruskal-Wallis检验时,首先需要对各组数据进行合并,然后对合并后的数据进行秩次排序。
接着,计算各组的秩和,并根据计算出的检验统计量进行显著性检验。
Kruskal-Wallis检验方法的步骤如下:1. 将所有样本数据合并,并进行秩次排序。
2. 计算各组的秩和。
3. 计算检验统计量H。
4. 根据显著性水平和自由度查找临界值,进行假设检验。
在进行Kruskal-Wallis检验时,需要注意以下几点:1. 样本数据的独立性,各组样本数据应该是相互独立的。
2. 样本数据的同分布性,各组样本数据应该来自于同一种分布。
3. 样本数据的等方差性,各组样本数据的方差应该是相等的。
4. 样本数据的连续性,Kruskal-Wallis检验对于连续变量的比较效果更好。
Kruskal-Wallis检验方法的优点在于它不需要对数据进行正态性检验和方差齐性检验,因此更加灵活和适用于实际应用中的各种情况。
但是,Kruskal-Wallis检验方法也有一些局限性,例如对于样本量较小的情况,检验结果可能不够稳定。
在实际应用中,我们可以借助统计软件如SPSS、R等进行Kruskal-Wallis检验的计算和分析。
通过对不同组别数据的比较,我们可以更加客观地了解各组之间的差异,为进一步的研究和决策提供科学依据。
总之,Kruskal-Wallis检验方法是一种非参数检验方法,适用于比较三个以上独立样本的中位数是否相等的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析2011-09-19 15:09
最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。
还是以SPSS教程为例:
假设:HO: 不同地区的儿童,身高分布是相同的
H1:不同地区的儿童,身高分布是不同的
不同地区儿童身高样本数据如下所示:
提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个
即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的
分布,(即指:卡方检验)
点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:
将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定
运行结果如下所示:
对结果进行分析如下:
1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900
自由度为:3=k-1=4-1
下面来看看“秩和统计量”的计算过程,如下所示:
假设“秩和统计量”为 kw 那么:
其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)
最后得到的公式为:
北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72
上海地区的“秩和”为:8.2*5=41
成都地区的“秩和”为:15.8*5=79
广州地区的“秩和”为:3.6*5=18
接近13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)
2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003,由于
0.003<0.01 所以得出结论:
H1:不同地区的儿童,身高分布是不同的。