2015年广东省高考数学试卷文科(高考)

合集下载

【推荐】2015年广东省高考数学试卷(文科)

【推荐】2015年广东省高考数学试卷(文科)

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M ∩N=( ) A .{0.﹣1} B .{0} C .{1} D .{﹣1,1}2.(5分)已知i 是虚数单位,则复数(1+i )2=( ) A .2i B .﹣2i C .2D .﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y=+sin2B .y=2﹣cosC .y=2+D .y=2+sin4.(5分)若变量,y 满足约束条件,则=2+3y 的最大值为( )A .2B .5C .8D .105.(5分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a=2,c=2,cosA=.且b <c ,则b=( ) A .B .2C .2D .36.(5分)若直线 l 1和l 2 是异面直线,l 1在平面 α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8 D .1 8.(5分)已知椭圆+=1(m >0 )的左焦点为F 1(﹣4,0),则m=( )A .2B .3C .4D .99.(5分)在平面直角坐标系Oy 中,已知四边形 ABCD 是平行四边形,=(1,﹣2),=(2,1)则•=( )A .5B .4C .3D .210.(5分)若集合E={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N},F={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N},用card ()表示集合中的元素个数,则 card (E )+card (F )=( ) A .200 B .150 C .100 D .50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣2﹣3+4>0的解集为 .(用区间表示)12.(5分)已知样本数据 1,2,…,n 的均值=5,则样本数据 21+1,22+1,…,2n +1 的均值为 .13.(5分)若三个正数 a ,b ,c 成等比数列,其中a=5+2,c=5﹣2,则b= .坐标系与参数方程选做题14.(5分)在平面直角坐标系Oy 中,以原点O 为极点,轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=﹣2,曲线C 2的参数方程为 (t 为参数),则C 1与C 2交点的直角坐标为 .几何证明选讲选做题15.如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB=4.CE=2,则AD= .三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA 的距离.19.(14分)设数列 {a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=,a 3=,且当n ≥2时,4S n+2+5S n =8S n+1+S n ﹣1. (1)求a 4的值;(2)证明:{a n+1﹣a n }为等比数列; (3)求数列{a n }的通项公式.20.(14分)已知过原点的动直线l 与圆C 1:2+y 2﹣6+5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数 ,使得直线L :y=(﹣4)与曲线 C 只有一个交点?若存在,求出的取值范围;若不存在,说明理由.21.(14分)设 a 为实数,函数 f ()=(﹣a )2+|﹣a|﹣a (a ﹣1). (1)若f (0)≤1,求a 的取值范围; (2)讨论 f ()的单调性;(3)当a ≥2 时,讨论f ()+ 在区间 (0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1} B.{0} C.{1} D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=+sin2 B.y=2﹣cos C.y=2+D.y=2+sin【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣+sin(﹣2)=﹣(+sin2);是奇函数;对于B,(﹣)2﹣cos(﹣)=2﹣cos;是偶函数;对于C,,是偶函数;对于D,(﹣)2+sin(﹣)=2﹣sin≠2+sin,2﹣sin≠﹣(2+sin);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣)与f()的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量,y满足约束条件,则=2+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由=2+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时最大.由,解得,即B(4,﹣1).此时的最大值为=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A. B.2 C.2 D.3【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线 l 1和l 2 是异面直线,l 1在平面 α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交【分析】可以画出图形说明l 与l 1,l 2的位置关系,从而可判断出A ,B ,C 是错误的,而对于D ,可假设不正确,这样l 便和l 1,l 2都不相交,这样可推出和l 1,l 2异面矛盾,这样便说明D 正确. 【解答】解:A .l 与l 1,l 2可以相交,如图:∴该选项错误;B .l 可以和l 1,l 2中的一个平行,如上图,∴该选项错误;C .l 可以和l 1,l 2都相交,如下图:,∴该选项错误;D .“l 至少与l 1,l 2中的一条相交”正确,假如l 和l 1,l 2都不相交; ∵l 和l 1,l 2都共面; ∴l 和l 1,l 2都平行;∴l 1∥l 2,l 1和l 2共面,这样便不符合已知的l 1和l 2异面; ∴该选项正确. 故选:D .【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.(﹣4,0),则m=()8.(5分)已知椭圆+=1(m>0 )的左焦点为F1A.2 B.3 C.4 D.9(﹣4,0),可得25﹣m2=16,【分析】利用椭圆+=1(m>0 )的左焦点为F1即可求出m.(﹣4,0),【解答】解:∵椭圆+=1(m>0 )的左焦点为F1∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系Oy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card()表示集合中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣2﹣3+4>0的解集为 (﹣4,1) .(用区间表示) 【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于2+3﹣4<0,所以(+4)(﹣1)<0,所以﹣4<<1;所以不等式的解集为(﹣4,1); 故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据 1,2,…,n 的均值=5,则样本数据 21+1,22+1,…,2n +1 的均值为 11 .【分析】利用平均数计算公式求解【解答】解:∵数据1,2,…,n 的平均数为均值=5, 则样本数据 21+1,22+1,…,2n +1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数 a ,b ,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1 .【分析】由已知可得,b 2=ac ,代入已知条件即可求解b 【解答】解:∵三个正数 a ,b ,c 成等比数列, ∴b 2=ac , ∵a=5+2,c=5﹣2, ∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系Oy中,以原点O为极点,轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD= 3 .【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan (α+)===﹣3;(2)====1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125++0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125++0.005+0.0025)×20=1,解方程可得=0.0075,∴直方图中的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD 是长方形,可得BC ∥AD ,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC ⊥平面PDC ,即可证明BC ⊥PD ; (3)利用等体积法,求点C 到平面PDA 的距离.【解答】(1)证明:因为四边形ABCD 是长方形,所以BC ∥AD , 因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA ; (2)证明:因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,BC ⊂面ABCD , 所以BC ⊥平面PDC , 因为PD ⊂平面PDC , 所以BC ⊥PD ;(3)解:取CD 的中点E ,连接AE 和PE , 因为PD=PC ,所以PE ⊥CD , 在Rt △PED 中,PE===.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD . 由(2)知:BC ⊥平面PDC , 由(1)知:BC ∥AD , 所以AD ⊥平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD . 设点C 到平面PDA 的距离为h . 因为V C ﹣PDA =V P ﹣ACD , 所以,所以h==,所以点C 到平面PDA 的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列 {a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=,a 3=,且当n ≥2时,4S n+2+5S n =8S n+1+S n ﹣1. (1)求a 4的值;(2)证明:{a n+1﹣a n }为等比数列; (3)求数列{a n }的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+2+5S n =8S n+1+S n ﹣1(n ≥2),变形得到4a n+2+a n =4a n+1(n ≥2),进一步得到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n }的通项公式.【解答】(1)解:当n=2时,4S 4+5S 2=8S 3+S 1,即,解得:;(2)证明:∵4S n+2+5S n =8S n+1+S n ﹣1(n ≥2),∴4S n+2﹣4S n+1+S n ﹣S n ﹣1=4S n+1﹣4S n (n ≥2),即4a n+2+a n =4a n+1(n ≥2), ∵,∴4a n+2+a n =4a n+1.∵=.∴数列{}是以=1为首项,公比为的等比数列; (3)解:由(2)知,{}是以为首项,公比为的等比数列,∴. 即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n }的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l 与圆C 1:2+y 2﹣6+5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数 ,使得直线L :y=(﹣4)与曲线 C 只有一个交点?若存在,求出的取值范围;若不存在,说明理由.【分析】(1)通过将圆C 1的一般式方程化为标准方程即得结论;(2)设当直线l 的方程为y=,通过联立直线l 与圆C 1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L 与圆C 1的方程,利用根的判别式△=0及轨迹C 的端点与点(4,0)决定的直线斜率,即得结论. 【解答】解:(1)∵圆C 1:2+y 2﹣6+5=0, 整理,得其标准方程为:(﹣3)2+y 2=4, ∴圆C 1的圆心坐标为(3,0);(2)设当直线l 的方程为y=、A (1,y 1)、B (2,y 2), 联立方程组,消去y 可得:(1+2)2﹣6+5=0, 由△=36﹣4(1+2)×5>0,可得2< 由韦达定理,可得1+2=,∴线段AB 的中点M 的轨迹C 的参数方程为,其中﹣<<,∴线段AB 的中点M 的轨迹C 的方程为:(﹣)2+y 2=,其中<≤3;(3)结论:当∈(﹣,)∪{﹣,}时,直线L :y=(﹣4)与曲线C 只有一个交点.理由如下:联立方程组,消去y,可得:(1+2)2﹣(3+82)+162=0,令△=(3+82)2﹣4(1+2)•162=0,解得=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=(﹣4)与曲线C只有一个交点时,的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f()=(﹣a)2+|﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f()的单调性;(3)当a≥2 时,讨论f()+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f()的解析式,通过当<a时,当≥a时,利用二次函数f()的对称轴求解函数的单调区间即可.(3)化简F()=f()+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f()==,当<a时,函数f()的对称轴为:==a+>a,y=f()在(﹣∞,a)时是减函数,当≥a时,函数f()的对称轴为:==a﹣<a,y=f()在(a,+∞)时是增函数,(3)F()=f()+=,,当<a时,=,所以,函数F()在(0,a)上是减函数.当≥a时,因为a≥2,所以,F′()=═,所以,函数F()在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F()有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当>0且→0时,F()→+∞;当→+∞时,F()→+∞,所以函数F()有两个零点.综上所述,当a=2时,F()有一个零点,a>2时F()有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。

2015高考真题——数学文(广东卷)Word版含答案

2015高考真题——数学文(广东卷)Word版含答案

2015高考真题——数学文(广东卷)Word版含答案绝密★启用前试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合,,则()A.B.C.D.2、已知是虚数单位,则复数()A.B.C.D.3、下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.4、若变量,满足约束条件,则的最大值为()A.B.C.D.5、设的内角,,的对边分别为,,.若,,,且,则()A.B.C.D.6、若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交B.与,都相交C.至多与,中的一条相交D.与,都不相交7、已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()A.B.C.D.8、已知椭圆()的左焦点为,则()A.B.C.D.9、在平面直角坐标系中,已知四边形是平行四边形,,,则()A.B.C.D.10、若集合,,用表示集合中的元素个数,则()A.B.C.D.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11、不等式的解集为.(用区间表示)12、已知样本数据,,,的均值,则样本数据,,,的均值为.13、若三个正数,,成等比数列,其中,,则.(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.15、(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知.求的值;求的值.17、(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.求直方图中的值;求月平均用电量的众数和中位数;在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?18、(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.证明:平面;证明:;求点到平面的距离.19、(本小题满分14分)设数列的前项和为,.已知,,,且当时,.求的值;证明:为等比数列;求数列的通项公式.20、(本小题满分14分)已知过原点的动直线与圆相交于不同的两点,.求圆的圆心坐标;求线段的中点的轨迹的方程;是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.21、(本小题满分14分)设为实数,函数.若,求的取值范围;讨论的单调性;当时,讨论在区间内的零点个数.2015年普通高等学校招生全国统一考试(广东卷)数学(文科)参考答案一、选择题1.C2.D3.A4.C5.B6.A7.B8.C9.D 10.D二、填空题11. 【答案】12. 【答案】13. 【答案】14. 【答案】15. 【答案】16. 【答案】(1);(2).17. 【答案】(1);(2),;(3).18. 【答案】(1)证明见解析;(2)证明见解析;(3).(1)因为四边形是长方形,所以,因为平面,平面,所以平面(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以(3)取的中点,连结和,因为,所以,在中,,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是19. 【答案】(1);(2)证明见解析;(3).(1)当n=2时,4解得:(2)因为即×,所以数列(3)由知:数列是以为首项,公比为的等比数列,所以即,所以数列是以为首项,公差为的等差数列,所以,即,所以数列的通项公式是20. 【答案】(1);(2);(3)存在,或.(1)圆(2)设线段AB的中点M由圆的性质可得垂直于直线l设直线l的方程为所以因为动直线l与圆相交,所以所以或所以满足即(3)由题意知直线l表示过定点T斜率为k的直线结合图形,按逆时针方向运动到的圆弧,根据对称性,只需讨论在x轴对称下方的圆弧。

2015广东高考文科数学试题及答案

2015广东高考文科数学试题及答案

绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x =+ B .2cos y x x =- C .122x x y =+D .sin 2y x x =+ 4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 5、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos 2A =且b c <,则b =( )AB .2 C. D .36、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .18、已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 10、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r sE =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11、不等式2340x x --+>的解集为 .(用区间表示)12、已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13、若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值. 17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. ()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.。

DA2015年高考数学广东文

DA2015年高考数学广东文

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若集合{}1,1M =-,{}2,1,0N =-,则M N =A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C 【解析】MN 是指含有集合M 和N 共同元素的集合,故MN ={}1。

2.已知i 是虚数单位,则复数()21i += A .2- B .2 C .2i - D .2i【答案】D【解析】()221i 12i i 12i 12i +=++=+-=。

3.下列函数中,既不是奇函数,也不是偶函数的是A .2sin y x x =+B .2cos y x x =-C .122xx y =+ D .sin 2y x x =+ 【答案】A【解析】B ,C ,D 中的函数的定义域均为R ,关于原点对称,对于B ,∵()()()22cos f x x x x -=---=-()cos =x f x -,∴2cos y x x =-是偶函数;对于C ,∵()()112222x x x x f x f x ---=+=+=,∴2xy =+ 12x是偶函数;对于D ,∵()()sin 2f x x x -=-+-()sin 2x x f x =--=-,∴sin 2y x x =+是奇函数. 4.若变量x ,y 满足约束条件2204,x y x y x +≤⎧⎪+≥⎨⎪≤⎩,,则23z x y =+的最大值为A .10B .8C .5D .2【答案】C【解析】如图1,作可行域,作直线230x y +=,平移交点A 时,z 取得最大值,由22,4x y x +=⎧⎨=⎩得()4,1A -, 所以()max 24315z =⨯+⨯-=。

5.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =AB .2C .D .3【答案】B【解析】由余弦定理得(22222b b =+-⨯⨯解得2b =或4b =,因为b c <,所以2b =。

2015年广东高考数学试卷文科

2015年广东高考数学试卷文科

绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.若集合{1,1}M =-,{2,1,0}N =-,则M N ⋂=( )A.{0,1}-B.{1}C.{0}D.{1,1}-2.已知i 是虚数单位,则复数2(1)i +=( ) A.2i B.2i - C.2 D.2-3.下列函数中,既不是奇函数,也不是偶函数的是( )A.sin2y x x =+ 2B.cos y x x =- 1C.22x x y =+2D.sin y x x =+ 4.若变量,x y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A.2B.5C.8D.10 5.设ABC ∆的内角A,B,C 的对边分别为a,b,c,若3a=2,c=23,cos A 2=且b c <,则b =( )A.3B.22C.2D.36.若直线1l 与2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )12A.,l l l 与都不相交 12B.,l l l 与都相交12C.,l l l 至多与中的一条相交 12D.,l l l 至少与中的一条相交7.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1 8.已知椭圆2221025x y m m +=>()的左焦点为1-F (4,0),则=m ( ) A.2 B.3 C.4D.9 9.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,(1,2),(2,1)AB AD =-=则AD AC =( )A.5B.4C.3D.2 10.若集合{}(,,,)|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,{}(,,,)|04,04,,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=( )A.200B.150C.100D.50二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11. 不等式2340x x --+>的解集为 .(用区间表示)12. 已知样本数据12,,,n x x x 的均值5x =,则样本1221,21,,21n x x x +++的均值为 .13. 若三个正数a,b,c 成等比例,其中526,526a c =+=-,则b = .(二)选做题(14-15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程(cos sin )2ρθθ+=-,曲线2C 的参数方程为222x t y t⎧=⎪⎨=⎪⎩(t 为参数). 则1C 与2C 交点的直角坐标为 .15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 延长线上一点,过点E 作圆O 的切线,切点为C 过点A 作直线EC 的垂线,垂足为D ,若4,23AB CE ==,则AD = .图1三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知tan 2a =.(1)求)4tan(πα+的值; (2)求2sin2sin sin cos cos21a a a a a +--的值.17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2,(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.19.(本小题满分14分) 设数列{}n a 的前n 项和为*,n S n ÎN ,已知123351,,,24a a a ===且当2n ³时,211458n n n n S S S S ++-+=+. (1)求4a 的值;(2)证明:⎭⎬⎫⎩⎨⎧-+n n a a 211为等比数列; (3)求数列{}n a 的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B.(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21.(本小题满分14分)设a 为实数,函数2()()(1)f x x a x a a a =-+---.(1)若1)0(≤f ,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2≥a 时,讨论4()f x x +在区间),0(+∞内的零点个数.。

2015年广东省高考文科数学试题及答案

2015年广东省高考文科数学试题及答案

2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2. 已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3. 下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .25. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =cos A =,且b c <,则b =( )AB .2 C. D .3 6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .510. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示)12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13. 若三个正数a ,b ,c 成等比数列,其中5a =+5c =-则b = .(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . ()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.参考答案1-5 BADBC 6-10 DBBAA11、(-4,1) 12、10 13、1 14、(2,-4) 15、3 16、(1)解:tan tan4tan()41tan tan 4tan 11tan παπαπααα++=-+=- ∵ tan 2α= ∴21tan()34121πα++==-- (2)222222222sin sin cos cos 21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin 22sin cos ααα=∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式17、解:(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x = (2)众数:230中位数:取频率直方图的面积平分线 0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+=(3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯= [260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户 ∴[220,240)抽取:2511555⨯=户 18、解:(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面 ∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD ∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CD PE ⊂面PCD ,PE ⊥CD ∴ PE ⊥面ABCD 而BC ⊂面ABCD ∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E ∴ BC ⊥面PCD PD ⊂面PCD ∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯在等腰三角形PCD中,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯=∴P-ADC 1V 93==设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯=∴163h =⨯⨯∴h =,即:点C 到平面PDA19、解:(1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=2-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列(3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列111411()()22{}2,411()22=2+4()2121()()221n n n n n n n n n n na aa aan n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20、(1)解:2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kx x y x x k x x k x x x x k k ky y k x k k y k x xx x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即29535(,3]13x k ∴=∈+(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时:21、解:(1)222(0)||(1)||||f a a a a a a a a a a =+--=+-+=+ 10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述: (2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+>∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(min ==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点. 当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与aa g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >, 所以当),(+∞∈a x 时,)()(x g x f 与有一个交点; 故当2>a 时,()y f x =与xx g 4)(-=有两个交点.11 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。

2015高考真题广东卷文科数学真题答案

2015高考真题广东卷文科数学真题答案

绝密★启用前 试卷类型:B一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C 【解析】 试题分析:{}1MN =,故选C .考点:集合的交集运算.2. 已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 【答案】D考点:复数的乘法运算.3. 下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+ B .2cos y x x =- C .122x x y =+ D .sin 2y x x =+ 【答案】A 【解析】试题分析:函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函数.故选A .考点:函数的奇偶性.4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C考点:线性规划.5. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =且b c <,则b =( )A B .2 C . D .3 【答案】B 【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以(22222b b =+-⨯⨯即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B . 考点:余弦定理.6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A考点:空间点、线、面的位置关系.7. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B . 考点:古典概型.8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 【答案】C 【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 【答案】D 【解析】试题分析:因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB +A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D .考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1- 【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-. 考点:一元二次不等式.12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 【答案】11考点:均值的性质.13. 若三个正数a ,b ,c 成等比数列,其中5a =+,5c =-b = .【答案】1 【解析】试题分析:因为三个正数a ,b ,c成等比数列,所以(2551b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 . 【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1.考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ; ()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3【解析】试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE中,PE ===,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D S h S ∆A ∆P A ⋅PE ===,所以点C 到平面D P A考点:1、线面平行;2、线线垂直;3、点到平面的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值; ()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212nna n-⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.。

2015年高考真题-文科数学(广东卷)

2015年高考真题-文科数学(广东卷)
三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)
16、(本小题满分12分)已知 .
求 的值; 求 的值.
17、(本小题满分12分)某城市 户居民的月平均用电量(单位:度),以 , , , , , , 分组的频率分布直方图如图 .
求直方图中 的值;
求月平均用电量的众数和中位数;
A. B. C. D.
4、若变量 , 满足约束条件 ,则 的最大值为()
A. B. C. D.
5、设 的内角 , , 的对边分别为 , , .若 , , ,且 ,则 ()
A. B. C. D.
6、若直线 和 是异面直线, 在平面 内, 在平面 内, 是平面 与平面 的交线,则下列命题正确的是()
A. 至少与 中的一条相交B. 与 都相交C. 至多与 中的一条相交D. 与 都不相交
在月平均用电量为 , , ,
的四组用户中,用分层抽样的方法抽取 户居民,
则月平均用电量在 的用户中应抽取多少户?
18、(本小题满分14分)如图 ,三角形 所在的平面与长方形 所在的平面垂直, , ,到平面 的距离.
19、(本小题满分14分)设数列 的前 项和为 , .已知 , , ,且当 时, .
7、已知 件产品中有 件次品,其余为合格品.现从这 件产品中任取 件,恰有一件次品的概率为()
A. B. C. D.
8、已知椭圆 ( )的左焦点为 ,则 ()
A. B. C. D.
9、在平面直角坐标系 中,已知四边形 是平行四边形, , ,则 ()
A. B. C. D.
10、若集合 ,
,用 表示集合 中的元素个数,则 ()
14、(坐标系与参数方程选做题)在平面直角坐标系 中,以原点 为极点, 轴的正半轴为极轴建立极坐标系.曲线 的极坐标方程为 ,曲线 的参数

2015年广东高考(文科)数学试卷及答案-word版【2】

2015年广东高考(文科)数学试卷及答案-word版【2】

绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题, 满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

{1,1}M =-,{2,1,0}N =-,则M N ⋂=( )A.{0,1}-B.{1}C.{0}D.{1,1}-2.已知i 是虚数单位,则复数2(1)i +=( ) A.2i B.2i-C.2D.2-3.下列函数中,既不是奇函数,也不是偶函数的是( )A.sin 2y x x =+ 2B.cos y x x=-1C.22x xy =+2D.sin y x x =+ 4.若变量,x y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A.2B.5C.8D.10 5.设ABC ∆的内角A,B,C 的对边分别为a,b,c,若A b c <,则b =( ) A.3B. C.2D.6.若直线1l 与2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )12A.,l l l 与都不相交 12B.,l l l 与都相交12C.,l l l 至多与中的一条相交12D.,l l l 至少与中的一条相交7.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.18.已知椭圆2221025x y m m +=>()的左焦点为1-F (4,0),则=m ( ) A.2 B.3 C.4D.99.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,(1,2),(2,1)AB AD 则AD AC( )A.5B.4C.3D.2 10.若集合{}(,,,)|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,{}(,,,)|04,04,,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=( )A.200B.150C.100D.50二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11. 不等式2340x x --+>的解集为 .(用区间表示) 12. 已知样本数据12,,,n x x x 的均值5x =,则样本1221,21,,21n x x x +++的均值为 .13. 若三个正数a,b,c 成等比例,其中526,526a c =+=-,则b = .(二)选做题(14-15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题) 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程(cos sin )2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数). 则1C 与2C 交点的直角坐标为 .15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 延长线上一点,过点E 作圆O 的切线,切点为C 过点A 作直线EC 的垂线,垂足为D ,若4,23AB CE ==,则AD = .图1三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤) 16.(本小题满分12分) 已知tan 2.(1)求)4tan(πα+的值;(2)求2sin 2sinsin coscos21的值.17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图2,(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240的用户中应抽取多少户?18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.19.(本小题满分14分)设数列n a 的前n 项和为*,n S n N ,已知123351,,,24a a a 且当2n 时,211458nn n n S S S S .(1)求4a 的值;(2)证明:⎭⎬⎫⎩⎨⎧-+n n a a 211为等比数列; (3)求数列n a 的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B.(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21.(本小题满分14分)设a 为实数,函数2()()(1)f x x a x a a a .(1)若1)0(≤f ,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2≥a 时,讨论4()f x x在区间),0(+∞内的零点个数.2015年普通高等学校招生全国统一考试(广东卷)数学(文科)-答案1、【答案】B 【解析】}1{=⋂N M2、【答案】A 【解析】()()i i i i 221122=++=+3、【答案】D 【解析】A 为奇函数,B 和C 为偶函数,D 为非奇非偶函数4、【答案】B 【解析】由题意可做出如图所示阴影部分可行域,则目标函数23z x y =+过点(4,-1)时z 取得最大值为max 243(1)5z =⨯+⨯-=5、【答案】C 【解析】由余弦定理得,23344122cos 2222=-+=-+=b b bc a c b A ,化简得0862=+-b b ,解得42或=b ,因为b c <,2b =所以,6、【答案】D7、【答案】B 【解析】设5件产品中2件次品分别标记为A ,B ,剩余的3件合格品分别设为a ,b ,c. 则从5件产品中任取2件,共有10种情况,分别为(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c )、(a ,b )、(a ,c )、(b ,c )、(A ,B )其中,恰有一件次品的情况有6种,分别是(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c ),则其概率为0.6106= 8、【答案】B 【解析】因为椭圆的左焦点为(-4,0),则有4=c ,且椭圆的焦点在x 轴上,所以有916252522=-=-=c m ,因为,0>m 所以3=m9、【答案】A 【解析】因为四边形ABCD 是平行四边形,所以)1,3()1,2()2,1(-=+-=+=AD AB AC ,则5)1(132=-⨯+⨯=⋅AC AD10、【答案】A 【解析】当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种;当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种; 当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种;当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=.当0t =时,u 取1,2,3,4中的一个,有4种;当1t =时,u 取2,3,4中的一个,有3种; 当2t =时,u 取3,4中的一个,有2种;当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种 同理,v 、w 的取值也有10种,所以()card F 1010100=⨯= 所以()()card card F 100100200E +=+=11、【答案】(-4,1) 【解析】解不等式2340x x --+> 得14<<-x ,所以不等式的解集为(-4,1) 12、【答案】10 【解析】由题意知,当样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =时,样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=13、【答案】1 【解析】由等比中项性质可得,1)62(5)625)(625(222=-=-+==ac b ,由于b 为正数,所以b=114、【答案】(2,-4) 【解析】曲线1C 的直角坐标系方程为2-=+y x ,曲线2C 的直角坐标方程为x y 82=. 联立方程⎩⎨⎧=-=+x y y x 822,解得⎩⎨⎧-==42y x ,所以1C 与2C 交点的直角坐标为(2,-4) 15、【答案】3 【解析】由切割线定理得:2CE =BE AE ,所以,BE BE (+4)=12解得:BE=2BE 或=-6(舍去)连结OC ,则OC DE AD DE OC//AD ∴⊥,⊥,OC OE 26=,3AD AE 4OC AE AD OE ⨯∴∴===16、【解析】 (1)tan tan4tan()41tan tan 4tan 11tan παπαπααα++=-+=- ∵ tan 2α= ∴21tan()34121πα++==-- (2)222222222sin sin cos cos 21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin22sin cos ααα=∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式17、【解析】 (1)(0.002+0.0025+0.005+x )⨯20=1∴0.0075x = (2)众数:230中位数:取频率直方图的面积平分线 0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+=(3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯= [260,280):0.0052010010⨯⨯= [280,300):0.0025201005⨯⨯= 共计:55户 ∴[220,240)抽取:2511555⨯=户 18、【解析】(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面 ∴BC PDA 平面 (2)取DC 中点E ,连接PE∵PC=PD ∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CD PE ⊂面PCD ,PE ⊥CD ∴ PE ⊥面ABCD 而BC ⊂面ABCD ∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E ∴ BC ⊥面PCD PD ⊂面PCD ∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯在等腰三角形PCD中,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯=∴P-ADC 1V 93==设点C 到平面PDA 距离为h ∴C-PDA PDA 1V S 3h ∆=⨯⨯而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯=∴163h =⨯⨯∴h ,即:点C 到平面PDA19、【解析】(1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=12-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列(3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列111411()()22{}2,411()22=2+41()2121()()221n n n n n nn n n n na aa aan n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20、【解析】(1)2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx = 设1122(,),(,),(,)A x y B x y M x y12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kx x y x x k x x k x x x x k k ky y k x k k y k x y xx x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即29535(,3]13x k ∴=∈+(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--=-的两个极限值:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时: 21、【解析】(1)222(0)||(1)||||f a a a a a a a a a a=+--=+-+=+10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述: (2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+>∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- (3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(m in==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+xx f 时,即)0(4)(>-=x x x f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点.当2x ≥时,令x x x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x 综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与a a g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >,所以当),(+∞∈a x 时,)()(x g x f 与有一个交点;故当2>a 时,()y f x =与x x g 4)(-=有两个交点. 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点。

2015年广东省高考数学试卷(文科)附详细解析

2015年广东省高考数学试卷(文科)附详细解析

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)24.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+===117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得,由此可得数列{}是以为首项,公比为的{为首项,公比为{为首项,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即参与本试卷答题和审题的老师有:wkl197822;changq;maths;双曲线;刘长柏;吕静;孙佑中;qiss;lincy;sxs123;cst(排名不分先后)菁优网2015年7月20日。

2015年普通高等学校招生全国统一考试数学文试题(广东卷,含解析)

2015年普通高等学校招生全国统一考试数学文试题(广东卷,含解析)

高中数学学习材料(灿若寒星精心整理制作)绝密★启用前试卷类型:B2015年普通高等学校招生全国统一考试数学文试题(广东卷,含解析)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M=-,{}2,1,0N=-,则M N =()A.{}0,1-B.{}0C.{}1D.{}1,1-【答案】C 【解析】试题分析:{}1M N =,故选C.考点:集合的交集运算.2. 已知i是虚数单位,则复数()21i+=()A.2-B.2C.2i-D.2i 【答案】D考点:复数的乘法运算.3. 下列函数中,既不是奇函数,也不是偶函数的是()A.2siny x x=+B.2cosy x x=-C.122xxy=+D.sin2 y x x =+【答案】A 【解析】 试题分析:函数()2sin f x x x=+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x=+既不是奇函数,也不是偶函数;函数()2cos f x x x=-的定义域为R,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x=-是偶函数;函数()122x xf x =+的定义域为R,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122xx f x =+是偶函数;函数()sin 2f x x x=+的定义域为R,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x=+是奇函数.故选A .考点:函数的奇偶性.4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C考点:线性规划.5. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,且b c <,则b =( )A .3B .2 C .22 D .3 【答案】B【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A,所以()22232232232b b =+-⨯⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B . 考点:余弦定理.6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l都相交 C .l 至多与1l ,2l 中的一条相交 D .l 与1l ,2l都不相交 【答案】A考点:空间点、线、面的位置关系.7. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B .考点:古典概型.8.已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 【答案】C【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 【答案】D 【解析】试题分析:因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB +A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D .考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1-【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式. 12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 【答案】11考点:均值的性质.13. 若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x t y t ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4-【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1.考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[) 160,180,[) 180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ; ()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3)372.【解析】试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DCP 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE 中,22D D PE =P -E22437=-=,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是372考点:1、线面平行;2、线线垂直;3、点到平面的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列;()3求数列{}na的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212nna n-⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.。

2015年高考文科数学广东卷

2015年高考文科数学广东卷
A. 2 B. 5 C. 8 数学试卷 第 1 页(共 4 页) D. 10
15.(几何证明选讲) 如图, AB 为圆 O 的直径, E 为 AB 的延长线上一点,过 E 作 圆 O 的切线,切点为 C ,过 A 作直线 EC 的垂线,垂足为 D . 若 AB 4 , CE 2 3 ,则 AD .
2 x t , 线 C1 的极坐标方程为 (cos sin ) 2 ,曲线 C2 的参数方程为 (t 为 y 2 2t , 参数),则 C1 与 C2 交点的直角坐标为 . 数学试卷 第 2 页(共 4 页)
2.已知 i 是虚数单位,则复数 (1 i)2 A. 2i B. 2i
6.若直线 l1 和 l2 是异面直线, l1 在平面 内, l2 在平面 内, l 是平面 与平面 的交线, 则下列命题正确的是 A. l 与 l1 , l2 都不相交 C. l 至多与 l1 , l2 中的一条相交 品的概率为 A. 0.4 8.已知椭圆 A. 2 B. 0.6 C. 0.8 D. 1 ( ) B. l 与 l1 , l2 都相交 D. l 至少与 l1 , l2 中的一条相交 ( ) ( )
10. 若 集 合 E {( p, q, r , s ) | 0≤p<s≤4,0≤q<s≤4, 0≤r<s≤4 且 p, q, r , s Ν} , F {
姓名________________
(t , u , v, w) | 0≤t<u≤4,0≤v<w≤4 且 t , u , v, w Ν} ,用 card( X ) 表示集合 X 中的元素 个数,则 card( E ) card( F ) ( )
绝密★启用前
5.设 △ABC 的内角 A , B , C 的对边分别为 a , b , c .若 a 2 , c 2 3 , cos A

(2021年新)2015年广东省高考数学试卷文科

(2021年新)2015年广东省高考数学试卷文科

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.105.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.36.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.18.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.99.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.210.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+5S n=8S n+1+S n﹣1.+2(1)求a4的值;(2)证明:{a n﹣a n}为等比数列;+1(3)求数列{a n}的通项公式.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.3【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选:D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.8.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.【分析】利用平均数计算公式求解【解答】解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1.【分析】由已知可得,b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan(α+)===﹣3;(2)== ==1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离.【解答】(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h.因为V C=V P﹣ACD,﹣PDA所以,所以h==,所以点C到平面PDA的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1.当n≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得+2到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n (2)证明:∵4S n+2(n≥2),即4a n+a n=4a n+1(n≥2),+2+a n=4a n+1.∵,∴4a n+2∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f (x)的对称轴求解函数的单调区间即可.(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。

2015年普通高等学校招生全国统一考试文科数学(广东卷)(含答案全解析) (1)

2015年普通高等学校招生全国统一考试文科数学(广东卷)(含答案全解析) (1)

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,文1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1}C.{0}D.{-1,1}答案:B解析:因为M,N的公共元素只有1,所以M∩N={1}.2.(2015广东,文2)已知i是虚数单位,则复数(1+i)2=()A.2iB.-2iC.2D.-2答案:A解析:(1+i)2=1+2i+i2=1+2i-1=2i.3.(2015广东,文3)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin 2xB.y=x2-cos xC.y=2x+D.y=x2+sin x答案:D解析:A为奇函数,B和C为偶函数,D既不是奇函数,也不是偶函数.4.(2015广东,文4)若变量x,y满足约束条件则z=2x+3y的最大值为()A.2B.5C.8D.10答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-x+表示直线y=-x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.(2015广东,文5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且b<c,则b=()A.3B.2C.2D.答案:C解析:由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2·b·2,即b2-6b+8=0,解得b=2或4.又因为b<c,所以b=2.6.(2015广东,文6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案:D解析:l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.7.(2015广东,文7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为() A.0.4 B.0.6 C.0.8 D.1答案:B解析:设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P==0.6.8.(2015广东,文8)已知椭圆=1(m>0)的左焦点为F1(-4,0),则m=()A.2B.3C.4D.9答案:B解析:由已知a2=25,b2=m2,c=4,又由a2=b2+c2,可得m2=9.因为m>0,所以m=3.9.(2015广东,文9)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,-2),=(2,1),则=()A.5B.4C.3D.2答案:A解析:=(1,-2)+(2,1)=(3,-1),所以=(2,1)·(3,-1)=2×3+1×(-1)=5.10.(2015广东,文10)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200B.150C.100D.50答案:A解析:E中有序数组的要求为s均大于p,q,r,当s取4时,p可取0,1,2,3,q也可取0,1,2,3,r也可取0,1,2,3,此时不同数组有4×4×4=64个;同理当s取3时,p,q,r均可从0,1,2中任取1个,此时不同数组有3×3×3=27个;当s取2时,p,q,r可从0,1中任取1个,不同数组有2×2×2=8个;当s取1时,p,q,r只能都取0,不同数组有1个,因此E中不同元素共有64+27+8+1=100个.F中元素要求为t<u,v<w,当u取4时,t可取0,1,2,3;当u取3时,t可取0,1,2;当u取2时,t可取0,1;当u取1时,t取0,所以t,u的不同组合为10种.同理,v,w不同组合也有10种,故F中元素个数为10×10=100,所以card(E)+card(F)=200.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.(2015广东,文11)不等式-x2-3x+4>0的解集为.(用区间表示)答案:(-4,1)解析:不等式可化为x2+3x-4<0,即(x-1)(x+4)<0,解得-4<x<1.12.(2015广东,文12)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为.答案:11解析:由题意,y i=2x i+1(i=1,2,…,n),则=2+1=2×5+1=11.13.(2015广东,文13)若三个正数a,b,c成等比数列,其中a=5+2,c=5-2,则b=.答案:1解析:因为a,b,c成等比数列,所以b2=ac,即b2=(5+2)(5-2)=1.又b是正数,所以b=1.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,文14)(坐标系与参数方程选做题)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.答案:(2,-4)解析:∵ρ(cos θ+sin θ)=-2,∴曲线C1的直角坐标方程为x+y=-2.由已知得曲线C2的普通方程为y2=8x.由-得y2+8y+16=0,解得y=-4,x=2.所以C1与C2交点的直角坐标为(2,-4).15.(2015广东,文15)(几何证明选讲选做题)如图,AB为圆O的直径,E为AB延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4,CE=2则AD=.答案:3解析:由切割线定理得EC2=EB·EA,即12=EB·(EB+4),可求得EB=2.连接OC,则OC⊥DE,所以OC∥AD,所以,即,所以AD=3.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,文16)已知tan α=2.(1)求tan的值;(2)求--的值.解:(1)tan-=--=-3.(2)--=---=-=-=-=1.17.(本小题满分12分)(2015广东,文17)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以直方图中x的值是0.007 5.(2)月平均用电量的众数是=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,得a=224,所以月平均用电量的中位数是224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),月平均用电量在[240,260)的用户有0.007 5×20×100=15(户),月平均用电量在[260,280)的用户有0.005×20×100=10(户),月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽取比例为,所以月平均用电量在[220,240)的用户中应抽取25×=5(户).18.(本小题满分14分)(2015广东,文18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.(1)证明:因为四边形ABCD是长方形,所以BC∥AD.因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明:因为四边形ABCD是长方形,所以BC⊥CD.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面PDC.因为PD⊂平面PDC,所以BC⊥PD.(3)解:取CD的中点E,连接AE和PE.因为PD=PC,所以PE⊥CD.在Rt△PED中,PE=--.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知BC⊥平面PDC.由(1)知BC∥AD.所以AD⊥平面PDC.因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h,因为V三棱锥C-PDA=V三棱锥P-ACD,所以S△PDA·h=S△ACD·PE,即h=△△,所以点C到平面PDA的距离是.19.(本小题满分14分)(2015广东,文19)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n-1.(1)求a4的值;(2)证明:-为等比数列;(3)求数列{a n}的通项公式.(1)解:当n=2时,4S4+5S2=8S3+S1,即4+5=8+1,解得a4=.(2)证明:因为4S n+2+5S n=8S n+1+S n-1(n≥2),所以4S n+2-4S n+1+S n-S n-1=4S n+1-4S n(n≥2),即4a n+2+a n=4a n+1(n≥2).因为4a3+a1=4×+1=6=4a2,所以4a n+2+a n=4a n+1(n∈N*).因为-------=--,所以数列-是以a2-a1=1为首项,公比为的等比数列. (3)解:由(2)知数列-是以a2-a1=1为首项,公比为的等比数列,所以a n+1-a n=-,即=4,所以数列是以=2为首项,公差为4的等差数列, 所以=2+(n-1)×4=4n-2,即a n=(4n-2)×=(2n-1)×-.所以数列{a n}的通项公式是a n=(2n-1)×-.20.(本小题满分14分)(2015广东,文20)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解:(1)圆C1:x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设线段AB的中点M(x,y),由弦的性质可知C1M⊥AB,即C1M⊥OM.故点M的轨迹是以OC1为直径的圆,该圆的圆心为C,半径r=|OC1|=×3=,其方程为-+y2=,即x2+y2-3x=0.又因为点M为线段AB的中点,所以点M在圆C1内,所以-<2.又x2+y2-3x=0,所以可得x>.易知x≤3,所以<x≤3.所以线段AB的中点M的轨迹C的方程为x2+y2-3x=0.(3)由题意知直线L表示过定点T(4,0),斜率为k的直线.结合图形,-表示的是一段关于x轴对称,起点为F-按逆时针方向运动到E的圆弧(不含端点).根据对称性,只需讨论在x轴下方的圆弧.由F-,则k FT=-,而当直线L与轨迹C相切时,-,解得k=±.在这里暂取k=,因为,所以k FT<k.结合图形,可得对于x轴下方的圆弧,当0≤k≤或k=时,直线L与x轴下方的圆弧有且只有一个交点.根据对称性可知当-≤k<0或k=-时,直线L与x轴上方的圆弧有且只有一个交点.综上所述,当-≤k≤或k=±时,直线L:y=k(x-4)与曲线C只有一个交点.21.(本小题满分14分)(2015广东,文21)设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2时,讨论f(x)+在区间(0,+∞)内的零点个数.解:(1)f(0)=a2+|a|-a2+a=|a|+a.因为f(0)≤1,所以|a|+a≤1.当a≤0时,0≤1,显然成立;当a>0时,则有2a≤1,所以a≤.所以0<a≤.综上所述,a的取值范围是a≤.(2)f(x)=---对于u1=x2-(2a-1)x,其图象的对称轴为x=-=a-<a,开口向上,所以f(x)在[a,+∞)上单调递增;对于u2=x2-(2a+1)x+2a,其图象的对称轴为x==a+>a,开口向上, 所以f(x)在(-∞,a)上单调递减.综上,f(x)在[a,+∞)上单调递增,在(-∞,a)上单调递减.(3)由(2)得f(x)在[a,+∞)上单调递增,在(0,a)上单调递减,所以f(x)min=f(a)=a-a2.①当a=2时,f(x)min=f(2)=-2,f(x)=--令f(x)+=0,即f(x)=-(x>0).因为f(x)在(0,2)上单调递减,所以f(x)>f(2)=-2,而y=-在(0,2)上单调递增,y<f(2)=-2,所以y=f(x)与y=-在(0,2)上无交点.当x≥2时,令f(x)=x2-3x=-,即x3-3x2+4=0,所以x3-2x2-x2+4=0.所以(x-2)2(x+1)=0.因为x≥2,所以x=2,即当a=2时,f(x)+有一个零点x=2.②当a>2时,f(x)min=f(a)=a-a2,当x∈(0,a)时,f(0)=2a>4,f(a)=a-a2,而y=-在x∈(0,a)上单调递增, 当x=a时,y=-.下面比较f(a)=a-a2与-的大小.因为a-a2-----=--<0,所以f(a)=a-a2<-.结合图象不难得当a>2时,y=f(x)与y=-有两个交点.综上,当a=2时,f(x)+有一个零点x=2;当a>2时,y=f(x)与y=-有两个零点.。

2015年高考广东卷:文科数学+文科综合试卷真题及参考答案 (完整解析版

2015年高考广东卷:文科数学+文科综合试卷真题及参考答案 (完整解析版

绝密★启用前 试卷类型:B 2015年普通高等学校招生全国统一考试(广东卷)数 学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、座位号、填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合M =|-1, 1|,N =|-2, 1, 0|,则M ∩N = A .|0, -1| B .|0| C .|1| D .|-1, 1| 2.已知i 是虚数单位,则复数(1+i )2= A .-2 B .2 C .-2i D .2i 3.下列函数中,既不是奇函数,也不是偶函数的是 A .2sin y x x =+ B .2cos y x x =-C .D .sin 2y x x =+4.若变量x ,y 满足约束条件,则23z x y =+的最大值为 A .10 B .8C .5D .25.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,,且b <c ,则b =A .B .2C .D .36.若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 至少与l 1,l 2中的一条相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 与l 1,l 2都不相交7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为 A .0.4 B .0.6 C .0.8 D .18.已知椭圆 (0m >)的左焦点为()1F 4,0-,则m = A .9 B .4 C .3 D .2 9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,,,则 A .2 B .3 C .4 D .510.若集合E =|(p , q , r , s )| 0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p , q , r , s ∈N |,F =|(t , u , v , w )| 0≤t <u ≤4,0≤v <w ≤4且t , u , v , w ∈N |,用card(X )表示集合X 中的元素个数,则card(E )+ card(F )=A .50B .100C .150D .200 【答案】1~5: CDACB 6~10: ABCDD1.C 【解析】考查集合的交集运算。

100教育:2015高考试题——文数(广东卷)含答案

100教育:2015高考试题——文数(广东卷)含答案

试卷类型: B2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共 10 小题,每小题 5 分,满分 50 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合 M1,1,N2,1,0 ,则()A. 0,1 B . 0 C . 1 D.1,12、已知i是虚数单位,则复数2()1 iA .2B .2C . 2i D.2i3、下列函数中,既不是奇函数,也不是偶函数的是()A . y x2sin xB . y x2cosxC .y2x12x D.y x sin 2xx 2 y24、若变量 x ,y满足约束条件x y 0,则 z 2x 3 y 的最大值为()x4A.10 B . 8 C . 5 D.2、设C的内角,, C 的对边分别为 a , b , c .若 a 2 ,c 2 3,5cos 3,且 b c ,则 b()2A. 3B.2C.2 2D. 36、若直线 l1和 l 2是异面直线, l1在平面内, l2在平面内, l 是平面与平面的交线,则下列命题正确的是()A. l 至少与 l1, l2中的一条相交B. l 与 l1, l 2都相交C. l 至多与 l1, l2中的一条相交D. l 与 l1, l 2都不相交7、已知 5 件产品中有2件次品,其余为合格品.现从这 5 件产品中任取2件,恰有一件次品的概率为()A. 0.4B. 0.6C. 0.8 D.18、已知椭圆x2y2( m0 )的左焦点为 F14,0,则 m()25m21A . 9B .4C . 3 D.29、在平面直角坐标系x y 中,已知四边形CD 是平行四边形,1, 2,D2,1 ,则 D C()A .2B . 3C .4 D.510、若集合p, q, r , s 0p s4,0q s4,0r s 4且 p, q, r , s,F t,u, v, w 0t u4,0v w4且 t, u, v, w,用 card表示集合中的元素个数,则 card card F()A .50B.100C.150 D. 2005 小题,考生作答 4 小题,每小题 5 分,满分 20 分.)二、填空题(本大题共(一)必做题( 11~13题)11、不等式x23x 40 的解集为.(用区间表示)12、已知样本数据 x1,x2,,x n的均值 x 5 ,则样本数据 2x1 1 ,2x21,,2 x n 1的均值为.13、若三个正数 a , b , c 成等比数列,其中 a 5 2 6 , c 5 2 6 ,则b.(二)选做题( 14、15 题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y 中,以原点为极点, x 轴的正半轴为极轴建立极坐标系.曲线 C1的极坐标方程为cos sinx t 22 ,曲线 C2的参数方程为( t 为参数),则 C1与 C2交y 2 2t点的直角坐标为.15、(几何证明选讲选做题)如图1,为圆的直径,为的延长线上一点,过作圆的切线,切点为 C ,过作直线 C 的垂线,垂足为D.若 4 ,C23 ,则D.三、解答题(本大题共 6 小题,满分80 分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12 分)已知 tan 2 .1 求tan4的值;2求sin 2的值.sin cos cos 2sin 2117、(本小题满分12 分)某城市 100 户居民的月平均用电量(单位:度),以160,180 , 180,200 , 200,220 , 220,240 , 240,260 , 260,280 , 280,300分组的频率分布直方图如图 2 .1求直方图中 x 的值;2求月平均用电量的众数和中位数;3在月平均用电量为 220,240 , 240,260 , 260,280 , 280,300 的四组用户中,用分层抽样的方法抽取 11 户居民,则月平均用电量在220,240的用户中应抽取多少户?3,三角形DC 所在的平面与长方形CD 所在的18、(本小题满分14 分)如图平面垂直,D C 4 , 6 , C 3 .1证明:C//平面D;2证明:C D ;3求点 C 到平面D的距离.19、(本小题满分 14 分)设数列 a n的前 n 项和为 S n,n.已知 a1 1 ,a2 3 ,5,且当 n 2a3 2 时, 4S n 2 5S n8S n 1 S n 1.41求 a4的值;2证明: a n 11a n为等比数列;23求数列 a n的通项公式.20、(本小题满分14 分)已知过原点的动直线 l 与圆 C1 : x2y26x 5 0 相交于不同的两点,.1求圆 C1的圆心坐标;2求线段的中点的轨迹 C 的方程;3是否存在实数 k ,使得直线 L: y k x 4 与曲线 C 只有一个交点?若存在,求出 k 的取值范围;若不存在,说明理由.21、(本小题满分 14 分)设 a 为实数,函数2.f xx ax a a a 11 若 f 01,求 a 的取值范围;2讨论 f x 的单调性;3当 a 2 时,讨论f x 4在区间 0,内的零点个数.x2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)参考答案一、选择题1.C2.D3.A4.C5.B6.A7.B8.C9.D10.D二、填空题4,111.【答案】12.【答案】1113.【答案】 114. 【答案】2, 415. 【答案】 316. 【答案】( 1) 3;( 2) 1.17. 【答案】( 1)0.0075;( 2)230, 224 ;( 3) 5.3 718. 【答案】( 1)证明见解析; ( 2)证明见解析; ( 3) 2.( 1)因为四边形CD是长方形,所以C//D,因为C平面 D , D 平面D ,所以C//平面 D(2)因为四边形CD是长方形,所以CCD,因为平面DC平面CD,平面DC 平面 CDCD , C 平面 CD,所以C平面DC,因为D平面DC ,所以CD(3)取CD的中点,连结和,因为DC,所以CD ,在 RtD中,D 2 D 242327,因为平面DC平面CD,平面DC平面CDCD ,平面 DC,所以平面CD,由( 2)知: C平面DC,由( 1)知:C// D ,所以D平面 DC ,因为 D平面DC ,所以 DD ,设点 C 到平面 D的距1h1离 为h, 因 为V三棱锥CV三棱锥, 所 以S DSCD, 即DCD33S13 673 7CD2hS D1 3 423 72,所以点C到平面D 的距离是27n1a n2n1119. 【答案】( 1)82;( 2)证明见解析; ( 3).S 4 5S 2 8S 3 S 1 ,即 4 3 5 a 4 38 13 5 1145 124(1) 当 n=2 时, 422a 47解得: 8(2)因为4S n 2 5S n 8S n 1 S n 1 n 2 , 所以4S n 24S n 1 S nS n 14Sn 14S n n 2 , 即4a n 2 a n 4a n 1 n 2 ,因为4a 3 a 14×5an 21 an 1 4a n 2 2a n 12a n 1 a n 1a n2 1 6 4a 2 ,所以 4a n 2 4a n 1,因为14a n 1 2a n 2 2a n 1a n 24an 12ana n 1 1 a n 是以 a 2 1a 1 1为首项,公比为 1 的等比数列,所以数列2 2 2a n 1111(3)由2a n是以a22 a 1 12 的等比数列,所以知:数列2为首项,公比为1a nn 1an 1122a n 1a n4a na 12n 1nn1111即22,所以数列2是以 2为首项, 公差为 4 的等差数列, 所以a n2 n 1 4 4n 2nn 1n11a n 4n 2122n 1, 即2 2,所以 数列a n的通项公式是n 11a n2n 12329 5 25 2 5y23,0xx 3k20. 【答案】( 1) ;(2)24 3;( 3)存在,77k4或3 .(1)圆 C 1: x 2 y 2 6x 5 0化为 x 3 2 y 2 4, 所以圆 C 1的圆心坐标为 3,0(2)设线段 AB 的中点 M x o , y o , 由圆的性质可得 C 1M 垂直于直线 l设直线l的方 程为y mx(已知直线 l 的斜率存在),所以 k cm m1, y 0 mx 0 , 所以y 0 y 0291,23x 0 20即x 03 2 x 0 3 x 0x 0y 0 2y 04所以3m4因为动直线 l 与圆C 1相交,所以m21 <2,所以 m2< 5;所以y22 24 x 2 , 所以 3xx 2 4 x 2 , 解得 x53,所以m x 0 <5<50 0> 3或x 0<0, 又因为 0<x 053 <x3.3 29 5M x 0 , y 0x 0y 02x 3 . 所以满足24 3 即3 29 5xy 2x 3 .24 3(3)由题意知直线 l 表示过定点 T 4,0,斜率为 k 的直线结合图形,3 29 55 , 2 5x 0y 0 2x 0 3 表示的是一段关于 x 轴对称,起点为24 33 3按逆时针方向运动到圆弧。

2015年高考真题—文科数学(广东卷)解析版

2015年高考真题—文科数学(广东卷)解析版

绝密★启用前 试卷类型:B2015年高考真题—文科数学(广东卷)解析版一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 1.解析:本题考查集合的基本运算,属于基础题. {}1=N M ,故选C. 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 2.解析:本题考查复数的乘法运算,属于基础题.i i i i 221)1(22=++=+,故选D 3、下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 3、解析:本题考查函数的奇偶性.对于A ,()()()x x x x x x sin sin sin 222+±≠-=-+-,所以非奇非偶,对于B ,函数定义域为R ,关于原点对称.()x x x x cos )cos(22-=---,故为偶函数;对于C, 函数定义域为R ,关于原点对称,因为xx x xx f -+=+=22212)(,所以)(22)(x f x f x x=+=--,故为偶函数; D 中函数的定义域为R ,关于原点对称,且)2sin ()(2sin x x x x +-=-+-,故为奇函数. 故答案为A 。

4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 4、解析:本题考查线性规划问题。

在平面直角坐标系中画图,作出可行域,可得该可行域是由(-2,2),(4,-4),(4,-1)组成的三角形。

由于该区域是封闭的,可以通过分别代这三个个边界点进行检验,易知当x=4,y=-1时,z=2x+y 取得最大值5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.105.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.36.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.18.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.99.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.210.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+5S n=8S n+1+S n﹣1.+2(1)求a4的值;(2)证明:{a n﹣a n}为等比数列;+1(3)求数列{a n}的通项公式.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2 C.2 D.3【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选:D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.8.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.【分析】利用平均数计算公式求解【解答】解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1.【分析】由已知可得,b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan(α+)===﹣3;(2)== ==1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离.【解答】(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h.因为V C=V P﹣ACD,﹣PDA所以,所以h==,所以点C到平面PDA的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1.当n≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得+2到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n (2)证明:∵4S n+2(n≥2),即4a n+a n=4a n+1(n≥2),+2+a n=4a n+1.∵,∴4a n+2∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f (x)的对称轴求解函数的单调区间即可.(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。

相关文档
最新文档