材料成形技术基础答案_第2版_施江澜_赵占西主编

合集下载

《材料成形技术基础》习题集答案

《材料成形技术基础》习题集答案

作业2 铸造工艺基础专业_________班级________学号_______姓名___________2-1 判断题(正确的画O,错误的画×)1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。

提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。

因此,浇注温度越高越好。

(×)2.合金收缩经历三个阶段。

其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。

(O)3.结晶温度范围的大小对合金结晶过程有重要影响。

铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。

(O)4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。

(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。

所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。

(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。

共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。

因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。

(×)7.气孔是气体在铸件内形成的孔洞。

气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。

(O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。

(O)2-2 选择题1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。

A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D.A、B和C;E.A和C。

2.顺序凝固和同时凝固均有各自的优缺点。

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编材料成形技术基础答案_第2版_施江澜_赵占西主编第一章金属液体成型1。

液态合金的填充能力是多少?它与合金的流动性有什么关系?为什么不同化学成分的合金有不同的流动性?为什么铸钢的填充能力比铸铁差?①液态合金的填充能力是指液态合金填充型腔并获得轮廓清晰、形状完整的高质量铸件的能力②流动性好,合金熔体充型能力强,容易获得尺寸准确、外观完整的铸件如果流动性不好,填充能力差,铸件容易出现冷隔、气孔等缺陷。

不同成分的③合金具有不同的结晶特征。

共晶合金的流动性最好,其次是纯金属,最后是固溶体合金④与铸钢相比,铸铁更接近共晶成分,结晶温度范围更小,流动性更好。

2.既然提高浇注温度可以提高液态合金的填充能力,为什么要防止浇注温度过高呢?铸造温度过高()会增加合金的收缩率,增加空气吸力,并导致严重氧化。

相反,铸件容易出现缺陷,如缩孔、缩松、粘砂、夹杂物等。

3。

缩孔和气孔的存在会减小铸件的有效承载面积,并引起应力集中,导致铸件的力学性能下降。

缩孔大且集中,容易发现。

它可以通过特定的工艺从铸件主体上移除。

缩孔较小且分散,多多少少存在于铸件中。

对于普通铸件来说,它通常不被视为缺陷,只有当铸件具有高气密性时,才可以防止它液态合金填充型腔后,如果在冷却和凝固过程中液态收缩和凝固收缩的量没有得到补充,在铸件的最终凝固部分将形成一些型腔。

大而集中的空洞变成了缩孔,而小而分散的空洞被称为缩孔的不足之处是砂类充填不充分。

冷绝缘是指在施加一定的力之后,铸造工件出现裂纹或断裂,并且氧化物夹杂出现在断裂表面或没有熔合在一起。

出风口的作用是在铸造过程中排出型腔内的气体,防止铸件产生气孔,便于观察铸件情况。

冒口是附加在铸件顶部或侧面的辅助部件,以避免铸造缺陷。

在分步凝固过程中,其横截面上的固相和液相被边界线清楚地分开。

在定向凝固中,熔融合金根据所需的晶体取向在与热流相反的方向上凝固。

5。

定向凝固的原理是将冒口放置在铸件可能出现缩孔的厚而大的部分,同时采用其他技术措施,从铸件远离冒口的部分到冒口建立逐渐增加的温度梯度,从而实现从远离冒口的部分如冒口方向的顺序凝固。

材料成型工艺基础第二版课后答案

材料成型工艺基础第二版课后答案

材料成型工艺基础第二版课后答案【篇一:《材料成型工艺基础》部分习题答案】class=txt>第一章⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?答:①合金的流动性是指合金本身在液态下的流动能力。

决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。

②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。

⑷.何谓合金的收縮?影响合金收縮的因素有哪些?答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。

②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。

⑹.何谓同时凝固原则和定向凝固原则?答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。

②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。

第二章⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。

答:石墨在灰铸铁中以片状形式存在,易引起应力集中。

石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。

灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。

石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。

⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?答:①主要因素:化学成分和冷却速度。

②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。

在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。

⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁?答:①经孕育处理后的灰铸铁称为孕育铸铁。

材料成形技术基础习题集答案要点

材料成形技术基础习题集答案要点

作业2 铸造工艺基础专业_________班级________学号_______姓名___________2-1 判断题(正确的画O,错误的画×)1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。

提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。

因此,浇注温度越高越好。

(×)2.合金收缩经历三个阶段。

其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。

(O)3.结晶温度范围的大小对合金结晶过程有重要影响。

铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。

(O)4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。

(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。

所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。

(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。

共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。

因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。

(×)7.气孔是气体在铸件内形成的孔洞。

气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。

(O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。

(O)2-2 选择题1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。

A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D.A、B和C;E.A和C。

2.顺序凝固和同时凝固均有各自的优缺点。

材料成形技术基础课程试题答案及评分标准

材料成形技术基础课程试题答案及评分标准

材料成形技术基础课程试题答案及评分标准第一篇:材料成形技术基础课程试题答案及评分标准一、判断题(每题1分,共20分。

正确的打√,错误的打×)1.淬火的主要目的是为了提高钢的硬度,因此,淬火钢就可以不经回火而直接使用。

(×)2.钢中的含碳量对钢的力学性能具有重要的影响,40钢与45钢相比,后者的强度和硬度高,而塑性较差。

(√)3.浇注温度是影响铸造合金充型能力和铸件质量的重要因素,提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件,因此,浇注温度越高越好。

(×)4.气孔是气体在铸件中形成的孔洞。

气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。

(√)5.灰口铸铁组织中由于存在着大量片状石墨,因而抗拉强度和塑性远低于铸钢。

但是片状石墨的存在,对灰口铸铁的抗压强度影响很少,所以灰口铸铁适合于生产承受压应力的铸件。

(√)6.铸造生产的显著特点是适合于制造形状复杂,特别是具有复杂内腔的铸件。

(√)7.为了避免缩孔、缩松或热应力、裂纹的产生,铸件壁厚应该尽可能均匀,所以设计零件外壁和内壁,外壁和筋,其厚度应该相等。

(×)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它增加了造型的复杂程度,并耗费了许多金属液体,同时增大了铸件产生变形和裂纹的倾向。

(√)9.芯头是砂芯的一个组成部分,它不仅能使砂芯定位、排气,还能形成铸件内腔。

(×)10.浇注位置选择原则之一是将铸件的大平面朝下,主要目的是防止产生缩孔缺陷(×)11.分型面是为起模或取出铸件而设置的,砂型铸造、熔模铸造和金属型铸造所用的铸型都有分型面。

(×)12.压力加工是利用金属产生塑性变形获得零件或毛坯的一种方法。

在塑性变形的过程中,理论上认为金属只产生形状的变化而其体积是不变的。

(√)13.板料弯曲时,弯曲后两边所夹的角度越小,则弯曲部分的变形程度越大。

(×)14.板料冲压落料工序中的凸凹模间隙是影响冲压件剪断面质量的关键。

材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载

材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载

第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?1 液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。

2 流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。

流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。

3 成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。

4 相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。

2. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。

3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。

缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。

4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。

浇不足是沙型没有全部充满。

冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。

出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。

而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。

逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。

定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。

5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。

材料成型工艺基础习题解答

材料成型工艺基础习题解答

材料成型工艺基础习题解答第一章金属材料与热处理1、常用的力学性能有哪些,各性能的常用指标是什么,答:刚度:弹性模量E强度:屈服强度和抗拉强度塑性:断后伸长率和断面收缩率硬度:冲击韧性:疲劳强度:2、4、金属结晶过程中采用哪些措施可以使其晶粒细化,为什么,答:过冷细化:采用提高金属的冷却速度,增大过冷度细化晶粒。

变质处理:在生产中有意向液态金属中加入多种难溶质点(变质剂),促使其非自发形核,以提高形核率,抑制晶核长大速度,从而细化晶粒。

7、9、什么是热处理,钢热处理的目的是什么,答:热处理:将金属材料或合金在固态范围内采用适当的方法进行加热、保温和冷却,以改变其组织,从而获得所需要性能的一种工艺。

热处理的目的:强化金属材料,充分发挥钢材的潜力,提高或改善工件的使用性能和加工工艺性,并且可以提高加工质量、延长工件和刀具使用寿命,节约材料,降低成本。

第二章铸造成型技术2、合金的铸造性能是指哪些性能,铸造性能不良,可能会引起哪些铸造缺陷, 答:合金的铸造性能指:合金的充型能力、合金的收缩、合金的吸气性; 充型能力差的合金产生浇不到、冷隔、形状不完整等缺陷,使力学性能降低,甚至报废。

合金的收缩合金的吸气性是合金在熔炼和浇注时吸入气体的能力,气体在冷凝的过程中不能逸出,冷凝则在铸件内形成气孔缺陷,气孔的存在破坏了金属的连续性,减少了承载的有效面积,并在气孔附近引起应力集中,降低了铸件的力学性能。

6、什么是铸件的冷裂纹和热裂纹,防止裂纹的主要措施有哪些,答:热裂是在凝固末期,金属处于固相线附近的高温下形成的。

在金属凝固末期,固体的骨架已经形成,但树枝状晶体间仍残留少量液体,如果金属此时收缩,就可能将液膜拉裂,形成裂纹。

冷裂是在较低温度下形成的,此时金属处于弹性状态,当铸造应力超过合金的强度极限时产生冷裂纹。

防止措施:热裂——合理调整合金成分,合理设计铸件结构,采用同时凝固原则并改善型砂的退让性。

冷裂——对钢材材料合理控制含磷量,并在浇注后不要过早落砂。

最新《材料成形技术基础》习题集答案

最新《材料成形技术基础》习题集答案

2- 1 判断题(正确的画0,错误的画X)1 •浇注温度是影响铸造合金充型能力和铸件质量的重要因素。

提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。

因此,浇注温度越高越好。

(X)2 •合金收缩经历三个阶段。

其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。

(03 •结晶温度范围的大小对合金结晶过程有重要影响。

铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。

(0)4 •为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。

(0)5 •铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。

所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。

(X )6 •铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。

共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。

因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。

(X )7 •气孔是气体在铸件内形成的孔洞。

气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。

(0)&采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。

(0)2-2 选择题1 •为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有( D )。

A .减弱铸型的冷却能力;B .增加铸型的直浇口高度;C .提高合金的浇注温度;D • A、B和C ;E • A和C。

2 •顺序凝固和同时凝固均有各自的优缺点。

为保证铸件质量,通常顺序凝固适合于(D ),而同时凝固适合于( B )。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型基础课后习题答案

材料成型基础课后习题答案

材料成型基础课后习题答案材料成型基础课后习题答案材料成型是一门重要的工程学科,涉及到材料的加工、成型和变形等方面。

在学习这门课程时,我们经常会遇到一些习题,通过解答这些习题,可以加深对材料成型基础知识的理解和掌握。

下面是一些常见的材料成型基础课后习题及其答案,供大家参考。

1. 什么是材料成型?答:材料成型是指将原始材料通过一系列的工艺操作,使其发生形状、尺寸和性能的变化,最终得到所需的成品的过程。

2. 材料成型的分类有哪些?答:材料成型可以分为塑性成型和非塑性成型两大类。

塑性成型是指通过材料的塑性变形来实现成型的过程,如锻造、压力成型等;非塑性成型是指通过材料的断裂、破碎等非塑性变形来实现成型的过程,如切削加工、焊接等。

3. 什么是锻造?答:锻造是一种常用的塑性成型方法,通过对金属材料进行加热后的塑性变形,使其在模具的作用下得到所需的形状和尺寸。

锻造可以分为冷锻和热锻两种方式。

4. 锻造的优点有哪些?答:锻造具有以下几个优点:- 可以改善金属材料的内部组织结构,提高其力学性能;- 可以提高材料的密度和均匀性;- 可以减少材料的加工量,提高生产效率;- 可以节约材料和能源。

5. 什么是压力成型?答:压力成型是一种常用的塑性成型方法,通过对材料施加压力,使其发生塑性变形,最终得到所需的形状和尺寸。

压力成型包括挤压、拉伸、冲压等多种方法。

6. 压力成型的应用领域有哪些?答:压力成型广泛应用于汽车制造、航空航天、电子产品等领域。

例如,汽车制造中的车身板件、发动机零件等都是通过压力成型得到的。

7. 什么是切削加工?答:切削加工是一种常用的非塑性成型方法,通过对材料进行切削、剪切等操作,使其发生变形,最终得到所需的形状和尺寸。

切削加工包括车削、铣削、钻削等多种方法。

8. 切削加工的优点有哪些?答:切削加工具有以下几个优点:- 可以实现高精度的加工,得到精确的形状和尺寸;- 可以加工各种材料,包括金属、塑料、陶瓷等;- 可以加工复杂的形状和结构。

材料成形技术基础答案第2版施江澜赵占西主编

材料成形技术基础答案第2版施江澜赵占西主编

第一章金属液态成形‎1.什么是液态合‎金的充型能力‎?它与合金的流‎动性有何关系‎?不同化学成分‎的合金为何流‎动性不同?为什么铸钢的‎充型能力比铸‎铁差?①液态合金的充‎型能力是指熔‎融合金充满型‎腔,获得轮廓清晰‎、形状完整的优‎质铸件的能力‎。

②流动性好,熔融合金充填‎铸型的能力强‎,易于获得尺寸‎准确、外形完整的铸‎件。

流动性不好,则充型能力差‎,铸件容易产生‎冷隔、气孔等缺陷。

③成分不同的合‎金具有不同的‎结晶特性,共晶成分合金‎的流动性最好‎,纯金属次之,最后是固溶体‎合金。

④相比于铸钢,铸铁更接近更‎接近共晶成分‎,结晶温度区间‎较小,因而流动性较‎好。

2.既然提高浇注‎温度可提高液‎态合金的充型‎能力,但为什么又要‎防止浇注温度‎过高?浇铸温度过高‎会使合金的收‎缩量增加,吸气增多,氧化严重,反而是铸件容‎易产生缩孔、缩松、粘砂、夹杂等缺陷。

3.缩孔和缩松的‎存在会减小铸‎件的有效承载‎面积,并会引起应力‎集中,导致铸件的力‎学性能下降。

缩孔大而集中‎,更容易被发现‎,可以通过一定‎的工艺将其移‎出铸件体外,缩松小而分散‎,在铸件中或多‎或少都存在着‎,对于一般铸件‎来说,往往不把它作‎为一种缺陷来‎看,只有要求铸件‎的气密性高的‎时候才会防止‎。

4 液态合金充满‎型腔后,在冷却凝固过‎程中,若液态收缩和‎凝固收缩缩减‎的体积得不到‎补足,便会在铸件的‎最后凝固部位‎形成一些空洞‎,大而集中的空‎洞成为缩孔,小而分散的空‎洞称为缩松。

浇不足是沙型‎没有全部充满‎。

冷隔是铸造后‎的工件稍受一‎定力后就出现‎裂纹或断裂,在断口出现氧‎化夹杂物,或者没有融合‎到一起。

出气口目的是‎在浇铸的过程‎中使型腔内的‎气体排出,防止铸件产生‎气孔,也便于观察浇‎铸情况。

而冒口是为避‎免铸件出现缺‎陷而附加在铸‎件上方或侧面‎的补充部分。

逐层凝固过程‎中其断面上固‎相和液相由一‎条界线清楚地‎分开。

材料成形技术基础答案_第2版_施江澜_赵占西主编

材料成形技术基础答案_第2版_施江澜_赵占西主编

第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。

②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。

流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。

③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。

④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。

2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。

3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。

缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。

4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。

浇不足是沙型没有全部充满。

冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。

出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。

而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。

逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。

定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。

5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。

铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。

材料成形技术基础习题集答案

材料成形技术基础习题集答案

作业2铸造工艺基础专业班级学号姓名2-1判断题(正确的画O,错误的画X)1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。

提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。

因此,浇注温度越高越好。

(X2.合金收缩经历三个阶段。

其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。

(O3.结晶温度范围的大小对合金结晶过程有重要影响。

铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。

(O4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。

(O5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。

所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。

(X6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。

共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。

因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。

(X)7.气孔是气体在铸件内形成的孔洞。

气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。

(O8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。

(O2-2选择题1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D )。

A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D. A、B和C;E. A和C。

2.顺序凝固和同时凝固均有各自的优缺点。

为保证铸件质量,通常顺序凝固适合于(D ),而同时凝固适合于(B )。

A.吸气倾向大的铸造合金;B.产生变形和裂纹倾向大的铸造合金;C.流动性差的铸造合金;D.产生缩孔倾向大的铸造合金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料成形技术基础答案_第2版_施江澜_赵占西主编第一章金属液体成型1。

液态合金的填充能力是多少?它与合金的流动性有什么关系?为什么不同化学成分的合金有不同的流动性?为什么铸钢的填充能力比铸铁差?①液态合金的填充能力是指液态合金填充型腔并获得轮廓清晰、形状完整的高质量铸件的能力②流动性好,合金熔体充型能力强,容易获得尺寸准确、外观完整的铸件如果流动性不好,填充能力差,铸件容易出现冷隔、气孔等缺陷。

不同成分的③合金具有不同的结晶特征。

共晶合金的流动性最好,其次是纯金属,最后是固溶体合金④与铸钢相比,铸铁更接近共晶成分,结晶温度范围更小,流动性更好。

2.既然提高浇注温度可以提高液态合金的填充能力,为什么要防止浇注温度过高呢?铸造温度过高()会增加合金的收缩率,增加空气吸力,并导致严重氧化。

相反,铸件容易出现缺陷,如缩孔、缩松、粘砂、夹杂物等。

3。

缩孔和气孔的存在会减小铸件的有效承载面积,并引起应力集中,导致铸件的力学性能下降。

缩孔大且集中,容易发现。

它可以通过特定的工艺从铸件主体上移除。

缩孔较小且分散,多多少少存在于铸件中。

对于普通铸件来说,它通常不被视为缺陷,只有当铸件具有高气密性时,才可以防止它液态合金填充型腔后,如果在冷却和凝固过程中液态收缩和凝固收缩的量没有得到补充,在铸件的最终凝固部分将形成一些型腔。

大而集中的空洞变成了缩孔,而小而分散的空洞被称为缩孔的不足之处是砂类充填不充分。

冷绝缘是指在施加一定的力之后,铸造工件出现裂纹或断裂,并且氧化物夹杂出现在断裂表面或没有熔合在一起。

出风口的作用是在铸造过程中排出型腔内的气体,防止铸件产生气孔,便于观察铸件情况。

冒口是附加在铸件顶部或侧面的辅助部件,以避免铸造缺陷。

在分步凝固过程中,其横截面上的固相和液相被边界线清楚地分开。

在定向凝固中,熔融合金根据所需的晶体取向在与热流相反的方向上凝固。

5。

定向凝固的原理是将冒口放置在铸件可能出现缩孔的厚而大的部分,同时采用其他技术措施,从铸件远离冒口的部分到冒口建立逐渐增加的温度梯度,从而实现从远离冒口的部分如冒口方向的顺序凝固。

铸件相邻零件或铸件凝固开始和结束的时间相同或相似,甚至同时完成凝固过程,顺序和方向没有明显区别,称为同步凝固定向凝固主要用于大体积收缩的合金,如铸钢、球墨铸铁等。

同时,凝固适用于凝固收缩小的合金和壁厚均匀、结晶温度范围宽的合金铸件,但对致密性要求不高。

6.不均匀冷却使得铸件的慢冷却部分拉伸,而快冷却部分压缩。

零件向下弯曲。

手动建模和机器建模的优缺点是什么?适用条件是什么?9分型模、疏通模、块模和三箱模都适用于此?10.铸件的结构倾向是什么?它与拔模角度有什么不同?该图显示了如何改变铸件的结构倾斜度,即未加工表面垂直于分型面的结构倾斜度,以利于提模,提高铸件的精度。

结构的坡度是该零件最初设计的结构。

拔模斜度是为了方便绘图而在铸件上设计的斜度不能成型。

结构可以更改为下图。

1.12不能启动模具,凸台可以延伸到分型面1.13结构圆角可以减少热节和减轻应力集中。

分型面的圆角不合理,应为直角。

如图1.14所示,对两种设计方案进行了分析,哪种方案的结构过程好。

简要原因是a方案水平面大,不利于浇筑,左上角结构距离太近,不利于浇筑。

方案B的结构倾角好,有利于铸造,但有锐角连接,可能产生热点等缺陷,但其方向不影响液流。

根据综合比较,b优于1.15。

某一领域生产的铸铁件不仅加工困难,而且在使用中多次出现断腿现象。

试着分析原因,重新设计腿部结构。

加工困难是由于外部结构中的凹面、模板提升困难以及直角接头中的应力集中。

直角可以变成圆角,壁厚可以适当增加。

根据结构要求,凹弧面可以变成平面或其他有利于铸造的结构。

1.16a:铸造需要型芯可改为工字结构b:铸造时型芯不能固定。

打开工艺孔并增加芯头°c:结构太复杂开口可以以与内壁相同的宽度打开,平滑地连接,并且可以减少芯的数量圆弧外的投影不能成型,分型面可以转换为垂直于投影的面。

d:没有圆角,中间部分太厚,容易产生缩孔等缺陷。

在过渡处舍入,尤其是在半径转换时在不改变结构的情况下,可以从底部加芯,这样既可以避免过厚,又可以减轻重量。

1.18熔模铸造,也称为失蜡铸造,是一种用蜡制造外壳、形成模具并铸造成型的铸造方法①制作蜡模,将糊状蜡料压入金属模具中,冷凝,取出②制作外壳,在蜡模表面涂上油漆,然后硬化,重复多次,形成耐火硬壳。

(3)脱蜡,将蜡模浸入热水中,熔化蜡料(4)并烘烤外壳,将外壳放入800-950度加热炉中保温,去除残留蜡和水分(5)浇注,趁热浇注合金液,凝固,冷却⑥去壳和清洗,手动或机械去壳,隔水管拆除1.19金属制造的优点和缺点是什么?为什么金属型铸造不能广泛替代砂型铸造①尺寸精度更高,表面粗糙度更小,加工余量更小(2)导热性好,冷却速度快,铸件晶粒细小,机械性能好③可实现一型多铸,提高劳动生产率,节约成型材料,减少环境污染金属型因其不渗透性和不屈服性不适用于铸造复杂、薄壁和大型铸件,铸件易出现冷隔缺陷,金属型无溃散性。

制造成本高,周期长,不适合单件和小批量生产,由于金属模具材料熔点的限制,不适合生产高熔点合金铸件。

砂型铸造虽然精度低,但应用范围广,成本低,金属模具无法替代。

1.22一种铸造方法,在离心铸造过程中,将熔融金属倒入旋转的模具中,并在离心力的作用下填充模具,使其凝固成型。

可以铸造成没有芯的圆柱形零件,从而消除了铸造系统的冒口;从表面到内部的金属定向凝固改善了进料条件。

离心力提高了熔融金属的填充能力。

制造双金属铸件很方便。

1.26级灰铸铁石墨片制造工艺适用范围一般用于制造车床床身、机架等需要耐压、消振、减磨和耐磨的零件。

2.6~3.6%wsi?将1.2%-3.0%、75%的硅铁或硅钙合金倒入铁水中对于具有高精度要求的大型复杂铸件,应在加工前进行应力消除退火。

表面或薄壁有白孔结构灰铸铁白孔退火的消除具有高表面要求、高硬度和耐磨性的导轨可以通过接触电阻加热进行表面淬火。

可锻铸铁能絮凝碳化钨吗?2.2~2.8%wsi?1.0%~1.8%温度和长时间石墨化退火首先,将一定化学成分的铁水快速冷却,获得白色组织,然后是形状复杂、壁薄、抗振、强度较高的小铸件,如球墨铸铁球形wsi,如弯头等。

是以高适用性制造的。

2.0%~3.2%wc?加入3.6-4.0%的稀土镁合金等球化剂,铁液袋中的球化剂与铁液充分反应后,将孕育剂放入炼铁炉的出铁槽中,加入孕育剂热处理包括退火以获得铁素体基体,正火以获得珠光体基体等。

适用于曲轴、凸轮轴等铸件。

其承受大载荷、振动和一定冲击,并需要耐磨性。

蠕墨铸铁类似于蠕虫状的球墨铸铁,只是在蠕墨铸铁液中加入了适量的蠕化剂快速冷却可用于制造耐磨性要求较低的耐磨铸件,如气缸盖、钢锭模、液压阀等铸件,白口铸铁渗碳体1.28可锻铸铁含碳量和硅量低,流动性差,冷却速度快,适用于铸造薄壁小铸件和厚壁大铸件,这些铸件可能会产生浇注不足等缺陷。

1.29不正确,不同壁厚灰铸铁的力学性能不同,壁厚为5mm的抗拉强度ζb?175mpa,满足条件,而其他两个不满足31哪种铸造方法适合批量生产下列铸件?大直径铸铁污水管缝纫机床身铝活塞摩托车气缸体燃气轮机叶片气缸套汽车喇叭大直径铸铁污水管离心铸造缝纫机机头砂型铸造床身砂型铸造铝活塞金属铸件摩托车气缸体压力铸造燃气轮机叶片熔模铸造气缸套离心铸造汽车喇叭压力铸造第2章金属塑性成形2-1什么是最小阻力定律?为什么封闭的辊挤压或拉伸模腔能提高辊挤压或拉伸的效率?A:最小阻力定律是指当金属颗粒在塑性变形过程中可能向几个方向移动时,金属颗粒向最小阻力方向的移动。

因为封闭的模腔使材料塑性变形,所以填充模腔的阻力是唯一最小的(对于开放的模腔,在几个方向上的阻力可能是最小的),所以效率相对较高。

2-2纤维组织是如何形成的?它的存在有什么优点和缺点?A:金属锭组织中存在偏析夹渣,第二相相等。

在热塑性变形过程中,它沿着金属晶粒的变形方向或延伸方向呈带状、线形或链状分布,金属在再结晶后不会发生变化,但仍保持宏观的“流线型”形状。

纤维结构使金属的力学性能呈现方向性,沿纤维方向的拉伸和压缩强度增加,而垂直于纤维方向的拉伸和压缩强度降低2-3什么是“过热”?什么是“过度燃烧”?它们分别对锻件有什么影响?A:在金属塑性成形过程中,如果加热温度过高,导致金属颗粒急剧增加,这种现象称为“过热”;如果温度太高,接近熔点,晶界的氧化或局部熔化称为“过烧”过热会导致金属塑性和塑性成形能力的降低。

过度燃烧会导致金属的塑性变形能力完全消失。

2-4判断下列陈述是否正确?为什么?(1)金属塑性越好,抗变形能力越强,可锻性越好。

错误;塑性越好,抗变形能力越小,可锻性越好。

(2)为了提高钢的塑性变形能力,可以采用降低变形速度或三相压应力变形等工艺。

错误;当变形速度低于临界值时,降低变形速度可以提高材料的塑性变形能力,但当变形速度高于临界值时,降低变形速度会降低材料的塑性变形能力(3)为消除锻件中的纤维组织,可采用热处理错误;纤维的方向和分布只能通过塑性变形来改变。

2-5寻求75毫米长圆钢与165毫米长圆钢的锻造比,锻造直径50毫米,高度120毫米圆钢与60毫米高直径50毫米、高180毫米的圆钢能镦粗到60毫米高吗?为什么?答:s0H0=s1H1 Y锻造= s0/S1 = H1/H0 = 165/75 = 2.2;y锻造= 120/60 = 2;不是,因为整体镦粗用的圆形截面毛坯的高径比不超过2.5~3,这里的高径比是3.62-7为什么在锻造过程中许多重要的工件需要镦粗?镦粗可以提高后续拉拔过程中的锻造比,改善横向力学性能,降低各向异性。

2-8带头轴类零件,单件小批量生产条件下,如果法兰头直径d小,杆长l大,应如何锻造?如果d大,l小,怎么锻造?a:自由锻造当D较小而L较大时,棒料首先被拉出,然后棒料被局部镦粗,头部被锻造。

d较大,l为。

相关文档
最新文档