弹塑性力学复习思考题 (1)

合集下载

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2

弹性力学复习思考题

弹性力学复习思考题

其中: 为曲梁圆周边界上的分布载荷。 其中: q 为曲梁圆周边界上的分布载荷。 M, Q分别为梁截面上弯矩与剪力。 分别为梁截面上弯矩与剪力。 分别为梁截面上弯矩与剪力 应力函数: 结合应力分量与应力函数的关系确定 应力函数:
2 σθ = 2 r
= f (r)
= f (r) sin θ
= f (r) cosθ
力偶、 (9)半无限平面体在边界上作用力偶、集中力、分布力下,应力函数 )半无限平面体在边界上作用力偶 集中力、分布力下 、应力分量、位移分量的确定? 应力分量、位移分量的确定? 应力分量、位移分量的确定? (10)圆孔附近应力集中问题应力函数 、应力分量、位移分量的确定? ) (11)叠加法的应用。 )叠加法的应用。
X = l(1+ )αT,
Y = m(1+ )αT
(5)温度应力问题求解的基本思路与方法: )温度应力问题求解的基本思路与方法: (a)求出满足位移平衡方程(6-18)的一组特解(此时,无需满足 )求出满足位移平衡方程( )的一组特解(此时, 边界条件;用位移势函数求解)。 边界条件;用位移势函数求解)。 (b)不计变温,求出满足平衡方程(6-18)的一组补充解(常由应 )不计变温,求出满足平衡方程( )的一组补充解( 力函数求解,其边界条件为特解给出的面力)。 力函数求解,其边界条件为特解给出的面力)。 的概念; 与位移分量的关系; (6)位移势函数 ψ 的概念;位移势函数 ψ 与位移分量的关系;温 ) 度应力问题中, 满足的方程; 度应力问题中,位移势函数 ψ 满足的方程;应力分量的位移势 的表示。 函数 ψ 的表示。
王俊民 编 徐秉业 编

《弹性力学学习方法及解题指导》 弹性力学学习方法及解题指导》
同济大学出版社 机械工业出版社

弹塑性力学复习-1

弹塑性力学复习-1

d
0
取主应力状态有:sxd x syd y szd z 0
加载后: x 0 d , d x d , d y 0, d z d
sx

1 3
(2

) x ,
sy


1 3
(1
) x ,
sz


1 3
(1
2) x
d z

2 1 2
Mises屈服准则求该单元屈服时的应力 ,
记屈服时的应力为 0 , 屈服后加载有 d , 求z方向的应力增量 d z 。
解:弹性应力 z ( x y )
应力偏量:
sx
x
m


1 (
3

)

1 (2 3
)
sy
y
m

1 (1 3
一、概念题
16.薄板理论的基本假设有哪些方面使问题得到简 化?为什么? 17.两种屈服准则的物理意义和它们在平面应力状 态下的图形特点。 18.按单向拉伸确定材料的屈服常数,比较两种屈 服条件的差异。 19.按纯剪状态确定材料的屈服常数,比较两种屈 服条件的差异。 20.叙述Levy-Mises、Prandtl-Reuss塑性本构关系, 并定义等效应力与等效塑性应变增量。 21.比较两种塑性本构关系的特点。
解(1)管的两端是自由的应力状态
由Mises屈服条件:
1 3
(
pR )2 t


2 s
p 3 s t
R
由Tresca屈服条件:
pR t

s
p 2 s t
R
例9薄壁管,平均半径为R,壁厚为t,承受内压p

弹塑性力学习题及问题详解

弹塑性力学习题及问题详解

本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:假如ijji a a =,如此0ijk jk e a =。

〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

弹塑性力学复习思考题(1)

弹塑性力学复习思考题(1)

研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤?(2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么?(5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定?(9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有和联系和区别?(10) 论述薄板小挠度弯曲理论的基本假定?二、计算题1、For the following state of stress, determine the principal stresses and directions andfind the traction vector on a plane with unit normal (0,1,1)/n =311102120ij σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2、In suitable units, the stress at a particular point in a solid is found to be214140401ij σ-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦Determine the traction vector on a surface with unit normal (cos ,sin ,0)θθ,where θ is a general angle in the range 0θπ≤≤。

Plot the variation of the magnitude of the traction vector n T as a function of θ.3、 利用应变协调条件检查其应变状态是否存在存在?,(1)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数222(),,2x y xy k x y ky kxy εεγ=+== k 为常数(2)222225ij x y xz yz z xz z ε⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦4、The displacements in an elastic material are given by22222(1)(1)(1),(),0224M M M l u xy v y x w EI EI EI νννν-+-=-=+-=where M ,E , I , and l are constant parameters 。

弹 塑 性 力 学 课 程《 各章学习的基本要求和复习思考题 》

弹 塑 性 力 学 课 程《 各章学习的基本要求和复习思考题 》

★ 复习题
何谓应力? 何谓一点的应力状态? (1) 何谓应力? 何谓一点的应力状态? 进一步深入理解一点的应力状态的概念 一点的应力状态的概念, (2) 进一步深入理解一点的应力状态的概念,并掌握采用单 元体去表征和研究一点的应力状态的方法。 元体去表征和研究一点的应力状态的方法。 去表征和研究一点的应力状态 为什么一点的应力状态可用二阶张量的形式来表示? (3) 为什么一点的应力状态可用二阶张量的形式来表示? 应力张量是一个二阶对称张量吗 ? (4) 弹塑性力学中应力分量的符号规则是什么? 同材料力 弹塑性力学中应力分量的符号规则是什么? 学应力符号规则有何不同? 学应力符号规则有何不同? 一点的应力状态通常参照笛卡尔直角坐标系oxyz oxyz可表 (5) 一点的应力状态通常参照笛卡尔直角坐标系oxyz可表 若再参照另一坐标 示为 σ ij (i,j = x,y,z) 。若再参照另一坐标 系 ox′y′z′ , 则该点应力状态还可表示为 σ i′j ′ , (i‘,j ,y’,z (i ,j’ = x‘,y ,z ) 。于是有: σ ij = σ i′j ′ ,j ,y ,z‘) 于是有: 正确吗? 正确吗? 这样表示
★ 复习题
试写出柯西(Augustir1 Cauchy)几何方程的缩 (1) 试写出柯西(Augustir1 · Louis Cauchy)几何方程的缩 写式 ? 何谓线应变和剪应变? (2) 何谓线应变和剪应变? 试从受力物体内某点处沿相互垂 直的xy方向, xy方向 直的xy方向, 取两条微线段 ∆x 和 ∆y , 然后根据线应变 和剪应变的定义推导出该点的线应变 ε x 和剪应变 γ xy . 何谓主应变、主应变方向? (3) 何谓主应变、主应变方向? 主应变方向与主应力方向是 否一定相吻合? 否一定相吻合? 为什么一点的应变状态可用二阶张量的形式来表示? (4) 为什么一点的应变状态可用二阶张量的形式来表示? 表 示同一点应变状态的二阶应变张量 ε ij (i,j=x,y,j) 和 ε i′j′ (i ,j =x ,y ,j )应如何转换? 应变张量 ε ij 如 (i‘,j =x‘,y ,j‘)应如何转换? ,j’=x ,y’,j 何分解成球张量和偏张量 ? 应变谐调方程(又称为变形协调方程或圣文南(Saint (Saint(5) 应变谐调方程(又称为变形协调方程或圣文南(SaintVenant)方程 的物理意义是什么? 方程) Venant)方程)的物理意义是什么?

弹塑性力学作业(含答案)(1)

弹塑性力学作业(含答案)(1)

第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。

解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得:3030cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x yxy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+=----+=⋅+=⋅-=--⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x yx yxy x yxy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+=----+=-⋅+=-⋅+=⨯+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。

2—6. 悬挂的等直杆在自重W 作用下(如图所示)。

材料比重为γ弹性模量为 E ,横截面面积为A 。

试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。

解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:题图1-3zz zE Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

弹塑性力学陈明祥版课后习题答案++

弹塑性力学陈明祥版课后习题答案++
弹塑性力学
第一章 绪 论
一、 学科分类 ·弹塑性力学 二、 弹塑性力学的研究对象 三、 弹塑性力学的基本思路与研究方法 四、 弹塑性力学的基本任务 五、 弹塑性力学基本假设 六、 弹塑性力学发展概况 七、张量概念及其基本运算
一、学科分类 ·弹塑性力学
1、学科分类
按运动与否分:
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
◆ 法国科学家库伦(C.A.Corlomb1773年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念

弹塑性力学(工学专业工程硕士研究生)复习题

弹塑性力学(工学专业工程硕士研究生)复习题

复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。

A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。

A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ;03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。

A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。

A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。

A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。

A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。

A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。

A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。

求解主应变的方程可得出三个根。

这三个根一定是( )。

A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。

此变形过程( )。

A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。

A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。

弹塑性力学课后习题答案

弹塑性力学课后习题答案
空间,描述一切物理恒量的分量数目可统一地表 示成:
M r n (Ⅰ—1)
◆ 现令n为这些物理量的阶次,并统一称这些物
理量为张量。
当n=0时,零阶张量,M=1,标量; 当n=1时,一阶张量,M=3,矢量;
、 、 、 当取n时,n阶张量,M=3n。
◆ 二阶以上的张量已不可能在三维空间有明显直
观的几何意义,但它做为物理恒量,其分量间 可由坐标变换关系式来解决定义。

zx zy z
ij yxx
xy y
xz yz
(2—3)
zx zy z
据剪应力互等定理 ij ji (,i应力j)张量应是
一个对称的二阶张量。
1、任意斜截面上的应力
已知 : x、 y、 z
xy、 yz、 zx
斜求截:面P 外法P线x 、为Pny 、, Pz
即变程为3。
3.求和约定
关于哑标号应理解为取其变程N内所有数值, 然后再求和,这就叫做求和约定。 例如:
3
aibi aibi a1b1 a2b2 a3b3 i 1
(I-2)
3
aij b j aij b j ai1b1 ai2b2 ai3b3 j 1
33
aijbic j
aij bi c j
在研究对象上,材料力学的研究对象是固 体,且基本上是各种杆件,即所谓一维构件。
弹塑性力学研究对象也是固体,是不受 几何尺寸与形态限制的能适应各种工程技术 问题需求的物体。
造成两者间这种差异的根本原因是什么呢?
1、弹塑性力学分析问题的基本思路
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:

弹塑性力学复习思考题.docx

弹塑性力学复习思考题.docx

研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平而、主应力、应力主方向?简述求一点主应力的步骤? (2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量丿2的物理意义是什么?(5) 什么是屈服面、屈服函数? Tresca 屈服条件和Mises 屈服条件的儿何 与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一 Illi 线假定?(9) 什么是平而应力问题?什么是平而应变问题?在弹性范用内这两类问题之间有 和联系和区别?(10) 论述薄板小挠度弯曲理论的基木假定?二、计算题1、已知P 点的应力张量为「3 1 r叭=10 21 2 0求该点的主应力、主方向及最人剪应力2、利用应变协调条件检杳其应变状态是否存在存在?° 红 i f + YP ________ OiLti -------- 二.=0dx idx j dXjdXtt, dx i dx h(1) e x =Axy 2, £y =Bx 2y, y xy =0, A^ B 为常数=k(x 2+ y 2\= ky 2,/vv = 2kxy k 为常数y xz z z2z 25x 2⑵ % = y 23、写出如下问题的边界条件(a)用直角坐标,(b)用极坐标°ly4、正方形薄板三边固定,另一边承受法向压力p = -p. sin —,如图所示,设位移函数为 b利用Ritz 法求位移近似解(泊松比v=0)o5、 悬臂梁在自 由端受亲中力P 作用,如图所示。

试用极小势能原理求最大挠度dP丿 -Z ----------------------------------------- 1z/ X< -------------------- -------------------------- >、'y第5题图提示设梁的挠1111线为2 3vv = a 2x +a 3x6、 对给定的应力函数: (1) (p } = = Cxy 3,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?3F xv 3 P(2) 证明0= —[xy - ^-] + — b 可以作为应力函数,并求在区域xAO,—cYyYc 区4c " 3c~ 4c'域内的应力分量,并分析该应力函数可以解决那类平|何问题。

弹塑性力学 陈明祥版的 课后习题答案++共207页

弹塑性力学 陈明祥版的 课后习题答案++共207页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪ቤተ መጻሕፍቲ ባይዱ
28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
207
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生

弹塑性力学 陈明祥版的 课后习题答 案++
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

弹塑性力学思考题

弹塑性力学思考题

弹塑性理论思考题⒈ 一点的应力状态?通过一点P 可做无穷多个截面,各个截面上应力状况的集合称为一点的应力状态。

(通过一点P 的各个面上应力状况的集合。

) ⒉ 一点应变状态?代表一点 P 的邻域内线段与线段间夹角的改变。

(过P 点所有方向上的线应变和角应变的集合。

) ⒊ (1)应力张量?应力张量是应力状态的数学表示。

数学上应力为二阶张量,三维空间中需九个分量(三个正应力分量和六个剪应力分量)来确定。

在静力平衡(无力矩)状态下,剪应力关于对角对称,九个量中只有六个独立分量。

(p17-p18)(2)应力张量的不变量?应力张量是二阶对称张量,因此它同样存在三个不变量,分别用J1,J2,J3表示。

(3)应力球张量?应力偏张量?应力球张量只能使物体产生体积变化应力偏张量使物体产生形状变化,而不能产生体积变化,材料的塑性变形就是由应力偏张量引起的 (4)体积应力?对弹性体施加一个整体的压强p ,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)。

由体积应力和体积应变的关系,可得由上述公式可知,如果体力为常量,体积应力和体积应变均满足拉普拉斯(Laplace )方程,即体积应力函数和体积应变函数均为调和函数。

(5)平均应力?交变应力中,最大应力和最小应力的平均值。

(6)偏应力第二不变量J2的物理意义? 第二不变量是三个主应力两两相乘的和 (7)单向应力状态?如果有两个主应力等于零称为单向应力状态 (8)纯剪应力状态的应力张量?给出应力分量,计算第一,第二不变量。

应力偏张量是二阶对称张量,因此它同样存在三个不变量,分别用J1、J2、J3表示。

对于主轴坐标系则: =+++-+-+-=+++++-==-+-+-=++=')](6)()()[(61)''''''('0)()()(''''322222222212J J J zx yz xy x z z y y x zxyz xy x z z y y x m z m y m x z y x τττσσσσσστττσσσσσσσσσσσσσσσ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''z zy zx yz y yxxz xy x στττστττσ应力偏张量是第一不变量J`1=0表明应力分量中已经没有静水应力成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生弹塑性力学复习思考题
1. 简答题:
(1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤?
(2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么?
(5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何
与物理意义是什么?
(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定?
(9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有
和联系和区别?
(10) 论述薄板小挠度弯曲理论的基本假定?
二、计算题
1、For the following state of stress, determine the principal stresses and directions and
find the traction vector on a plane with unit normal (0,1,1)n =
3
111
021
2
0ij σ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
2、In suitable units, the stress at a particular point in a solid is found to be
2
141
404
01ij σ-⎡⎤
⎢⎥=⎢⎥⎢⎥-⎣⎦
Determine the traction vector on a surface with unit normal (cos ,sin ,0)θθ,where θ is a general angle in the range 0θπ≤≤。

Plot the variation of the magnitude of the traction vector n T as a function of θ.
3、 利用应变协调条件检查其应变状态是否存在存在?

(1)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数
222(),,2x y xy k x y ky kxy εεγ=+== k 为常数
(2)222
22
5ij x y xz y
z z xz z ε⎡⎤⎢⎥=⎢⎥⎢⎥⎣

4、The displacements in an elastic material are given by
222
22(1)(1)(1),(),0224
M M M l u xy v y x w EI EI EI νννν-+-=-=+-=
where M ,E , I , and l are constant parameters 。

Determine the corresponding strain and stress fields and show that this problem represents the pure bending of a rectangular beam in the x,y plane.
5、写出如下问题的边界条件 (a)用直角坐标,(b )用极坐标
P
6、Express all boundary conditions for each of the problems illustrated in the following
figure.
l
θ
θr θ
r
7、
8、
9、
4、 正方形薄板三边固定,另一边承受法向压力b
x
p p π-=sin
0,如图所示,设位移函数为 0=u b
y b x
a v 2sin sin
2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。

y
x
a
b
A B
C
O
(第4题图) (第6题图) 5、悬臂梁在自由端受集中力P 作用,如图所示。

试用极小势能原理求最大挠度
第5题图 提示设梁的挠曲线为
6、对给定的应力函数:
(1)32223123,,Ax y Bx y Cxy ϕϕϕ===,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?
(2)证明32
23[]434F xy P xy y c c c
ϕ=-+可以作为应力函数,并求在区域0,x c y c - 区域内的应力分量,并分析该应力函数可以解决那类平面问题。

7.如图所示矩形截面柱承受偏心载荷作用,且不计其重量,若应力函数3
2
Ax Bx ϕ=+,试 求:
(1)应力分量;(2)应变分量;(3)假设D 点不移动,且该点处截面内线单元不能转动(0,0
0x y u y ==⎛⎫
∂=

∂⎝⎭),求位移分量 x
23
23w a x a x =+
8、图示三角形截面梁只受重力作用,梁的质量密度为ρ,宽度为1,试用纯三次应力函数求解各应力分梁。

9.如图所示的楔形体两侧面上受有均布切向载荷q ,试求其应力分量。

10.已知一圆形薄管,平均半径为a,厚度为t,在薄管的两端受有拉力p 和扭矩T 作用,写出管内一点处的Tresca 屈服条件和Mises 屈服条件表达式。

y
11.如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。

板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。

试证,为了将薄板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。

并求挠度和反力。

12.如图所示的矩形板,使用板的挠度表示相应的边界条件。

13、试证明用位移表示的平衡方程为
,,()0i jj i i Gu G X λ++Θ+= 其中 ii u v w x y z
ε∂∂∂Θ=
++=∂∂∂为体积应变 (提示广义胡克定律的另外一种表达形式为
2ij ij kk ij G σελεδ=+)
14、试以矩形薄板(第12题)为例说明自由边等效剪力的含义。

x
y。

相关文档
最新文档