余弦定理教学设计说明

合集下载

高中数学余弦定理教案5篇

高中数学余弦定理教案5篇

高中数学余弦定理教案5篇作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

高中数学余弦定理教案篇1一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。

本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。

其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具普通教学工具、多媒体工具 (以上均为命题教学的准备)高中数学余弦定理教案篇2一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

余弦定理教案设计

余弦定理教案设计

余弦定理教案设计教学内容:余弦定理一、教学目标1.了解余弦定理的概念和公式。

2.能够应用余弦定理解决三角形的边与角之间的关系问题。

3.提高学生的数学推理和解决问题的能力。

二、教学重点与难点:1.重点:理解余弦定理的概念和公式,应用余弦定理解决问题。

2.难点:灵活运用余弦定理解决各种实际问题。

三、教学准备:1.教材《数学》课本、教具:黑板、彩色粉笔、三角尺、直尺和练习题。

2.多媒体设备。

四、教学过程:1.导入引入:教师引导学生回顾正弦定理的概念和公式,并举例说明其应用。

然后介绍余弦定理的概念,并与正弦定理进行对比,引出余弦定理的公式。

2.理论讲解:教师通过多媒体展示余弦定理的公式:a² = b² + c² - 2bc cosA,其中a为三角形的一边,b、c为另外两边,A为夹角。

讲解余弦定理的推导过程,并注意解释其中的符号含义。

3.实例演示:教师通过具体的实例演示如何应用余弦定理解决问题,包括计算未知边长、未知角度等。

并让学生在黑板上模仿演示。

4.小组讨论:教师组织学生分成小组,每组完成几道余弦定理的练习题,要求学生相互讨论并解答问题。

教师巡视指导,及时纠正错误。

5.教师指导:教师在小组讨论的过程中,根据学生的理解情况和解答过程,及时给予指导和解释。

鼓励学生思考、提问和探讨。

6.全课总结:教师对余弦定理的应用进行总结,并强调余弦定理在解决实际问题中的重要性。

鼓励学生在学习中多加思考,灵活运用所学知识。

7.作业布置:布置相关的习题作业,并要求学生认真完成,巩固所学内容。

要求学生在实际生活中多加观察,发现并解决问题。

五、教学反思:本次教学中,我注意引导学生主动参与学习,提高他们的解决问题和表达能力。

在教学中,要注意理论与实践相结合,引导学生将所学知识应用到实际问题中去解决。

同时,要及时纠正错误,鼓励学生勇于提问和探索。

通过这样的教学方式,可以更好地帮助学生理解和掌握余弦定理的概念和运用。

余弦定理教案设计

余弦定理教案设计

余弦定理教案设计一、教学目标:1.知识目标:了解余弦定理的概念和计算公式。

2.能力目标:能够运用余弦定理解决实际问题,并扩展到其他三角形的计算中。

3.情感目标:培养学生的数学思维和解决问题的能力,提高他们的数学兴趣和学习兴趣。

二、教学重点:1.余弦定理的定义和计算公式。

2.运用余弦定理解决实际问题。

三、教学难点:1.运用余弦定理解决实际问题。

2.引导学生理解余弦定理的原理和意义。

四、教学过程:1.导入(5分钟)首先,老师可以设置一个问题引发学生的思考,比如两条直角边分别为3cm和4cm的直角三角形,求斜边的长度。

2.概念讲解(10分钟)通过上述问题引发学生的思考,引出正弦定理的概念,并简单解释其意义和应用范围。

3.公式推导(15分钟)根据直角三角形的定义和勾股定理,老师可以引导学生推导出余弦定理的公式:c^2 = a^2 + b^2 - 2abcosC。

4.实例演练(20分钟)通过几个实例的演示,引导学生运用余弦定理解决实际问题。

比如已知一个三角形的两边和夹角,求第三边的长度。

5.练习与拓展(20分钟)老师可以提供一些练习题供学生独立解答,并引导学生想一想如何扩展余弦定理到其他类型的三角形中。

6.深化与拓展(15分钟)引导学生思考并讨论如何应用余弦定理解决实际问题,比如船只的航行问题、建筑物的高度测量等。

7.总结与归纳(5分钟)老师与学生一起总结整个学习内容,以及余弦定理的概念、公式和应用范围。

8.小结反思(5分钟)帮助学生回顾整个学习过程,了解自己的学习情况和存在的问题,借助老师的指导进行思考和反思。

五、教学辅助手段:1.教具准备:黑板、彩色粉笔、教学PPT等。

2.工具准备:尺子、直角三角板等。

六、教学评价与反馈:1.教师可以设置一些练习题和思考题,对学生的综合能力和问题解决能力进行评价。

2.教师可以利用课后作业和课堂讨论等形式,对学生的学习情况和问题进行反馈。

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。

4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。

5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。

6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。

7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。

三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

《余弦定理》教学设计

《余弦定理》教学设计

《余弦定理》教学设计1. 能够理解余弦定理的原理和应用;2. 能够正确运用余弦定理解决实际问题;3. 培养学生分析和解决问题的能力。

教学内容:余弦定理的原理和公式。

教学步骤:Step 1: 引入通过介绍一个真实生活中的问题,引发学生对余弦定理的兴趣。

例如,我们可以以一个钓鱼的故事开始,告诉学生一个人站在岸上想要和朋友相距一定的距离去钓鱼。

然后问学生有没有办法求得这个距离,引出余弦定理的概念。

Step 2: 余弦定理的定义向学生介绍余弦定理的定义和公式:在一个三角形ABC中,设边AB=c,边BC=a,边CA=b,设∠C的对边为c,那么余弦定理可以表示为c²= a²+ b²- 2ab cosC。

通过解释公式中的各个部分,让学生理解其含义。

Step 3: 例题讲解选取一到两个实际问题进行例题讲解,通过实例让学生理解余弦定理的具体应用。

例如,可以以求解一个不规则三角形的边长为例,根据已知边和夹角,使用余弦定理计算第三边的长度。

Step 4: 学生练习让学生在小组内自主解决一些简单的余弦定理问题,例如求解一个直角三角形的斜边长度,或是求解一个具体角度的三角形的边长等。

然后让学生互相讨论解题思路,并展示解答过程给全班。

Step 5: 进一步拓展引导学生运用余弦定理解决一些更复杂的问题,例如求解一个不规则多边形的面积,或是求解一个高楼之间的夹角等。

让学生思考如何灵活运用余弦定理,并激发他们对数学问题的兴趣。

Step 6: 总结和归纳通过学生练习和讨论,总结余弦定理的应用范围和解题方法。

强调理解概念和原理的重要性,同时引导学生思考如何应用余弦定理来解决其他类型的问题。

Step 7: 拓展练习布置一些拓展练习题,要求学生独立解决。

这些问题可以涉及到其他几何概念的综合运用,如正弦定理、勾股定理等。

同时鼓励学生积极思考并尝试解决其他实际问题,培养他们的综合分析和解决问题的能力。

Step 8: 总结在课堂结束前,对学生做一次课堂总结,回顾和概括余弦定理的重点内容。

“余弦定理”教学设计

“余弦定理”教学设计

“余弦定理”教学设计作为一位不辞辛劳的人民教师,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么应当如何写教学设计呢?下面是作者整理的“余弦定理”教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

“余弦定理”教学设计1教材分析这是高三一轮复习,内容是必修5第一章解三角形。

本章内容准备复习两课时。

本节课是第一课时。

标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。

通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。

(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。

本章内容与三角函数、向量联系密切。

作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。

学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。

教学目标知识目标:(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。

(2)学生学会分析问题,合理选用定理解决三角形综合问题。

能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。

情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。

教学方法探究式教学、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。

1.3.2余弦定理教学设计.doc

1.3.2余弦定理教学设计.doc

1. 3. 2余弦定理一、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明余弦定理。

2、能运用余弦定理解决两类基本的解三角形问题.3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。

二、教学重点与难点教学重点:余弦定理的发现和证明过程及其基本应用.教学难点:余弦定理的证明及应用突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手, 在学生主体下给于适当的提示和指导。

三、教学方式:以学生为中心,以教师为主导,启发式教学。

四、教学过程:1.复习准备:(1)提问:正弦定理.的文字语言?符号语言?基本应用?(2)练习:在△,网中,已知c = 10,』=45。

,。

30。

,解此三角形.2.创设情景,导入新课问题:如果知道三角形的两条边及它们的夹角,如何求第三条边呢?在三角形ABC中,作于贝Ua2 = CD2 + DB~ =b~- AD2 + DB~= b2+(DB + AD)(DB - AD)=b2 + c(DB +AD-2 AD)=b2 + c(c - 2 AD) = b~+c2- 2cAD=b2 +C1 - 2cZ?cos A7 7 7 b = a +c -c 2 = a 2 +b 2 - 2ab cos C (1) >2 , 2 2b +c -a cos A = ------ 2bc 2 2,2 a +c -b cos B = ----- lac a 2 +b 2-c 2 cos C = ----2ab (2)a 2 =b 2 +C 2 - 2阮 cos A 同理可得 Z?2 =/ +c 、2 - 2«ccos B, c 2 = a 1 +b 2- lab cos C.可以证明,上述结论对于任意三角形都成立.于是得到余弦定理:三角形中任意一边的平方等于其余两边的平方和减去这两边与其夹角余弦乘积的两倍.显然,当C = 90°时,有c 2=a 2+b 2.这就是说,勾股定理是余弦定理的特例. 公式(1)经变形后可以写成利用余弦定理可以解决下列解三角形的问题:(1)已知三角形的两条边和它们的夹角,求第三边和其他的两个角.(2)巳知三角形的三边,求三个角.3. 讲解例题,巩固定理例 1 在△ABC 中,A = 60° , b = 8, c = 3,求 o. 分析这是巳知三角形的两条边和它们的夹角,求第三边的问题,可以直接应用余弦 定理. 解 a 2 =b 2 +c 2 - 2bc cos A=82 +32 -2x8x3xcos60° =49所以a = 7.例2在左A 昭中,。

余弦定理教案

余弦定理教案

余弦定理教案【余弦定理教案】一、教学目标1. 理解余弦定理的概念和原理。

2. 学会运用余弦定理解决实际问题。

3. 培养学生的逻辑思维和问题解决能力。

二、教学准备1. 教材《数学》2. 教学课件3. 黑板和粉笔4. 教学实例和练习题三、教学过程【引入】1. 使用生活中的实例引入余弦定理的概念,例如:树木倾斜、建筑物斜倚等。

2. 引发学生思考,概括出三角形中的边与角之间的关系。

【讲解】1. 介绍余弦定理的定义和公式:c² = a² + b² - 2abcosC。

2. 解读余弦定理中的各个变量及其意义:c为第三边,a和b为两边,C为夹角。

3. 通过示例演示如何运用余弦定理计算三角形的边长和角度。

4. 引导学生发现余弦定理的应用范围和特点。

【示范】1. 给出几道实际问题,如建筑物斜坡的高度计算、航海中船舶航线的计算等。

2. 详细演示解决实际问题的步骤和计算方法。

3. 注重解题思路的讲解,培养学生的问题解决思维能力。

【练习】1. 分发练习题,让学生独立完成。

2. 审阅学生练习题,及时纠正错误,解答疑惑。

3. 批评与表扬结合,激发学生的学习兴趣和主动性。

【拓展】1. 引导学生思考余弦定理与正弦定理的关系和区别。

2. 鼓励学生自主学习与探究,拓展应用。

四、课堂总结1. 通过本节课的学习,希望学生能够熟练掌握余弦定理的应用方法。

2. 提醒学生在实际问题中合理选择使用余弦定理还是其他方法。

五、课后作业1. 完成课后练习题。

2. 总结复习余弦定理的要点和注意事项。

六、教学反思本节课通过引入实际问题,结合示范和练习,使学生理解和掌握了余弦定理的原理和应用方法。

教材和课件的使用,以及实践演示的方式,能够有效地提高学生的学习兴趣和主动性。

需要注意的是,在讲解过程中要注重与学生的互动,引导他们思考,并及时纠正误区,保证学习效果的最大化。

余弦定理教案

余弦定理教案

余弦定理教案余弦定理教案余弦定理教案1教学准备教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化?②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.余弦定理教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

(2)能力目标:提高学生分析问题、解决问题的能力。

(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。

(完整版)《余弦定理》教案完美版

(完整版)《余弦定理》教案完美版

《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。

从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。

2. 培养学生运用余弦定理解决三角形问题的能力。

3. 培养学生的逻辑思维能力和数学素养。

二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。

2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。

三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。

2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。

3. 开展小组讨论,培养学生的合作能力和解决问题的能力。

四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。

2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。

3. 准备相关练习题,用于巩固所学知识。

五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。

2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。

3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。

4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。

5. 练习巩固:让学生解答相关练习题,巩固所学知识。

6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。

7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。

六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。

2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。

七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。

2. 强调余弦定理在解决三角形问题中的重要性。

八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。

九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

余弦定理优秀教学设计【优秀7篇】

余弦定理优秀教学设计【优秀7篇】

余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。

下面我分别从教材分析。

教学目标的确定。

教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。

四、教学过程的设计为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。

具体过程如下:1、创设情境,引入课题利用多媒体引出如下问题:A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。

【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。

余弦定理教学设计方案

余弦定理教学设计方案

一、教学目标1. 知识目标:(1)理解余弦定理的概念及其应用;(2)掌握余弦定理的推导过程;(3)学会运用余弦定理解决实际问题。

2. 能力目标:(1)提高学生分析问题和解决问题的能力;(2)培养学生逻辑思维和抽象思维能力;(3)提高学生运用数学知识解决实际问题的能力。

3. 情感目标:(1)激发学生对数学的兴趣和热爱;(2)培养学生的团队协作精神;(3)提高学生的自信心和毅力。

二、教学重点与难点1. 教学重点:(1)余弦定理的概念及其应用;(2)余弦定理的推导过程;(3)运用余弦定理解决实际问题。

2. 教学难点:(1)余弦定理的推导过程;(2)运用余弦定理解决实际问题。

三、教学过程1. 导入新课(1)通过实际问题引入:在一个三角形ABC中,已知边长AB=5,AC=7,角BAC=45°,求边BC的长度。

(2)引导学生回顾正弦定理,提出问题:如果只知道三角形的一边和两个角,能否求出其它边的长度?2. 余弦定理的概念及推导(1)引导学生回顾三角形内角和定理,推导出余弦定理。

(2)通过实例展示余弦定理的应用,如求三角形各边长、角度等。

3. 余弦定理的应用(1)通过实例讲解如何运用余弦定理解决实际问题。

(2)让学生分组讨论,尝试解决实际问题。

4. 拓展与练习(1)布置课后作业,巩固余弦定理的知识。

(2)组织课堂讨论,让学生分享解题思路。

5. 总结与反思(1)引导学生回顾本节课所学内容,总结余弦定理的概念、推导过程及应用。

(2)反思本节课的收获,提出改进措施。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、合作能力、问题解决能力等。

2. 课后作业:检查学生对余弦定理知识的掌握程度。

3. 实际应用:通过实际问题的解决,评估学生运用余弦定理的能力。

五、教学反思1. 教学过程中,注重启发式教学,引导学生主动思考,提高学生分析问题和解决问题的能力。

2. 结合实际问题,让学生体验数学知识的实际应用,激发学生学习兴趣。

《余弦定理》教案(含答案)

《余弦定理》教案(含答案)

《余弦定理》教案(含答案)第一章:余弦定理的定义与基本概念教学目标:1. 了解余弦定理的定义及其在几何中的应用。

2. 掌握余弦定理的表达式。

3. 能够运用余弦定理解决简单的问题。

教学内容:1. 余弦定理的定义:在一个三角形中,任意一边的长度平方等于其他两边长度平方的和减去这两边长度与它们夹角的余弦值的乘积的两倍。

2. 余弦定理的表达式:c²= a²+ b²2ab cos(C),其中c为斜边,a和b为其他两边,C为斜边与a边的夹角。

教学活动:1. 引入三角形的基本概念,引导学生思考三角形中边与角之间的关系。

2. 给出余弦定理的定义,通过示例解释余弦定理的含义和应用。

3. 推导余弦定理的表达式,并解释各符号的含义。

4. 引导学生进行实际例题的计算,巩固余弦定理的应用。

作业:a. ∠A = 30°, a = 5, b = 12b. ∠B = 45°, b = 8, c = 10第二章:余弦定理在直角三角形中的应用教学目标:1. 掌握余弦定理在直角三角形中的应用。

2. 能够解决直角三角形中涉及边长和角度的问题。

教学内容:1. 直角三角形的特殊性质:在一个直角三角形中,余弦定理可以简化为c²= a ²+ b²(其中c为斜边,a和b为直角边)。

2. 利用余弦定理解决直角三角形中的问题:通过已知的边长和角度,求解其他边长和角度。

教学活动:1. 回顾直角三角形的基本概念,引导学生思考直角三角形中边与角之间的关系。

2. 给出余弦定理在直角三角形中的应用,通过示例解释余弦定理在直角三角形中的简化形式。

3. 引导学生进行实际例题的计算,巩固余弦定理在直角三角形中的应用。

作业:a. ∠A = 30°, a = 3, 求解b和c的值。

b. ∠B = 45°, b = 5, 求解a和c的值。

第三章:余弦定理在非直角三角形中的应用教学目标:1. 掌握余弦定理在非直角三角形中的应用。

余弦定理教学设计

余弦定理教学设计

c 3
cos B c2 a2 b2 1
2ca
7
由计算器,得
B 98
运用余弦定理 解三角形,巩 固本节课所学
1.余弦定理
教师提问:本节课你 让学生自己总
课堂 小结
a 2 b2 c2 2bc cos A
收获了什么?
b2 a 2 c2 2accos B c2 a 2 b2 2abcosC
以任意三
教师点拨学生 角形为例,引
思路,让学生分组讨 导学生使用向
论、探究,最后教师 量方法证明余
用多媒体展示证明 弦定理,让学
过程.
生体会到向量
(如果学生有 作为工具的强
其他证明方法,课堂 大力量,培养
a a+b b 2a b a2 b2 2ab cosC 即 c2 a2 b2 2ab cos C
学生完成例2,
学生体会余弦 定理的实际应 用价值,是解 决可转化为三 角形计算问题 的一种重要工 具.
解:sin C 3 3 ,且C为锐角, 14
教师投屏学生的过 程并做点评讲解.
通过例2,让学 生灵活掌握并
cosC 1 sin 2 C 13 14
c2 a2 b2 2abcosC 9
同时抽象 的直角三角形解决)
出具体的数学
问题,提出“已
C A
知三角形两边 及夹角,如何
求第三边”的
B
数学问题,顺
利引出新课.
过渡 从数学角度来看,这个案例归
教师将问题1抽
将具体问
结为数学模型就是
象成问题2,与学生 题抽象成一般
已知三角形的两边及它们的夹角,求 一起将刚才的思路 性问题,为后
第三边的长.我们抽象为:
引入

《余弦定理》教学设计

《余弦定理》教学设计

《余弦定理》教学设计一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。

通过利用几何法、向量的数量积法、坐标法推导余弦定理,正确理解其结构特征和表现形式,解决“已知两边一角”和“三边”解三角形问题,并体会转化划归思想、方程思想,激发学生探究数学,应用数学的潜能。

二、学生学习情况分析在必修四学生已经学习了三角函数、向量基本知识,在上一节课又学了正弦定理,对于三角形中的边角关系有了较进一步的认识。

在此基础上利用几何法、向量的数量积法、坐标法探求余弦定理,学生已有一定的学习基础和学习兴趣。

学习的最终目的就是应用,特别是正余弦定理在测量高度,距离,角度等方面有广阔的应用,而总体上学生应用数学知识的意识不强,创造力较弱,为此本节课从始至终都以学生的探索为主。

设计时在发掘出余弦定理的结构特征、表现形式的数学美,考虑激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

三、设计思想新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化。

本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

四、教学目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

2.能够运用余弦定理理解解决一些与测量和几何计算有关的实际问题3.通过三角函数、余弦定理、向量数量积、坐标等多处知识间联系来体现事物之间的普遍联系与辩证统一.二、过程与方法利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感、态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积、坐标等知识间的关系,来理解事物之间的普遍联系与辩证统一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:1.1《正弦定理与余弦定理》教案(新人教版必修5)(原创)
余弦定理
一、教材依据:人民教育出版社(A版)数学必修5第一章第二节
二、设计思想:
1、教材分析:余弦定理是初中“勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。

因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。

3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。

激发学生浓厚的学习兴趣,提高学生的创新思维能力。

4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法”,精心设计教学内容,提出探究性问
题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。

三、教学目标:
1、知识与技能:
理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题
2.过程与方法:
通过实例,体会余弦定理的内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。

3.情感、态度与价值观:
探索利用直观图形理解抽象概念,体会“数形结合”的思想。

通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。

四、教学重点:
通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。

五、教学难点:余弦定理的灵活应用
六、教学流程:
(一)创设情境,课题导入:
1、复习:已知A=030,C=045,b=16解三角形。

(可以让学生板练

2、若将条件C=045改成c=8如何解三角形?
设计意图:把研究余弦定理的问题和平面几何中三角形全等
判定的方法建立联系,沟通新旧知识的联系,引导学生体会量化的思想和观点。

师生活动:用数学符号来表达“已知三角形的两边及其夹角
解三角形”:已知△ABC ,BC=a,AC=b,和角C ,求解c,B,A
引出课题:余弦定理
(二)设置问题,知识探究
1、探究:我们可以先研究计算第三边长度的问题,那么我们
又从那些角度研究这个问题能得到一个关系式或计算公式呢? 设计意图:期望能引导学生从各个不同的方面去研究、探索得到余弦定理。

师生活动:从某一个角度探索并得出余弦定理
2、①考虑用向量的数量积:如图 A C
B
B ca a c b A
bc c b a C ab b a c C
ab b a b a b a c c b a c ,c AB b CA a CB c cos 2cos 2,cos 2cos 2))((,,,222222222222-+=-+=-+=-+=--=⋅=∴-====引导学生证明
即那么设
②还可以考虑用解析几何中的两点间距离公式来研究:
引导学生运用此法来进行证明
3、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

(可以让学生自己总结,教师补充完整)
(三)典型例题剖析:
1、例1:在△ABC中,已知b=2cm,c=2cm,A=1200,解三角形。

教师分析、点拨并板书证明过程
总结:已知三角形的两边和它们的夹角解三角形,基本思路是先由余弦定理求出第三边,再由正弦定理求其余各角。

变式引申:在△ABC中,已知b=5,c=53,A=300,解三角形。

2、探究:余弦定理是关于三角形三边和一个角的一个关系式,把这个关系式作某些变形,是否可以解决其他类型的解三角形问题?
设计意图:(1)引入余弦定理的推论(2)对一个数学式子作某种变形,从而得到解决其他类型的数学问题,这是一种基本的研究问题的方法。

师生活动:对余弦定理作某些变形,研究变形后所得关系式的应用。

因此应把重点引导到余弦定理的推论上去,即讨论已知三边求角的问题。

引入余弦定理的推论:cosA=
bc a
c b
2
2 2
2-+,
cosB=
ac b
c a
2
2 2
2-
+, cosC=
ab c
b a
2
2 2
2-
+
公式作用:(1)、已知三角形三边,求三角。

(2)、若A为直角,则cosA=0,从而b2+c2=a2
若A为锐角,则cosA>0, 从而b2+c2>a2
若A为钝角,则cosA﹤0, 从而b2+c2﹤a2
C
B
A
c
b
a
ABC、



已知在
例,2
6
,2
2
,3
2
,
:2+
=
=
=

先让学生自己分析、思索,老师进行引导、启发和补充,最后师生一起求解。

总结:对于已知三角形的三边求三角这种类型,解三角形的基本思路是先由余弦定理求出两角,再用三角形内角和定理求出第三角。

(可以先让学生归纳总结,老师补充)
变式引申:在△ABC中,a:b:c=2:6:(3+1),求A、B、C。

让学生板练,师生共同评判
3、三角形形状的判定:
例3:在△ABC中,acosA=bcosB,试确定此三角形的形状。

(教师引导学生分析、思考,运用多种方法求解)
求解思路:判断三角形的形状可有两种思路,一是利用边之间的关系来判定,在运算过程中,尽可能地把角的关系化为边的关系;二是利用角之间的关系来判定,将边化成角。

变式引申:在△ABC中,若(a+b+c)(b+c-a)=3bc,并且sinA=2sinBcosC,判断△ABC的形状。

让学生板练,发现问题进行纠正。

(四)课堂检测反馈:
1、已知在△ABC 中,b=8,c=3,A=600,则a=( )
A 2
B 4
C 7
D 9
2、在△ABC 中,若a=3+1,b=3-1,c=10,则△ABC 的最大角的度数为( ) A 1200 B 900 C 600 D 1500
3、在△ABC 中,a:b:c=1:3:2,则A :B :C=( )
A 1:2:3
B 2:3:1
C 1:3:2
D 3:1:2
4、在不等边△ABC 中,a 是最大的边,若a 2<b 2+c 2,则∠A 的取值范围是( ) A (
2π,π) B (2,4ππ) C (2
,3ππ) D (0,2π)
5、在△ABC 中,AB=5,BC=6,AC=8,则△ABC 的形状是( )
A 锐角三角形
B 直角三角形
C 钝角三角形
D 非钝角三角形
(五)课时小结:
(学生自己归纳、补充,培养学生的口头表达能力和归纳概括能力,教师总结)
运用多种方法推导出余弦定理,并灵活运用余弦定理解决解三角形的两种类型及判断三角形的形状问题。

(六)课后作业:课本第10页A 组3(2)、4(2);B 组第2题
(七)教学反思:
本堂课的设计,立足于所创设的情境,注重提出问题,引导学生自主探索、合作交流,亲身经历了提出问题、解决问题的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受到了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。

相关文档
最新文档